Optical Properties of Plasmas Based on an Average-Atom Model

Like dokumenter
TFY4170 Fysikk 2 Justin Wells

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5)

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

Lattice Simulations of Preheating. Gary Felder KITP February 2008

Qi-Wu-Zhang model. 2D Chern insulator. León Martin. 19. November 2015

Generalization of age-structured models in theory and practice

Stationary Phase Monte Carlo Methods

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN

Second Order ODE's (2P) Young Won Lim 7/1/14

NO X -chemistry modeling for coal/biomass CFD

Multimedia in Teacher Training (and Education)

Verifiable Secret-Sharing Schemes

BEC in microgravity. W. Herr, Institute for Quantum Optics, Leibniz University of Hanover

Splitting the differential Riccati equation

Electrodynamics. Manfred Hammer, Hugo Hoekstra, Lantian Chang, Mustafa Sefünç, Yean-Sheng Yong

Exam in Quantum Mechanics (phys201), 2010, Allowed: Calculator, standard formula book and up to 5 pages of own handwritten notes.

Graphs similar to strongly regular graphs

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

EKSAMEN I FAG TTT4110 Informasjons- og signalteori. Norsk tekst på oddetalls-sider. (English text on even numbered pages.)

Eksamen i FY3466 KVANTEFELTTEORI II Tirsdag 20. mai :00 13:00

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with.

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt)

Moving Objects. We need to move our objects in 3D space.

Ringvorlesung Biophysik 2016

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

RF Power Capacitors Class1. 5kV Discs

Principles of the Delayed Extraction Technique

Slope-Intercept Formula

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

Abstract. i x + a x +. a = (a x, a y ) z γ + 1 γ + z )

SVM and Complementary Slackness

Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

RF Power Capacitors Class kV Discs with Moisture Protection

PROBLEM 2 (40%) Consider electron-muon scattering e + µ e + µ. (a) Draw the lowest order Feynman diagram and compute M.

Numerical Simulation of Shock Waves and Nonlinear PDE

RF Power Capacitors Class , 20 & 30 mm Barrel Transmitting Types

Fys2210 Halvlederkomponenter

KROPPEN LEDER STRØM. Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal.

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Side 1 av 5 INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK

Analysis of ordinal data via heteroscedastic threshold models

NORSK OG ENGELSK TEKST Side 1 av 10

UNIVERSITETET I OSLO

Emneevaluering GEOV272 V17

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

TIDE DISTRIBUTIVE EFFECTS OF INDIRECT TAXATION:

SRP s 4th Nordic Awards Methodology 2018

Trust region methods: global/local convergence, approximate January methods 24, / 15

HARP-Hybrid Ad Hoc Routing Protocol

RF Power Capacitors Class1 5kV Discs

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F.

Level Set methods. Sandra Allaart-Bruin. Level Set methods p.1/24

Fys2210 Halvlederkomponenter. Kapittel 6 Felteffekt transistorer

MA2501 Numerical methods

RF Power Capacitors Class kV Discs

RF Power Capacitors Class1 : 10kV Discs

RF Power Capacitors Class kV Discs with Moisture Protection

Positive dispersion: 2 n. λ 2 > 0. ω 2 > 0, Negative dispersion: ω < 0, 2 n

Løsningsførslag i Matematikk 4D, 4N, 4M

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Forecast Methodology September LightCounting Market Research Notes

5 E Lesson: Solving Monohybrid Punnett Squares with Coding

1 d 3 p. dpp 2 e β Z = Z N 1 = U = N 6 1 kt = 3NkT.

UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet

Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl.

Kurskategori 2: Læring og undervisning i et IKT-miljø. vår

Oppgave 1. Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk EKSAMEN I: MNFFY 245 INNFØRING I KVANTEMEKANIKK

PSi Apollo. Technical Presentation

Existence of resistance forms in some (non self-similar) fractal spaces

Oppgavesett kap. 6 (3 av..) GEF2200

The Effects of an Extended Neutrino Sphere on Supernova Neutrino Oscillations

Norges teknisk naturvitenskapelige universitet NTNU

melting ECMI Modelling week 2008 Modelling and simulation of ice/snow melting Sabrina Wandl - University of Linz Tuomo Mäki-Marttunen - Tampere UT

Improving Customer Relationships

Trigonometric Substitution

RF Power Capacitors Class1

Eksamen i FY8401/FY8410/VUF4001 IONISERENDE STRÅLINGS VEKSELVIRKNING MED MATERIE Onsdag 19. mai :00 15:00

