Først litt repetisjon

Like dokumenter
Relasjoner - forelesningsnotat i Diskret matematikk 2017

Egenskaper til relasjoner på en mengde A.

Relasjoner - forelesningsnotat i Diskret matematikk 2015

R for alle a A. (, så er a, En relasjon R på en mengde A er en Ekvivalensrelasjon hvis den er refleksiv, symmetrisk og transitiv.

R for alle a A. (, så er a, En relasjon R på en mengde A er en Ekvivalensrelasjon hvis den er refleksiv, symmetrisk og transitiv.

Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten i for i = 0, 1, 2, 3, 4, og så er W 4 svaret

LO118D Forelesning 5 (DM)

Relasjoner. Ekvivalensrelasjoner. En relasjon R på en mengde A er en delmengde av produktmengden. La R være en relasjon på en mengde A.

Løsningsforslag til 3. oblogatoriske oppgave i Diskret Matematikk. Høsten 2018

Matematikk for IT, høsten 2016

{(1,0), (2,0), (2,1), (3,0), (3,1), (3,2), (4,0), (4,1), (4,2), (4,3) } {(1,0), (1,1), (1,2), (1,3), (2,0), (2,2), (3,0), (3,3), (4,0)}

Løsningsforslag til eksamen høst 2016

Løsningsforlag til eksamen i Diskret matematikk. 29. november 2017

INF1800 LOGIKK OG BEREGNBARHET

Repetisjon INF1800 LOGIKK OG BEREGNBARHET FORELESNING 3: MENGDELÆRE, RELASJONER, FUNKSJONER. Mengder. Multimengder og tupler.

Obligatorisk oppgave 1 i MAT1140, Høst Løsninger med kommentarer

LØSNINGSFORSLAG UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. Oppgave 1 Mengdelære (10 poeng)

Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag

LØSNINGSFORSLAG EKSAMEN V06, MA0301

Tillegg til kapittel 11: Mer om relasjoner

MAT1030 Plenumsregning 9

Forelesningsnotat i Diskret matematikk 27. september 2018

MAT1030 Forelesning 11

Matematikk for IT. Prøve 1. Onsdag 18. september Løsningsforslag

Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler:

Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag

MAT1030 Diskret Matematikk

Kapittel 5: Relasjoner

TMA4140 Diskret Matematikk Høst 2016

Matematikk for IT. Prøve 1. Torsdag 17. september Løsningsforslag. 22. september 2015

Kapittel 5: Relasjoner

MAT1030 Forelesning 12

MAT1030 Diskret Matematikk

Kapittel 5: Relasjoner

Eksamen i Elementær Diskret Matematikk - (MA0301)

Kapittel 10 fra læreboka Grafer

Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler:

Ukeoppgaver fra kapittel 5 & 6, mm T F T F 2 F T T F 3 F T T F 4 F F F T

Løsningsforslag oblig. innlevering 1

Løsningsforslag. Oppgavesettet består av 9 oppgaver med i alt 20 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye.

Prøveeksamen 2016 (med løsningsforslag)

Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler:

MAT1030 Diskret matematikk

Repetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon

Repetisjonsforelesning - INF1080

Forelesningsnotat i Diskret matematikk tirsdag 1. november Pascals trekant. Legg merke til møsteret! Det gir oss Pascals identitet:

Høgskolen i Agder. Institutt for matematiske fag EKSAMEN

Eksempel. La A = {a, b, c, d} og B = {1, 2, 3} La f være gitt ved: f(a) = 1, f(b) = 3, f(c) = 2, f(d) = 1. Dette kan illustreres slik:

Eksempel. La A = {a, b, c, d} og B = {1, 2, 3} La f være gitt ved: f(a) = 1, f(b) = 3, f(c) = 2, f(d) = 1. Dette kan illustreres slik:

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. INF1080 Logiske metoder for informatikk

Matematikk for IT. Prøve 1. Torsdag 18. september Løsningsforslag

i Dato:

Løsningsforslag Øving 7 TMA4140 Diskret matematikk Høsten 2008

Løsningsforslag. Emnekode: Emne: Matematikk for IT ITF Eksamenstid: Dato: kl til kl desember Hjelpemidler: Faglærer:

Grafteori. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori.

