Eksamen i HUMIT 2710, Funksjonell programmering, våren Ingen hjelpemidler er tillatt. <resten av forsiden> Side 1 av 7
|
|
- Lukas Langeland
- 7 år siden
- Visninger:
Transkript
1 Eksamen i HUMIT 2710, Funksjonell programmering, våren 2005 Ingen hjelpemidler er tillatt. <resten av forsiden> Side 1 av 7
2 Oppgave 1 Rekursjon Fakultetsfunksjonen, her kalt Fak, kan defineres rekursivt slik: Fak(0) = 1, Fak(n) = n Fak(n 1), for n > 0 Implementer Fak først uten å bruke halerekursjon, og så ved hjelp av halerekursjon. Prosedyren rest tar to heltallsargumenter a og b og returnerer det som er igjen av a etter at alle hele b'er er tatt vekk, (rest 15 6) ==> 3 (rest 15 5) ==> 0 (rest 6 15) ==> 6 (rest 6 0) feilmelding: null-divisjon Implementer rest ved hjelp av subtraksjon, og uten å bruke halerekursjon. Prosedyren int-log-2 tar ett heltallsargument a og returnerer det helttallet 2 må opphøyes i, for å komme nærmest a nedenfra. (int-log-2 6) ==> 2, fordi < 2 3, dvs. 4 6 < 8 (int-log-2 8) ==> 3, fordi 2 3 = 8 (int-log-2 12) ==> 3, fordi < 2 4, dvs < 16 Implementer int-log-2. d) Prosedyren potens tar to heltallsargumenter a og b og returnerer 1 hvis b = 0, og ellers resultatet av at a ganges med seg selv b ganger. (potens 3 0) ==> 1 (potens 5 4) ==> 625 (potens 0 4) ==> 0 Implementer potens slik at antallet multiplikasjoner er av størrelsesorden (int-log-2. F.eks. skal kallene (potens 3 16) og (potens 3 20) begge kreve omtrent 4 multiplikasjoner. Side 2 av 7
3 Oppgave 2 Prosedyreobjekter og lambda-uttrykk Prosedyren neste-kombinasjon tar en kombinator k og et objekt x som argument og returnerer en prosedyre som tar et objekt y som argument og selv returnerer kombinasjonen k(x, y) (du kan gå ut fra at x og y lar seg kombinere av k). ((neste-kombinasjon + 2) 2) ==> 4 ((neste-kombinasjon cons 2) 3) ==> (2. 3) ((neste-kombinasjon / 1) 2) ==> 1/2 Fyll ut nedenstående kall med et passende lambda-uttrykk. ((neste-kombinasjon <???> 2) '(3. 4)) ==> (6. 8) Prosedyren delsum tar en unær prosedyre f og to heltall a og b som argumenter, og returnerer summen av leddene f(... f( i rekken S, når S har formen S = f( + f(a+1) + f(a+2) + Eksempel: (delsum (lambda (k) (/ 1 k)) 1 4) ==> 1 + 1/2 + 1/3 + 1/4 = 25/12 Implementer delsum ved hjelp av en lokal halerekursiv prosedyre. d) Kall delsum med passende lambdauttrykk som prosedyreargumenter, for å beregne summene av de 100 første leddene i hver av rekkene S og T. 1 S = T = S og T konvergerer hhv. mot e og π /4 uten at det har noen betydning her. Side 3 av 7
4 Oppgave 3 Lister og binære trær Prosedyren halvdeler deler en gitt liste i to deler, slik at andre del er like lang som eller har ett element mer enn første del. Prosedyrene tar de to listene del-1 og del-2 som argumenter. Ved kallet skal del-1 være tom, mens del-2 skal være den listen som skal deles. Returverdien fra prosedyren skal være paret med de to listene. (halvdeler '() '( )) ==> ((1 2) 3 4 5) (halvdeler '() '( )) ==> ((1 2 3) 4 5 6) Implementer prosedyren halvdeler. I det følgende ser vi på binære trær der hver node har to subtrær, og alle blader er tomme lister. Videre er hvert datum i et tre unikt; og, gitt en node N, er alle data i Ns venstre subtre mindre enn, og alle data i Ns høyre subtre større enn Ns datum. Endelig skal alle data være tall. Vi tar utgangspunkt i