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Løsningsforslag til eksamen i TFY4230 STATISTISK FYSIKK Tirsdag 9. aug 2011

EN Skriving for kommunikasjon og tenkning

Exercise 1: Phase Splitter DC Operation

UNIVERSITETET I OSLO

Fys2210 Halvlederkomponenter. Kapittel 6 Felteffekt transistorer

Smart High-Side Power Switch BTS730

Deepshikha Shukla (Daniel Phillips, Andreas Nogga)

Implementing Bayesian random-effects meta-analysis

Maple Basics. K. Cooper

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

AC Network Analysis. Learning objectives. Ideell Kondensator (Capasitor) Structure of parallel-plate capacitor

Bokmål / Nynorsk / English NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK. Eksamen TFY4185 Måleteknikk

Sitronelement. Materiell: Sitroner Galvaniserte spiker Blank kobbertråd. Press inn i sitronen en galvanisert spiker og en kobbertråd.

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Bokmål / Nynorsk / English NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK. Eksamen TFY4185 Måleteknikk

Fys2210 Halvlederkomponenter. Forelesning 5 Kapittel 5 - Overganger

Ma Flerdimensjonal Analyse Øving 11

EKSAMENSOPPGAVE I FAG TKP 4105

SCE1106 Control Theory

Energy Dissipation in Hybrid Stars. Sophia Han. Washington University

Transkript:

Optical Properties of Plasmas Based on an Average-Atom Model Walter Johnson, Notre Dame University Claude Guet, CEA/DAM Ile de France George Bertsch, University of Washington Motivation for this work: Joseph Nilsen, LLNL Average Atom (NR version of Inferno ) Linear Response Kubo-Greenwood formula for σ(ω) Kramers-Kronig Dispersion Relation Dielectric Function ɛ(ω) Index of refraction n(ω) + iκ(ω) = ɛ(ω)

2 Introduction Free electron model used in plasma diagnostics: n free (ω) = 1 ω2 0 ω 2 1 ω2 0 2ω 2 < 1 where ω2 0 = 4π e2 m N free vol Recent experiments on Al plasmas find n > 1 at few ev temperatures LLNL comet laser facility 1 (14.7 nm Ni-like Pd laser) Advanced Photon Research Center JAERI 2 (13.9 nm Ni-like Ag laser) Reason: Effect of bound electrons on optical properties. 1 J. Filevich et al. Proceedings of the 9th International Conference on X-Ray Lasers, May 23-28 (2004) 2 H. Tang et al., Appl. Phys. B78, 975 (2004)

3 Average-Atom Model QM version of generalized Thomas-Fermi model 3 Inside a neutral (Wigner-Seitz) cell: [ p 2 2m Z r + V ] u a (r) = ɛu a (r) (1) V = V dir (r) + V exc (r) for r R and V = 0 otherwise. V exc (ρ) is given in the local density approximation 2 V dir = 4πρ (2) 3 R. P. Feynman, N. Metropolis and E. Teller, Phys. Rev. 75 1561 (1949)

4 Thermal Average Electron Density Contributions to the density are ρ b (r) = ρ c (r) = 1 4πr 2 l 1 4πr 2 l 2(2l + 1) n 2(2l + 1) 0 f(ɛ nl ) P nl (r) 2 (3) dɛ f(ɛ) P ɛl (r) 2 (4) where f(ɛ) = 1 1 + exp[(ɛ µ)/kt ] The chemical potential µ is chosen to insure electric neutrality: Z = r<r ρ(r) d 3 r R 0 4πr 2 ρ(r) dr. (5) Eqs. (1-5) are solved self-consistently for ρ, V, and µ.

5 Example Al: density 0.27 gm/cc, T = 5 ev, R = 6.44 a.u., µ = 0.3823 a.u. Bound States Continuum States State Energy n(l) l n(l) n 0 (l) n(l) 1s -55.189 2.0000 0 0.1090 0.1975-0.0885 2s -3.980 2.0000 1 0.2149 0.3513-0.1364 2p -2.610 6.0000 2 0.6031 0.3192 0.2839 3s -0.259 0.6759 3 0.2892 0.2232 0.0660 3p -0.054 0.8300 4 0.1514 0.1313 0.0201 5 0.0735 0.0674 0.0061 6 0.0326 0.0308 0.0018 7 0.0132 0.0127 0.0005 8 0.0049 0.0048 0.0001 9 0.0017 0.0016 0.0001 10 0.0005 0.0005 0.0000 Nbound 11.5059 Nfree 1.4941 1.3404 0.1537

6 10-1 ρ c (r) 10-2 ρ 0 R WS 10-3 15 0 2 4 6 8 10 5 4πr 2 ρ b (r) 4πr 2 ρ c (r) Z eff (r) R WS 0 0 2 4 6 8 r (a.u.)

