Electrodynamics. Manfred Hammer, Hugo Hoekstra, Lantian Chang, Mustafa Sefünç, Yean-Sheng Yong

Like dokumenter
Electromagnetic Field Theory for Engineers and Physicists

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)

Eksamen i fag TFY4205 Kvantemekanikk II Onsdag 8. desember 2010 Tid:

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5)

TFY4170 Fysikk 2 Justin Wells

Qi-Wu-Zhang model. 2D Chern insulator. León Martin. 19. November 2015

Optical Properties of Plasmas Based on an Average-Atom Model

melting ECMI Modelling week 2008 Modelling and simulation of ice/snow melting Sabrina Wandl - University of Linz Tuomo Mäki-Marttunen - Tampere UT

Second Order ODE's (2P) Young Won Lim 7/1/14

Positive dispersion: 2 n. λ 2 > 0. ω 2 > 0, Negative dispersion: ω < 0, 2 n

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK og FY2045 KVANTEFYSIKK Lørdag 9. desember 2006 kl

UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet

Lecture Notes Mek 4320 Hydrodynamic Wave theory

Lecture Notes Mek 4320 Hydrodynamic Wave theory

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

The Effects of an Extended Neutrino Sphere on Supernova Neutrino Oscillations

Level Set methods. Sandra Allaart-Bruin. Level Set methods p.1/24

Ma Flerdimensjonal Analyse Øving 11

Key objectives in lighting design

Eksamen i FY3452 GRAVITASJON OG KOSMOLOGI Lørdag 11. august :00 13:00

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

TFY Fysikk 2. Forelesning 16: Atomic physics

Lattice Simulations of Preheating. Gary Felder KITP February 2008

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt)

AC Network Analysis. Learning objectives. Ideell Kondensator (Capasitor) Structure of parallel-plate capacitor

Eksamen i FY3466 KVANTEFELTTEORI II Tirsdag 20. mai :00 13:00

FYS 3120: Klassisk mekanikk og elektrodynamikk

Classical Mechanics and Electrodynamics

Existence of resistance forms in some (non self-similar) fractal spaces

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with.

Eksamen i TFE4130 Bølgeforplantning

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN

Abstract. i x + a x +. a = (a x, a y ) z γ + 1 γ + z )

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ÿ Œ œ ˆ ˆ Š Œ. .. ³μ. μ ± Ë ²Ó Ò Ö Ò Í É Å ˆˆ Ô± ³ É ²Ó μ Ë ±, μ, μ Ö Œ Œ ˆˆ 79 ˆ Š ˆ

Note: Please use the actual date you accessed this material in your citation.

UNIVERSITETET I OSLO

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl.

Formelsamling Bølgefysikk Desember 2006

Ma Flerdimensjonal Analyse Øving 2

Ma Flerdimensjonal Analyse Øving 1

Oppgave 1. Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk EKSAMEN I: MNFFY 245 INNFØRING I KVANTEMEKANIKK

Eksamen TFY 4210 Kvanteteorien for mangepartikkelsystem, våren 2012

Lipschitz Metrics for Non-smooth evolutions

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

Eksamen i TMA4190 Mangfoldigheter Onsdag 4 juni, Tid :

Graphs similar to strongly regular graphs

Eksamen i FY8306 KVANTEFELTTEORI Fredag 9. juni :00 13:00

Løsning, eksamen TFY4205 Kvantemekanikk II Onsdag 8. desember 2010

The magnetic field of the evolved star W43A

Numerical Simulation of Shock Waves and Nonlinear PDE

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

FYS2140 Kvantefysikk. Løsningsforslag for Oblig 7

Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)


Exam in FY3464 QUANTUM FIELD THEORY I Friday november 30th, :00 13:00

Jeroen Stil Institute for Space Imaging Science. University of Calgary

FYS 3120: Klassisk mekanikk og elektrodynamikk

FYS 3120: Klassisk mekanikk og elektrodynamikk

Matematikk 4 M/N - Vår 2008 Kort Introduksjon

KONTINUASONSEKSAMEN I FAG SIE2010 Informasjons- og signalteori

Slope-Intercept Formula

Formelsamling. ξ(r, t) = ξ 0 sin(k r ωt + φ) 2 ξ(x, t) = 1 2 ξ(x, t) t 2. 2 ξ. x ξ. z 2. y ξ. v = ω k. v g = dω dk

Data Assimilation. Second Edition

EKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Torsdag 20. desember 2012 kl

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 16. august 2008 kl

Generalization of age-structured models in theory and practice

RF Power Capacitors Class kV Discs with Moisture Protection

Rotation-driven Magnetohydrodynamic Flow Using Local Ensemble Transform Kalman Filtering

Stationary Phase Monte Carlo Methods

Exam in Quantum Mechanics (phys201), 2010, Allowed: Calculator, standard formula book and up to 5 pages of own handwritten notes.