følgende abstraksjon: (define (lag-tre datum v-sub h-su (list datum v-sub h-su) (define (datum tre) (car tre)) (define (v-sub tre) (cadr tre)) (define (h-sub tre) (caddr tre)) Eksempel: BT = 10 (10 (6 (5 (1 () ()) ()) 6 15 (9 (8 () ()) ())) (15 (13 (12 () ()) ()) (17 () ()))) Prosedyren plasser-i-bintre tar et heltall og et binært tre som argumenter, og plasserer tallet i treet, eller returnerer en melding, i form av en streng, om at tallet evt. finnes i treet. Implementer plasser-i-bintre. Prosedyren bintre->liste tar et binært tre som argument og returnerer listen med treets data i stigende orden Implementer bintre->liste. Side 4 av 7
5 d) Prosedyren liste->bintre tar en liste med data i stigende orden som argument, og returnerer et binært tre med listens data Implementer liste->bintre bl.a. vha. prosedyren halvdeler fra punkt a (uavhengig av om du har implementert denne eller ikke). e) Vis og forklar kort hvordan vi ved hjelp av (deler av) ovenstående kan omforme et ubalansert binært tre til et balansert. Oppgave 4 Strømmer Definer et strømobjekt gertrud som genererer den implisitte strømmen (a rose is a rose is a rose is a rose...). Prosedyren fusjoner tar to strømmer S og T som argumenter og returnerer fusjonen F av disse, slik at første element i F er første elelement i S, andre element i F er første element i T osv. Eksempel: (fusjoner ( ) (a b c...)) ==> (1 a 2 b 3 c...) Implementer fusjoner. Prosedyren feedback tar en initialverdi a og to unære prosedyrer f og g som argument og returnerer den strømmen som dannes ved at de to prosedyrene mater hverandre gjensidig. Prosedyrene har følgende lokale objekter: - Prosedyren f-strøm tar en strøm s som argument og returnerer strømobjektet der a er første og løftet om avbildningen av s ved f er andre element. - Strømobjektet g-strøm er definert ved et kall på f-strøm med avbildningen av en strøm x ved g som argument. Hvilken strøm x må være, er en del av oppgaven. For at dette skal virke, kan ikke argumentet til f-strøm evalueres før definisjonen av både f-strøm og g-strøm er evaluert. Implementer feedback. Side 5 av 7
6 d) Prosedyren prosedyrenøste tar en unær prosedyre f som argument og returnerer strømmen av suksessivt tykkere nøster av f f.eks. slik at anvendelsen av tredje element på x = f ( f ( f (x) ) ). ((strømelement 1 (prosedyrenøste legg-til-1)) 1) ==> 2 ((strømelement 3 (prosedyrenøste legg-til-1)) 1) ==> 4 ((strømelement 4 (prosedyrenøste doble)) 1) ==> 16 ((strømelement 6 (prosedyrenøste doble)) 1) ==> 64 når (strømelement k s) ==> element nummer k i strømmen s, når vi teller fra 1. (legg-til-1 x) ==> x + 1, (doble x) ==> x 2, Implementer prosedyrenøste. e) Prosedyren feedback kan brukes til å utvikle nøstede brøker, som f.eks. brøken B under 2, og det samme kan vi oppnå vha. prosedyrenøste, ved passende valg av prosedyreargument. B = = 1 (1 + 1 (1 + 1 (1 + Vis hvordan vi kan utvikle B frem til ledd nummer 40, først ved hjelp av feedback og så ved hjelp av prosedyrenøste. (Merk at Scheme-primitiven for divisjon kan brukes som en unær prosedyre, slik at f.eks. (/ 5) ==> 1/5.) 2 B konvergerer mot φ 1, når φ er det gylne snitt uten at det har noen betydning her. Slutt på oppgaveteksten Side 6 av 7