7 Linear Response and the Kubo-Greenwood Formula Consider an applied electric field: E(t) = F ẑ sin ωt A(t) = F ω ẑ cos ωt The time dependent Schrödinger equation becomes [ T 0 + V (n, r) ef ] ω v z cos ωt ψ i (r, t) = i t ψ i(r, t) The current density is J z (t) = 2e Ω f i ψ i (t) v z ψ i (t) i

8 Kubo-Greenwood Linearize ψ i (r, t) in F Evaluate the response current: J = J in sin(ωt) + J out cos(ωt ) Determine σ(ω): J in (t) = σ(ω) E z (t) Result: σ(ω) = 2πe2 ωω (f i f j ) j v z i 2 δ(ɛ j ɛ i ω), ij which is an average-atom version of the Kubo 4 -Greenwood 5 formula. 4 R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957) 5 D. A. Greenwood, Proc. Phys. Soc. London 715, 585 (1958)

9 Example: Al T=3eV & density= 0.27gm/cc 0.005 0.004 3s-3p bound-bound 0.005 0.004 bound-free n=3 ε σ (a.u.) 0.003 0.002 0.003 0.002 n=2 ε 0.001 2p-3s 2s-3p 0.001 σ (a.u.) 0.030 0.025 0.020 0.015 0.010 0.005 0 0.01 0.1 1 10 free-free 0.000 0.01 0.1 1 10 Photon Energy (a.u.) 0.030 0.025 0.020 0.015 0.010 0.005 0.000 0 0.01 0.1 1 10 total 0.01 0.1 1 10 Photon Energy (a.u.)

10 Optical Properties For a conducting medium, the dielectric function is related to the complex conductivity by ɛ(ω) = 1 + 4πi σ(ω) ω We know Rσ(ω); we must evaluate Iσ(ω) From analytic properties of σ(ω) one infers the dispersion relation 6 I σ(ω 0 ) = 2ω 0 π 0 R σ(ω) dω. ω2 ω 2 0 6 R. de L. Kronig and H. A. Kramers, Atti Congr. Intern. Fisici, 2, 545 (1927)

11 Application of Dispersion Relation 0.030 0.003 Conductivity (a.u.) 0.020 0.010 0.000-0.010-0.020 Re[σ(ω)] Im[σ(ω)] 0.002 0.001 0.000-0.001-0.002 T=5eV ρ=0.27 gm/cc -0.030 0.001 0.01 0.1 1 Photon Energy (a.u.) -0.003 1 2 3 4 Photon Energy (a.u.)

12 Index of Refraction Rɛ(ω) = 1 4π Iσ(ω) Iɛ(ω) = 4π Rσ(ω) ω ω, n + iκ = ɛ. 10 1 n(ω) & κ(ω) 10 0 10-1 10-2 10-3 T=5eV ρ=0.27gm/cc n(ω) n free (ω) κ(ω) κ free (ω) 0.01 0.1 1 Photon Energy (a.u.)

13 Al: Comparison with Free Electron Model Plasma with ion density n ion = 10 20 /cc (n-1)/(n free -1) 10 5 0-5 T=3eV <Z>=1.38 2p-3d 2p-4d 2p-3s Pd x-ray Ag x-ray -10 0 20 40 60 80 100 Photon Energy (ev)

14 Plasma with ion density n ion = 10 20 /cc Al: Penetration Depth Penetration Depth (µm) 10 3 10 2 10 1 10 0 T=3eV <Z>=1.38 0 20 40 60 80 100 Photon Energy (a.u.)

15 Conclusions Linear response theory applied to average atom model provides a straightforward method for obtaining the frequency-dependent conductivity. The dielectric function (and index of refraction) can be reconstructed with the aid of a dispersion relation, The model explains observed behavior of low temperature Al plasmas in the 80-90 ev frequency range. Even away from bound-bound resonances, the free electron model may be misleading.