BEC in microgravity. W. Herr, Institute for Quantum Optics, Leibniz University of Hanover

RF Power Capacitors Class1. 5kV Discs

9 Spherical box. Systems with cylindrical

Ó³ Ÿ , º 6Ä7(176Ä177).. 823Ä Œ. Œ ²±μ,,.. É ²,.. μ ²Ó,.. Íμ,.. ŠÊÉÊ μ,.. μ ±μ,.. ÒÏ

Eksamen i TMA4123/TMA4125 Matematikk 4M/N

Løsningsforslag til eksamen i FY8306 KVANTEFELTTEORI Fredag 9. juni 2006

Øving 11. Oppgave 1. E t0 = 2. Her er

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK og FY2045 Kvantefysikk Tirsdag 13. desember 2005 kl

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

Ringvorlesung Biophysik 2016

Formelsamling. ξ(r, t) = ξ 0 sin(k r ωt + φ) 2 ξ(x, t) = 1 2 ξ(x, t) t 2. 2 ξ. x ξ. z 2. y ξ. v = ω k. v g = dω dk

LØSNINGSFORSLAG TIL EKSAMEN I FY1002 BØLGEFYSIKK Mandag 10. desember 2007 kl

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Løsningsforslag, eksamen FY desember 2017

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F.

Løsningsforslag for FYS2140 Kvantemekanikk, Torsdag 16. august 2018

NORSK TEKST Side 1 av 4. Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

NORSK OG ENGELSK TEKST Side 1 av 10

Deepshikha Shukla (Daniel Phillips, Andreas Nogga)

FY2045/TFY4250 Kvantemekanikk I, løsning øving 14 1 LØSNING ØVING 14. ψ 210 z ψ 100 d 3 r a.

On multigrid methods for the CahnHilliard equation with obstacle potential

Examination paper for TTM Access and Transport Networks

a) En varebil kjører med konstant fart lik 22,0 m/s på en rett vei. Hvor stor er summen av disse kreftene? Tegn alle kreftene som virker på bilen.

Eksamen TFY 4210 Kvanteteorien for mangepartikkelsystem, våren 2012

EXAM IN COURSE TFY4265 AND FY8906 BIOPHYSICAL MICROMETHODS 13. December 2010 Hours:

Fiber Optics Engineering

Transkript:

Electrodynamics Lecture D Manfred Hammer, Hugo Hoekstra, Lantian Chang, Mustafa Sefünç, Yean-Sheng Yong Integrated Optical MicroSystems MESA + Institute for Nanotechnology University of Twente, The Netherlands University of Twente, Enschede, The Netherlands Course 1912104101), Block 1A, 2013/2014 Department of Electrical Engineering, University of Twente P.O. Box 217, 7500 AE Enschede, The Netherlands Phone: +31/53/489-3448 Fax: +31/53/489-3996 E-mail: m.hammer@utwente.nl 1

Course overview Electrodynamics A B C D E F G H Introduction, Maxwell equations, brush up on vector calculus, Dirac delta, potentials, Taylor expansion, Fourier transform, Maxwell equations, brush up on electro- and magnetostatics, multipole expansion Maxwell equations, microscopic and macroscopic, time- and frequency domain, differential and integral form, interface conditions, continuity equation, energy and momentum of electromagnetic fields Wave equation, plane waves, plane harmonic electromagnetic waves, refractive index, polarization, energy transport, spherical waves Reflection and transmission at interfaces, lossy materials, wave packets, dispersion, phase and group velocity Maxwell equations, vectorial and scalar Helmholtz equation, 2D configurations intermezzo), mode problems, metallic and dielectric waveguides Scalar and vector potentials, gauge conditions, retarded potentials, electric and magnetic dipole radiation Special relativity; transmission lines 2

Wave equation Homogeneous macroscopic Maxwell equations: ρ f = 0, J f = 0) D = 0, E = Ḃ, B = 0, H = Ḋ 3