7 Vedlegg 1 Relevante Scheme-primitiver (minus de aritmetiske operatorene) og annet (cons x y) ==> paret der x er første og y er andre element (x. y). (car x) ==> første element i paret x. (cdr x) ==> andre element i paret x. (list x y z) ==> det nøstede paret (x. (y. (z. ()))) = listen (x y z). (null? x) ==> true hvis x er den tomme listen. (length x) ==> antall elementer i listen x. (append x y) ==> sammenskjøtingen av listene x og y. (c<x>r x) kombinasjoner av car og cdr der <X> kan være inntil 4 c'er og/eller d'er, f.eks. slik at (cadar x) er en sammentrekning av (car (cdr (car x))). (error melding <evt. flere meldinger>) Skriver ut de gitte meldingene og gir kjøravbrudd. Strømabstraksjonen plus en nyttig strømprosedyre Spesialformen delay tar et uttrykk som "argument" og produserer et løfte om en mulig fremtidig evaluering av uttrykket, dvs. et objekt med det ennå ikke evaluerte uttrykket også kalt et utsatt objekt. Prosedyren force tar et utsatt objekt som argument og fremtvinger evalueringen av dettes uttrykk. Spesialformen cons-stream tar to "argumenter" x og y og returnerer strømobjektet (paret) der første element er x og andre element er et løfte om en mulig fremtidig evalueringen av y. Prosedyren stream-car tar et strømobjekt som argument og returnerer dettes første element. Prosedyren stream-cdr tar et strømobjekt som argument, fremtvinger evalueringen av dettes andre element og returnerer resultatet av evalueringen. Følgende strømprosedyre kan tas for gitt: stream-map (i en begrenset versjon) tar en prosedyre og en strøm som argument, anvender prosedyren på elementene i strømmen og returnerer strømmen med resultatene av disse anvendelsene. Side 7 av 7
UNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2810 Eksamensdag: 7. juni Tid for eksamen: 14.30 Oppgavesettet er på 5 sider Vedlegg Relevante prosedyrer Tillatte
DetaljerUNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2810 Eksamensdag: 6. juni Tid for eksamen: 14.30 Oppgavesettet er på 4 sider pluss vedlegg Tillatte hjelpemiddel: Ingen
DetaljerGjennomgåelse av eksamensoppgaven i HUMIT2710 fra våren 2004
Gjennomgåelse av eksamensoppgaven i HUMIT2710 fra våren 2004 Oppgave 1 For å komme nærmere kvadratroten til et tall fra en foreløpig tilnærming y, kan vi bruke formelen (y + /y)/2. Dette gir grunnlag for
DetaljerSide 1. Oppgave 1. Prosedyrer 1.1. Prosedyrene f og g skal begge returnere prosedyrer. a. Skriv f slik at ((f a) b) returnerer summen av a og b.
Side 1 Oppgave 1. Prosedyrer 1.1. Prosedyrene f og g skal begge returnere prosedyrer. a. Skriv f slik at ((f a) b) returnerer summen av a og b. (define (f a) (lambda (b) (add a b ))) b. Skriv g, uten å
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2810 Eksamensdag: 5. juni, 2014 Tid for eksamen: 14:30 (4 timer) Oppgavesettet er på 4 sider. Vedlegg: Ingen Tillatte hjelpemidler:
Detaljer(define (naer-nok-kuberot? y x) (< (abs (- (kube y) x)) 0.001)) (define (naermere-kuberot y x) (/ (+ (* y 2) (/ x (kvadrat y))) 3))
Oppgave 1 For å komme nærmere kuberoten (tredjeroten) til et tall x fra en foreløpig tilnærming y, kan vi bruke formelen (2y + x/y 2 )/3. Skriv prosedyrene (nær-nok-kuberot? y x), (nærmere-kuberot y x)
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2810 Eksamensdag: Fredag 5. juni 2015 Tid for eksamen: 14:30 (4 timer) Oppgavesettet er på 4 sider (ikke medregnet denne siden)
DetaljerEksamen i SLI230, vår 2003.