Før vi begynner. Kapittel 5: Relasjoner og funksjoner. MAT1030 Diskret Matematikk. Litt om obligen og studentengasjementet

MAT1030 Forelesning 23

MAT1030 Diskret Matematikk

Forelesning 23. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori.

UNIVERSITETET I OSLO

Matematikk for IT Eksamen. Løsningsforslag

EKSAMEN. Emne: Emnekode: Matematikk for IT ITF Dato: Eksamenstid: til desember Hjelpemidler: Faglærer:

LØSNINGSFORSLAG KONT 07, TMA4140

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

Forelesning 11. Relasjoner. Dag Normann februar Oppsummering. Relasjoner. Relasjoner. Relasjoner

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet

Sammensetningen h = f g er en funksjon fra A til C, h: A -> C og er definert ved h(a) = f(g(a)) Viktig: f g g f

Eksamensoppgave i TMA4140 Diskret matematikk

Matematikk for IT. Prøve 1 Løsningsforslag. Fredag 23. september september Oppgave 1

Oppsummering. MAT1030 Diskret matematikk. Relasjoner. Relasjoner. Forelesning 11: Relasjoner

En relasjon på en mengde A er en delmengde R A A = A 2. Vi har satt navn på visse egenskaper relasjoner som oppstår i anvendelser ofte kan ha.

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet

To mengder S og T er like, S = T, hvis de inneholder de samme elementene. Notasjon. Mengden med elementene a, b, c og d skrives ofte {a, b, c, d}.

Binomialkoeffisienter

Oppgaver MAT2500. Fredrik Meyer. 29. august 2014

Oppsummering. MAT1030 Diskret matematikk. Ekvivalensrelasjoner. Oppsummering. Definisjon. Merk

UNIVERSITETET I OSLO

LF, KONTINUASJONSEKSAMEN TMA

Cr) Høgskoleni østfold

Zorns lemma og utvalgsaksiomet

Dagens plan. INF3170 Logikk. Mengder. Definisjon. Notasjon. Forelesning 0: Mengdelære, Induksjon. Martin Giese. 23. januar 2008.

MAT1140: Kort sammendrag av grafteorien

Obligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 2006

EKSAMEN. Emnekode: Emne: Matematikk for IT ITF Eksamenstid: Dato: kl til kl desember Hjelpemidler: Faglærer:

Kapittel 10 fra læreboka Grafer

Vi definerer en mengde ved å fortelle hva den inneholder. Vi kan definere den på listeform eller ved hjelp av en utsagnsfunksjon.

MAT1140: Kort sammendrag av grafteorien

MAT1030 Forelesning 13

MAT1030 Forelesning 13

Kapittel 6: Funksjoner

Forelesning 13. Funksjoner. Dag Normann februar Opphenting. Opphenting. Opphenting. Opphenting

MAT1030 Forelesning 25

MAT1030 Diskret matematikk

Del-hele relasjonen har disse tre egenskapene, og vi tar den som fundamental.

Vi definerer en mengde ved å fortelle hva den inneholder. Vi kan definere den på listeform eller ved hjelp av en utsagnsfunksjon.

MAT1030 Diskret Matematikk

Forelesning 25. MAT1030 Diskret Matematikk. Litt repetisjon. Litt repetisjon. Forelesning 25: Trær. Roger Antonsen

MAUMAT644 ALGEBRA vår 2016 Første samling Runar Ile

Transkript:

Først litt repetisjon En relasjon er en mengde av verdipar, der første koordinaten a er fra mengden A og andrekoordinaten b er fra mengden B. Verdiparet beskriver en forbindelse (en relasjon) fra a til b. Eksempel A = {1, 2, 3} og B = {a, b, c} Relasjonen R fra A til B: R = {(1, a), (1, b), (1, c), (2, b), (3, a), (3, c)} Dette kan illustreres enten grafisk eller med en tabell: Hvis A og B er én og samme mengde har vi en relasjon fra A til A. Da sier vi da at relasjonen R er på A istedenfor fra A til A. Eksempel 1 Gitt relasjonen R på A der A = {1, 2, 3, 4} R = {(a, b) a + b er et partall} R = {(1,1), (1,3), (2,2), (2,4), (3,1), (3,3), (4,2), (4,4)} Grafen G R til R: Matrisen M R til R: 1

Det er kun disse to måtene å illustrere relasjoner på vi kommer til bruke videre. Eksempel 2 La A = {1, 2, 3, 4} og la R være relasjonen på A definert ved R = {(a, b) a < b} R = {(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)} Grafen G R til R: Matrisen M R til R: Egenskaper til relasjoner på en mengde A. Refleksivitet Relasjonen er refleksiv hvis (a, a) R for alle a A. Vi kan se det ut fra: 1) Grafen: R er refleksiv hvis alle punktene i grafen har en sløyfe. 2) Matrisen: R er refleksiv hvis hoved-diagonalen kun inneholder 1 ere. Symmetri Relasjonen R er symmetrisk hvis det for alle a, b A slik at (a, b) R, så (b, a) R. Vi kan se det ut fra: 2

1) Grafen: R er symmetrisk hvis der det går en pil/kant mellom to punkter også går en pil motsatt vei mellom punktene. 2) Matrisen: R er symmetrisk hvis M R er en symmetrisk matrise. Husk: En matrise M er symmetrisk hvis M = M T Eksempel La A = {1, 2, 3, 4} R = {(1, 1), (1, 2), (1, 3), (2, 1), (3, 1), (3, 3), (3, 4), (4, 3)} Avgjør om R er refleksiv: R er ikke refleksiv fordi f.eks. (2, 2) R. Vi kan se det ut fra grafen fordi det ikke er en sløyfe på punktene 2 og 4. Vi kan også se det ut fra matrisen fordi det er to 0 er på hoveddiagonalen (altså ikke bare 1 ere). Avgjør om R er symmetrisk: R er symmetrisk fordi det for alle verdipar (a, b) R gjelder at (b, a) R. Vi kan se det ut fra grafen fordi der det går piler mellom punkter går det piler begge veier mellom punktene. Vi kan også se det ut fra matrisen fordi den er symmetrisk om hoveddiagonalen. 3

Antisymmetri En relasjon R på en mengde A er antisymmetrisk hvis det for alle a, b A er slik at (a, b) R så er (b, a) R. Vi kan se det ut fra: 1) Grafen: R er antisymmetrisk hvis alle piler/kanter i grafen går kun én vei. 2) Matrisen: Hvis det står 1 et sted utenfor hoved-diagonalen, må det stå 0 på motsatt side speilet om hoved-diagonalen. Nytt i dag: Transitivitet En relasjon R på en mengde A er transitiv hvis det for alle (a, b) R og (b, c) R, er slik at også (a, c) R. Dette kalles også for «trekantregelen». Dette betyr at hvis det går en pil/kant fra a til b og det går en pil/kant fra b til c, så går det også en pil/kant fra a til c. OBS! De tre punktene a, b, og c behøver ikke være ulike. Anta at vi har at (a, b) R og (b, a) R. Hvis R skal være transitiv har vi ((a, b) R (b, c) R) (a, c) R. La c = a. Vi setter inn a for c og får: ((a, b) R (b, a) R) (a, a) R. Altså må (a, a) R 4

Hvis R skal være transitiv gjelder også: ((b, a) R (a, c) R) (b, c) R. La b = c. Vi setter inn b for c og får: ((b, a) R (a, b) R) (b, b) R. Altså må (b, b) R. Dette betyr at hvis det går piler/kanter begge veier mellom to punkter må begge punktene ha «sløyfer» for at relasjonen skal være transitiv. Eksempel: La A = {1, 2, 3, 4} og R = {(a, b) a b} R kan også skrives helt ut: R = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3,3), (3, 4), (4, 4)} 1. R er refleksiv 2. R er ikke symmetrisk. 3. R er antisymmetrisk 4. Hvis a, b og c er tre tall slik at a b og b c, så er a c. R er derfor transitiv. 5