Wave equation Homogeneous macroscopic Maxwell equations: ρ f = 0, J f = 0) D = 0, E = Ḃ, B = 0, H = Ḋ Linear isotropic homogeneous media: ǫr), µr)!) D = ǫ 0 ǫe, B = µ 0 µh 3

Wave equation Homogeneous macroscopic Maxwell equations: ρ f = 0, J f = 0) D = 0, E = Ḃ, B = 0, H = Ḋ Linear isotropic homogeneous media: ǫr), µr)!) D = ǫ 0 ǫe, B = µ 0 µh E = 0, E = µ 0 µḣ, H = 0, H = ǫ0ǫė, 3

Wave equation Homogeneous macroscopic Maxwell equations: ρ f = 0, J f = 0) D = 0, E = Ḃ, B = 0, H = Ḋ Linear isotropic homogeneous media: ǫr), µr)!) D = ǫ 0 ǫe, B = µ 0 µh E = 0, E = µ 0 µḣ, H = 0, H = ǫ0ǫė, E = ǫ 0 µ 0 ǫµë, H = ǫ 0µ 0 ǫµḧ. 3

Wave equation 1 2 ) t 2 E = 0, 1 2 ) t 2 H = 0, speed of light in vacuum: c = 1 ǫ0 µ 0, phase velocity in the medium: c m = 1 ǫ0 µ 0 ǫµ = c = c ǫµ n, refractive index of the medium: n = ǫµ. Shorter: E = 0, H = 0, = 1 2 ) t 2 : Quabla, 4

Wave equation 1 2 ) t 2 E = 0, 1 2 ) t 2 H = 0, speed of light in vacuum: c = 1 ǫ0 µ 0, phase velocity in the medium: c m = 1 ǫ0 µ 0 ǫµ = c = c ǫµ n, refractive index of the medium: n = ǫµ. Shorter: E = 0, H = 0, = 1 2 ) t 2 : Quabla, d Alembert operator). 4

Plane waves 1 2 ) t 2 ψr,t) = 0. 5

Plane waves 1 2 ) t 2 ψr,t) = 0. ) ψr,t) = fk r ωt)+bk r +ωt) solves ) for ω 2 = k 2, f, b arbitrary smooth), ω > 0, k = k ) 5

Plane waves 1 2 ) t 2 ψr,t) = 0. ) ψr,t) = fk r ωt)+bk r +ωt) solves ) for ω 2 = k 2, f, b arbitrary smooth), ω > 0, k = k ) Features off appear on planes with k r ωt = ϕ 0 const., i.e. move with velocity c m = ω/k in direction k/k. r k k = ϕ 0 k + ω k t 5

Plane waves 1 2 ) t 2 ψr,t) = 0. ) ψr,t) = fk r ωt)+bk r +ωt) solves ) for ω 2 = k 2, f, b arbitrary smooth), ω > 0, k = k ) Features off appear on planes with k r ωt = ϕ 0 const., i.e. move with velocity c m = ω/k in direction k/k. Features ofbappear on planes with k r +ωt = ϕ 1 const., i.e. move with velocity c m = ω/k in direction k/k. r k k = ϕ 0 k + ω k t r k k = ϕ 1 k ω k t 5

Plane waves 1 2 ) t 2 ψr,t) = 0. ) ψr,t) = fk r ωt)+bk r +ωt) solves ) for ω 2 = k 2, f, b arbitrary smooth), ω > 0, k = k ) Features off appear on planes with k r ωt = ϕ 0 const., i.e. move with velocity c m = ω/k in direction k/k. Features ofbappear on planes with k r +ωt = ϕ 1 const., i.e. move with velocity c m = ω/k in direction k/k. Planes k: wave fronts, phase fronts. r k k = ϕ 0 k + ω k t r k k = ϕ 1 k ω k t 5

Plane harmonic waves 1 2 ) t 2 ψr,t) = 0. 6

Plane harmonic waves 1 2 ) t 2 ψr,t) = 0. frequency domain: ψr,t) = 1 2 ψr) e iωt + c.c., ) + ω2 ψr) = 0, Helmholtz equation) 6

Plane harmonic waves 1 2 ) t 2 ψr,t) = 0. frequency domain: ψr,t) = 1 2 ψr) e iωt + c.c., ) + ω2 ψr) = 0, Helmholtz equation) spatial oscillations: ψr,t) = 1 2 ψ 0 e ik xx e ik y y e ik z z e iωt + c.c., ) k 2 + ω2 ψ 0 = 0, ψ 0 C, only ψ 0 0 is of interest, k = k x,k y,k z ) 6