Eksamen i SLI230, vår 2003. Oppgavesettet har 8 sider medregnet denne forsiden. Ingen hjelpemidler er tillatt. Vedlegg: To sider som inneholder en liste over primitiver fra scheme (og simply.scm) samt
DetaljerINF2810: Funksjonell Programmering. Lokale variabler. Og trær.
INF2810: Funksjonell Programmering Lokale variabler. Og trær. Erik Velldal Universitetet i Oslo 11. september 2019 Tema forrige uke 2 Lister som datastruktur quote Rekursjon på lister Høyereordens prosedyrer
DetaljerRekursjon og lister. Stephan Oepen & Erik Velldal. 1. februar, Universitetet i Oslo
INF2810: Funksjonell programmering Rekursjon og lister Stephan Oepen & Erik Velldal Universitetet i Oslo 1. februar, 2013 Agenda 2 Forrige uke Scheme Substitusjonsmodellen Blokkstruktur Predikater Kondisjonale
DetaljerOppgave 1 Minimum edit distance
INF-2810 V 2012 Oppgavesett 10, kalenderuke 12. Oppgave 1 Minimum edit distance Vi vil finne det minste antall redigeringsoperasjoner som kreves for å komme fra strengen A til strengen B. Strengene oppgis
DetaljerINF2810: Funksjonell Programmering. Lokale variabler. Og trær.
INF2810: Funksjonell Programmering Lokale variabler. Og trær. Erik Velldal Universitetet i Oslo 11. september 2019 Tema forrige uke 2 Lister som datastruktur quote Rekursjon på lister Høyereordens prosedyrer
DetaljerINF2810: Funksjonell Programmering. Kommentarer til prøveeksamen
INF2810: Funksjonell programmering INF2810: Funksjonell Programmering Kommentarer til prøveeksamen Erik Velldal Universitetet i Oslo 1: Grunnleggende (6 poeng)? (define foo '(a b))? (define bar foo)? (set!
DetaljerINF2810: Funksjonell Programmering. Mer om strømmer
INF2810: Funksjonell Programmering Mer om strømmer Stephan Oepen & Erik Velldal Universitetet i Oslo 19. april 2013 Tema 2 Forrige uke Repetisjon: parallelitet Noe helt nytt: strømmer Noe quizzaktivitet
DetaljerINF2810: Funksjonell Programmering. Mer om strømmer
INF2810: Funksjonell Programmering Mer om strømmer Stephan Oepen & Erik Velldal Universitetet i Oslo 19. april 2013 Tema 2 Forrige uke Repetisjon: parallelitet Noe helt nytt: strømmer Noe quizzaktivitet
DetaljerINF2810: Funksjonell Programmering. Trær og mengder
INF2810: Funksjonell programmering INF2810: Funksjonell Programmering Trær og mengder Erik Velldal Universitetet i Oslo 19. februar 2015 Tema Forrige uke Høyereordens prosedyrer lambda, let og lokale variabler
DetaljerINF2810: Funksjonell Programmering. Lister og høyereordens prosedyrer
INF2810: Funksjonell Programmering Lister og høyereordens prosedyrer Erik Velldal Universitetet i Oslo 2. februar 2017 Agenda 2 Forrige uke Substitusjonsmodellen og evalueringsstrategier. Blokkstruktur
DetaljerINF2810: Funksjonell Programmering
INF2810: Funksjonell Programmering Omgivelsesmodeller og destruktive listeoperasjoner Stephan Oepen & Erik Velldal Universitetet i Oslo 15. mars 2013 Tema 2 Forrige uke Representasjon av mengder Sorterte
DetaljerINF2810: Funksjonell Programmering