Kombinasjoner av relasjoner En relasjon R på A er en delmengde av AxA. La R og S være to relasjoner på A. Da vil også R S, R S, R S, S R og R S være relasjoner på A. La M R og M S være matrisene til henholdsvis R og S. Da har vi at M R S = M R M S M R S = M R M S Sammensetningen av to relasjoner La R og S være to relasjoner på A. Sammensetningen av R og S betegnes som S R = {(a, c) a A, c A slik at det finnes en b A der (a, b) R og (b, c) S} La M R og M S være matrisene til henholdsvis R og S. Da gjelder M S R = M R M S (NB! Legg merke til rekkefølgen av S og R) Eksempel La A = {1, 2, 3}. Relasjonene R og S på A er definert som R = {(1, 1), (1, 3), (2, 2), (3, 1)} S = {(1, 2), (2, 1), (2, 3), (3, 3)} 6

S R = {(1, 2), (1, 3), (2, 1), (2, 3), ( 3, 2)} En vei (eng. path) i en relasjonsgraf Eksempel La A = {a, b, c, d, e } og relasjonen R på A gitt ved R = {(a, b), (a, d), (b, a), (b, c), (b, e), (c, d), (d, e)} Det går en vei fra et punkt til et annet punkt hvis det er mulig å gå fra det første til det andre punktet ved å følge kantene I pilens retning. Veien består av endepunktene (start/slutt) og de punktene vi passerer. Veiens lengde er antall kanter. Spørsmål 1 Hvor mange veier finnes det fra a til e? 1) a, b, e 2) a, d, e 3) a, b, a, d, e osv. Spørsmål 2 Hvilke par (x, y) er det som har en vei fra x til y med lengde 2? 1) (a, a) 7

2) (a, c) 3) (a, e) 4) (b, b) 5) (b, d) 6) (c, e) Vi kan også finne dette ved hjelp av et matriseprodukt: Vi finner at Det går en vei fra x til y hvis det står 1 på plassen til (x, y) i matrisen. Generell regel: La M R [n] = M R M R M R M R Da vil det finnes en vei med lengde n fra x til y hvis det står 1 på plassen til (x, y) i matrisen M R [n]. Utvidelser av relasjoner - tillukninger Hvis en relasjon R på en mengde A ikke er refleksiv, symmetrisk eller transitiv, kan den utvides til å bli henholdsvis refleksiv, symmetrisk eller transitiv ved å legge til nødvendige verdipar for å oppnå egenskapen. 8

1) Den minste mulige utvidelsen som gjør relasjonen R refleksiv kalles den refleksive tillukningen. Den blir refleksiv ved å ta med de parene som mangler, dvs. parene med lik første og andrekoordinat, f.eks. (a, a), (b, b), (c, c) osv. 2) Den minste mulige utvidelsen som gjør relasjonen R symmetrisk kalles den symmetriske tillukningen. Den blir symmetrisk ved å ta med de parene som mangler, dvs. hvis paret (a, b) R, må man legge til (b, a) (hvis paret ikke allerede er med). 3) Den minste mulige utvidelsen som gjør relasjonen R transitiv kalles den transitive tillukningen. Den blir transitiv ved å ta med de parene som mangler, dvs. hvis parene (a, b) R og (b, c) R, må man legge til paret (hvis paret ikke allerede er med). Eksempel på transitiv tillukning av en relasjon. La A = {a, b, c, d} og R = {(a, a), (a, b), (a, d), (b, c), (c, b), (c, c)} 9

Vi foretar en transitiv tillukning ved å legge til verdiparene (a, c) og (b, b). På slutten av timen ble det gitt samme oppgave som i går: Løsningsforslag: 10

11