Plane harmonic waves 1 2 ) t 2 ψr,t) = 0. frequency domain: ψr,t) = 1 2 ψr) e iωt + c.c., ) + ω2 ψr) = 0, Helmholtz equation) spatial oscillations: ψr,t) = 1 2 ψ 0 e ik xx e ik y y e ik z z e iωt + c.c., ) k 2 + ω2 ψ 0 = 0, ψ 0 C, only ψ 0 0 is of interest, k = k x,k y,k z ) ψr,t) = Reψ 0 e ik r ωt). 6

Plane harmonic waves ψr,t) = Reψ 0 e ik r ωt) Periodicity in time: angular frequency: ω, period: T = 2π ω, Spatial periodicity: wave vector: k, k = k, wavenumber: k = ω = ω c m c n = k 0n, Electromagnetic spectrum vacuum wavenumber: k 0 = ω c, refractive index: vacuum wavelength: wavelength in the medium: n = ǫµ, λ = 2π k 0 = 2πc ω, λ m = 2π k = 2π k 0 n = λ n. 7

Plane harmonic electromagnetic waves E = 0, E = µ 0 µḣ, H = 0, H = ǫ0ǫė, & Er,t) = E 0 e ik r ωt), Hr,t) = H 0 e ik r ωt) skip1/2, Re, c.c.) 8

Plane harmonic electromagnetic waves E = 0, E = µ 0 µḣ, H = 0, H = ǫ0ǫė, & Er,t) = E 0 e ik r ωt), Hr,t) = H 0 e ik r ωt) skip1/2, Re, c.c.) or Ẽ = 0, Ẽ = iωµ 0µ H, H = 0, H = iωǫ 0 ǫẽ, & Ẽr) = E 0 e ik r, Hr) = H0 e ik r 8

Plane harmonic electromagnetic waves E = 0, E = µ 0 µḣ, H = 0, H = ǫ0ǫė, & Er,t) = E 0 e ik r ωt), Hr,t) = H 0 e ik r ωt) skip1/2, Re, c.c.) or Ẽ = 0, Ẽ = iωµ 0µ H, H = 0, H = iωǫ 0 ǫẽ, & Ẽr) = E 0 e ik r, Hr) = H0 e ik r exercise) k E 0 = 0, k E 0 = ωµ 0 µh 0, k H 0 = 0, k H 0 = ωǫ 0 ǫe 0, E 0 k, H 0 k, E 0 H 0, transverse waves, ωǫ 0 ǫe 0 = H 0 k orthogonal right-hand system{e 0,H 0,k}. 8

Plane harmonic electromagnetic waves Er,t) = E 0 e ik r ωt), Hr,t) = H 0 e ik r ωt). Example: k = ke z, E 0 = E 0 e x, H 0 = 1 ωµ 0 µ k E 0 = ǫ0 ǫ µ 0 µ E 0e y E 0 R) 9

Plane harmonic electromagnetic waves Er,t) = E 0 e ik r ωt), Hr,t) = H 0 e ik r ωt). Example: k = ke z, E 0 = E 0 e x, H 0 = 1 ωµ 0 µ k E ǫ0 ǫ 0 = µ 0 µ E 0e y E 0 R) ǫ0 ǫ Er,t) = E 0 e x coskz ωt), Hr,t) = µ 0 µ E 0e y coskz ωt). 9

Plane harmonic electromagnetic waves Er,t) = E 0 e ik r ωt), Hr,t) = H 0 e ik r ωt). Example: k = ke z, E 0 = E 0 e x, H 0 = 1 ωµ 0 µ k E ǫ0 ǫ 0 = µ 0 µ E 0e y E 0 R) ǫ0 ǫ Er,t) = E 0 e x coskz ωt), Hr,t) = µ 0 µ E 0e y coskz ωt). ˆǫ = ǫr)1, ˆµ = µr)1!) Griffiths, Fig. 9.10, page 379 B = µ 0 µh, Br,t) = E 0 c m e y coskz ωt). 9

Polarization Er,t) = E 0 e ik r ωt), Hr,t) = H 0 e ik r ωt). Polarization orientation of the electric part of the wave. Complex notation: E 0,H 0 C 3 in general. k,e 0 given,k E 0 H 0 = ωµ 0 µk E 0. 10