INF2810: Funksjonell Programmering Høyereordens prosedyrer, lambda og lokale variabler Erik Velldal Universitetet i Oslo 9. februar 2017 Tema 2 Forrige uke Lister og listerekursjon quote Høyereordens prosedyrer
DetaljerHøyere-ordens prosedyrer
INF2810: Funksjonell programmering Høyere-ordens prosedyrer Stephan Oepen & Erik Velldal Universitetet i Oslo 8. februar, 2013 Tema 2 Forrige uke Lister og listerekursjon Høyere-ordens prosedyrer Prosedyrer
DetaljerINF2810: Funksjonell Programmering
INF2810: Funksjonell Programmering Omgivelsesmodeller og destruktive listeoperasjoner Stephan Oepen & Erik Velldal Universitetet i Oslo 15. mars 2013 Tema 2 Forrige uke Representasjon av mengder Sorterte
DetaljerINF2810: Funksjonell Programmering
INF2810: Funksjonell Programmering Høyereordens prosedyrer, lambda og lokale variabler Erik Velldal Universitetet i Oslo 9. februar 2017 Tema 2 Forrige uke Lister og listerekursjon quote Høyereordens prosedyrer
DetaljerINF2810: Funksjonell Programmering. Dataabstraksjon og Trerekursjon
INF2810: Funksjonell Programmering Dataabstraksjon og Trerekursjon Stephan Oepen & Erik Velldal Universitetet i Oslo 15. februar, 2013 Tema 2 Forrige uke Høyere-ordens prosedyrer: Prosedyrer som argumenter
DetaljerINF2810: Funksjonell Programmering. Lister og høyereordens prosedyrer
INF2810: Funksjonell programmering INF2810: Funksjonell Programmering Lister og høyereordens prosedyrer Erik Velldal Universitetet i Oslo 5. februar 2015 Agenda Forrige uke Substitusjonsmodellen og evalueringsstrategier.
DetaljerPar og Lister (først et par sider fra forrige uke) Par er byggestener for lister og trær og sammensatte datatyper.
Par og Lister (først et par sider fra forrige uke) Par er byggestener for lister og trær og sammensatte datatyper. Par kan representeres grafiske slik: Som vi ser kan vi bruke cons til å lage par hvis
DetaljerINF2810: Funksjonell Programmering. Strømmer og utsatt evaluering
INF2810: Funksjonell programmering INF2810: Funksjonell Programmering Strømmer og utsatt evaluering Erik Velldal Universitetet i Oslo 5. april 2016 Forrige forelesning Mer om (prosedyre)navn, bindinger,
DetaljerINF2810: Funksjonell Programmering. Eksamensforberedelser
INF2810: Funksjonell Programmering Eksamensforberedelser Stephan Oepen & Erik Velldal Universitetet i Oslo 24. mai 2013 I dag 2 Kort oppsummering Praktisk om eksamen Hvem vant konkurransen om flest oblig-poeng
DetaljerINF2810: Funksjonell Programmering. En metasirkulær evaluator, del 2
INF2810: Funksjonell Programmering En metasirkulær evaluator, del 2 Stephan Oepen & Erik Velldal Universitetet i Oslo 03. mai 2013 Tema 2 Forrige uke SICP 4.1. Structure and interpretation of computer
DetaljerINF2810: Funksjonell Programmering. Strømmer og utsatt evaluering
INF2810: Funksjonell Programmering Strømmer og utsatt evaluering Stephan Oepen Universitetet i Oslo 30. mars 2017 Forrige forelesning 2 Mer om (prosedyre)navn, bindinger, og verditilordning Nok en ny abstrakt
DetaljerINF2810: Funksjonell Programmering. En metasirkulær evaluator, del 2
INF2810: Funksjonell Programmering En metasirkulær evaluator, del 2 Stephan Oepen & Erik Velldal Universitetet i Oslo 03. mai 2013 Tema 2 Forrige uke SICP 4.1. Structure and interpretation of computer
DetaljerINF2810: Funksjonell Programmering. Trær og mengder
INF2810: Funksjonell Programmering Trær og mengder Stephan Oepen Universitetet i Oslo 16. februar 2017 Tema 2 Forrige uke Høyereordens prosedyrer lambda, let og lokale variabler Dataabstraksjon I dag Lister
DetaljerINF2810: Funksjonell Programmering. En Scheme-evaluator i Scheme, del 2
INF2810: Funksjonell Programmering En Scheme-evaluator i Scheme, del 2 Erik Velldal Universitetet i Oslo 4. mai 2017 Tema 2 Forrige uke SICP 4.1. Structure and interpretation of computer programs Metacircular
DetaljerINF2810: Funksjonell Programmering. En Scheme-evaluator i Scheme, del 2
INF2810: Funksjonell programmering INF2810: Funksjonell Programmering En Scheme-evaluator i Scheme, del 2 Erik Velldal Universitetet i Oslo 7. mai 2015 Tema Forrige uke SICP 4.1. Structure and interpretation
DetaljerINF2810: Funksjonell Programmering. Trær og mengder
INF2810: Funksjonell Programmering Trær og mengder Stephan Oepen Universitetet i Oslo 16. februar 2016 Tema 2 Forrige uke Høyereordens prosedyrer lambda, let og lokale variabler Dataabstraksjon I dag Lister
DetaljerINF2810: Funksjonell Programmering. En Scheme-evaluator i Scheme, del 2
INF2810: Funksjonell Programmering En Scheme-evaluator i Scheme, del 2 Erik Velldal Universitetet i Oslo 4. mai 2017 Tema 2 Forrige uke SICP 4.1. Structure and interpretation of computer programs Metacircular
DetaljerINF2810: Funksjonell Programmering
INF2810: Funksjonell Programmering Høyereordens prosedyrer, lambda og lokale variabler Stephan Oepen Universitetet i Oslo 9. februar 2015 Tema 2 Forrige uke Lister og listerekursjon quote Høyereordens
DetaljerINF2810: Funksjonell Programmering
INF2810: Funksjonell Programmering Høyereordens prosedyrer, lambda og lokale variabler Stephan Oepen Universitetet i Oslo 9. februar 2015 Tema 2 Forrige uke Lister og listerekursjon quote Høyereordens
DetaljerDefinisjon. I et binært tre har hver node enten 0, 1 eller 2 barn
Binære trær Definisjon I et binært tre har hver node enten 0, 1 eller 2 barn Rekursiv definisjon: Et binært tre er enten tomt, eller: Består av en rotnode og to binære trær som kalles venstre subtre og
DetaljerINF2810: Funksjonell Programmering. Huffman-koding
INF2810: Funksjonell Programmering Huffman-koding Stephan Oepen & Erik Velldal Universitetet i Oslo 22. februar, 2013 Tema 2 Forrige uke Data-abstraksjon Lister av lister Tre-rekursjon Prosedyrer som datastruktur
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 115 og IN 110 Algoritmer og datastrukturer Eksamensdag: 14. mai 1996 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 8 sider.