Polarization Er,t) = E 0 e ik r ωt), Hr,t) = H 0 e ik r ωt). Polarization orientation of the electric part of the wave. Complex notation: E 0,H 0 C 3 in general. k,e 0 given,k E 0 H 0 = ωµ 0 µk E 0. Assume k = ke z, E 0,x = E 0,x, E 0,y = E 0,y e iδ common phase ine 0,x ande 0,y omitted) Er,t) = E 0,x e x coskz ωt)+ E 0,y e y coskz ωt+δ) 10

Polarization k = ke z, E 0,x = E 0,x, E 0,y = E 0,y e iδ Er,t) = E 0,x e x coskz ωt)+ E 0,y e y coskz ωt+δ) ) 11

Polarization k = ke z, E 0,x = E 0,x, E 0,y = E 0,y e iδ Er,t) = E 0,x e x coskz ωt)+ E 0,y e y coskz ωt+δ) ) δ = 0, δ = ±π: Er,t) = E 0,x e x + E 0,y e y ) coskz ωt), linear polarized wave, E oscillates in the plane { E 0,x e x + E 0,y e y, k} 11

Polarization k = ke z, E 0,x = E 0,x, E 0,y = E 0,y e iδ Er,t) = E 0,x e x coskz ωt)+ E 0,y e y coskz ωt+δ) ) δ = 0, δ = ±π: Er,t) = E 0,x e x + E 0,y e y ) coskz ωt), linear polarized wave, E oscillates in the plane { E 0,x e x + E 0,y e y, k} δ = ±π/2, E 0,x = E 0,y = E 0 : Er,t) = E 0 coskz ωt)e x ±sinkz ωt)e y ) circularly polarized wave, z fixed: Et) describes a circle in time. 11

Polarization k = ke z, E 0,x = E 0,x, E 0,y = E 0,y e iδ Er,t) = E 0,x e x coskz ωt)+ E 0,y e y coskz ωt+δ) ) δ = 0, δ = ±π: Er,t) = E 0,x e x + E 0,y e y ) coskz ωt), linear polarized wave, E oscillates in the plane { E 0,x e x + E 0,y e y, k} δ = ±π/2, E 0,x = E 0,y = E 0 : Er,t) = E 0 coskz ωt)e x ±sinkz ωt)e y ) circularly polarized wave, z fixed: Et) describes a circle in time. otherwise: elliptical polarization, 11

Polarization k = ke z, E 0,x = E 0,x, E 0,y = E 0,y e iδ Er,t) = E 0,x e x coskz ωt)+ E 0,y e y coskz ωt+δ) ) δ = 0, δ = ±π: Er,t) = E 0,x e x + E 0,y e y ) coskz ωt), linear polarized wave, E oscillates in the plane { E 0,x e x + E 0,y e y, k} δ = ±π/2, E 0,x = E 0,y = E 0 : Er,t) = E 0 coskz ωt)e x ±sinkz ωt)e y ) circularly polarized wave, z fixed: Et) describes a circle in time. otherwise: elliptical polarization, ) is the sum of two linearly polarized waves. 11

Energy transport u = 1 E D +H B), 2 S = E H, Er,t) = ReẼr) e iωt D,B, H analogously) S, u oscillate in time. 12

Energy transport u = 1 E D +H B), 2 S = E H, Er,t) = ReẼr) e iωt D,B, H analogously) S, u oscillate in time. t+t 1 Consider time-averaged quantities: ft) = ft ) dt T t u = 1 ) Ẽ 4 Re D + H B, S = 1 ) Ẽ 2 Re H. exercise) 12

Energy transport u = 1 E D +H B), 2 S = E H, Er,t) = ReẼr) e iωt D,B, H analogously) S, u oscillate in time. t+t 1 Consider time-averaged quantities: ft) = ft ) dt T t u = 1 ) Ẽ 4 Re D + H B, S = 1 ) Ẽ 2 Re H. exercise) Specifically: exercise) Er,t) = E 0 e ik r ωt), Hr,t) = H 0 e ik r ωt) u = 1 2 ǫ 0ǫ E 0 2 = 1 2 µ 0µ H 0 2, S = 1 ǫ0 ǫ 2 µ 0 µ E 0 2 k k, S = c mu k k, Intensity S : average power per unit area transported by the wave. 12

Spherical waves 1 2 ) t 2 ψr,t) = 0. 13

Spherical waves 1 2 ) t 2 ψr,t) = 0. ) Spherical coordinatesr,ϑ,ϕ: = 1 r 2 r 2 ) + 1 { 1 r r r 2 sinϑ ϑ sinϑ ) ϑ + 1 sin 2 ϑ 2 } ϕ 2. 13

Spherical waves 1 2 ) t 2 ψr,t) = 0. ) Spherical coordinatesr,ϑ,ϕ: = 1 r 2 r 2 ) + 1 { 1 r r r 2 sinϑ ϑ sinϑ ) ϑ + 1 sin 2 ϑ 2 } ϕ 2. exercise) Spherically symmetric solutions of ): ψr,t) = 1 r f outkr ωt)+ 1 r f inkr+ωt) with ω 2 = k 2 f out, f in arbitrary smooth), ω > 0). 13

Spherical waves ψr,t) = 1 r f outkr ωt)+ 1 r f inkr+ωt). 14

Spherical waves ψr,t) = 1 r f outkr ωt)+ 1 r f inkr+ωt). Wave fronts: spheres around the origin. 14

Spherical waves ψr,t) = 1 r f outkr ωt)+ 1 r f inkr+ωt). Wave fronts: spheres around the origin. Features off out move with velocity c m = ω/k outward, damped 1 r. 14

Spherical waves ψr,t) = 1 r f outkr ωt)+ 1 r f inkr+ωt). Wave fronts: spheres around the origin. Features off out move with velocity c m = ω/k outward, damped 1 r. Features off in move with velocity c m = ω/k inward, growing 1 r. 14

Spherical waves ψr,t) = 1 r f outkr ωt)+ 1 r f inkr+ωt). Wave fronts: spheres around the origin. Features off out move with velocity c m = ω/k outward, damped 1 r. Features off in move with velocity c m = ω/k inward, growing 1 r. Harmonic spherical electromagnetic waves, Er,t) = E 0 r) 1 r eikr ωt), Hr,t) = H 0 r) 1 r eikr ωt),... as for the plane waves: period, wavenumber, wavelength, phase velocity, transverse waves, {E 0 r),h 0 r),r} form a right-hand system, polarization. 14

General solution of the wave equation 1 2 ) t 2 ψr,t) = 0, ψr,0) = ψ 0 r), t ψr,0) = φ 0 r), 15

General solution of the wave equation 1 & ψr,t) = 1 2π) 2 2 ) t 2 ψr,t) = 0, ψr,0) = ψ 0 r), t ψr,0) = φ 0 r), ψk,ω) e ik r ωt) dω d 3 k, 15

General solution of the wave equation 1 2 ) t 2 ψr,t) = 0, ψr,0) = ψ 0 r), t ψr,0) = φ 0 r), & ψr,t) = 1 2π) 2 ψk,ω) e ik r ωt) dω d 3 k, k 2 + ω2 ) ψk,ω) = 0, 15

General solution of the wave equation 1 2 ) t 2 ψr,t) = 0, ψr,0) = ψ 0 r), t ψr,0) = φ 0 r), & ψr,t) = 1 2π) 2 ψk,ω) e ik r ωt) dω d 3 k, k 2 + ω2 ) ψk,ω) = 0, ψk,ω) = a f k)δω ω k )+a b k)δω +ω k ), ω k = c m k, 15

General solution of the wave equation 1 2 ) t 2 ψr,t) = 0, ψr,0) = ψ 0 r), t ψr,0) = φ 0 r), & ψr,t) = 1 2π) 2 ψk,ω) e ik r ωt) dω d 3 k, k 2 + ω2 ) ψk,ω) = 0, ψk,ω) = a f k)δω ω k )+a b k)δω +ω k ), ω k = c m k, ψr,t) = 1 2π) 2 a f k) e ik r ω kt) +ab k) e ik r +ω kt) ) d 3 k, 15

General solution of the wave equation 1 2 ) t 2 ψr,t) = 0, ψr,0) = ψ 0 r), t ψr,0) = φ 0 r), & ψr,t) = 1 2π) 2 ψk,ω) e ik r ωt) dω d 3 k, k 2 + ω2 ) ψk,ω) = 0, ψk,ω) = a f k)δω ω k )+a b k)δω +ω k ), ω k = c m k, ψr,t) = 1 2π) 2 a f k) e ik r ω kt) +ab k) e ik r +ω kt) ) d 3 k, ψr,0) = ψ 0 r), t ψr,0) = φ 0 r)... a f k), a b k). 15

Upcoming Next lecture: Reflection and transmission at interfaces, lossy materials, wave packets, phase and group velocity, dispersion 16