DetaljerINF2810: Funksjonell Programmering. Huffman-koding
INF2810: Funksjonell Programmering Huffman-koding Stephan Oepen & Erik Velldal Universitetet i Oslo 22. februar, 2013 Tema 2 Forrige uke Data-abstraksjon Lister av lister Tre-rekursjon Prosedyrer som datastruktur
DetaljerINF2810: Funksjonell Programmering. Utsatt evaluering og strømmer
INF2810: Funksjonell Programmering Utsatt evaluering og strømmer Stephan oepen Universitetet i Oslo 6. april 2017 Tema 2 Forrige gang Ny datastruktur, ny teknikk: Strømmer Utsatt evaluering I dag Uendelige
DetaljerINF2810: Funksjonell Programmering. Utsatt evaluering og strømmer
INF2810: Funksjonell programmering INF2810: Funksjonell Programmering Utsatt evaluering og strømmer Erik Velldal Universitetet i Oslo 12. april 2016 Tema Forrige gang Ny datastruktur, ny teknikk: Strømmer
DetaljerAppendiks A Kontinuasjoner
Appendiks A Kontinuasjoner Fra R5RS: "Whenever a Scheme expression is evaluated there is a continuation wanting the result of the expression." Eller med andre ord: En kontinuasjon i et program under utførelse
DetaljerAlgoritmer og Datastrukturer
Eksamen i Algoritmer og Datastrukturer IAI 21899 Høgskolen i Østfold Avdeling for informatikk og automatisering Lørdag 15. desember 2001, kl. 09.00-14.00 Hjelpemidler: Alle trykte og skrevne hjelpemidler.
DetaljerINF2810: Funksjonell Programmering. Oppsummering og eksamensforberedelser
INF2810: Funksjonell programmering INF2810: Funksjonell Programmering Oppsummering og eksamensforberedelser Erik Velldal Universitetet i Oslo 28. mai 2015 I dag Kort oppsummering Praktisk om eksamen Hvem
DetaljerINF2810: Funksjonell Programmering. Oppsummering og eksamensforberedelser
INF2810: Funksjonell Programmering Oppsummering og eksamensforberedelser Erik Velldal & Stephan Oepen Universitetet i Oslo 18. mai 2017 I dag 2 Kort oppsummering Praktisk om eksamen Hvem vant konkurransen
DetaljerINF2810: Funksjonell Programmering. Oppsummering og eksamensforberedelser
INF2810: Funksjonell Programmering Oppsummering og eksamensforberedelser Erik Velldal & Stephan Oepen Universitetet i Oslo 18. mai 2017 I dag 2 Kort oppsummering Praktisk om eksamen Hvem vant konkurransen
DetaljerINF2810: Funksjonell Programmering. Utsatt evaluering og strømmer
INF2810: Funksjonell Programmering Utsatt evaluering og strømmer Erik Velldal Universitetet i Oslo 12. april 2016 Tema 2 Forrige gang Ny datastruktur, ny teknikk: Strømmer Utsatt evaluering Uendelige sekvenser
DetaljerINF2810: Funksjonell Programmering. Strømmer
INF2810: Funksjonell Programmering Strømmer Stephan Oepen & Erik Velldal Universitetet i Oslo 12. april 2013 Tema 2 Forrige uke Litt mer i dybden om køer Eksperiment: live-programmering Tabeller som hierarkiske
DetaljerINF2810: Funksjonell Programmering. Utsatt evaluering og strømmer
INF2810: Funksjonell Programmering Utsatt evaluering og strømmer Stephan oepen Universitetet i Oslo 6. april 2017 Tema 2 Forrige gang Ny datastruktur, ny teknikk: Strømmer Utsatt evaluering I dag Uendelige
DetaljerDet er ikke tillatt med andre hjelpemidler enn de to sidene som er vedlagt oppgavesettet. Følgende funksjoner er definert og brukes i oppgaven:
Eksamen SLI 230 Bakerst ligger to sider med oversikt over standardprosedyrer og spesialformer i Scheme, samt oversikt over prosedyrer fra Simply Scheme og en enkel oversikt over konvertering mellom datatyper
DetaljerINF2810: Funksjonell Programmering. Strømmer
INF2810: Funksjonell Programmering Strømmer Stephan Oepen & Erik Velldal Universitetet i Oslo 12. april 2013 Tema 2 Forrige uke Litt mer i dybden om køer Eksperiment: live-programmering Tabeller som hierarkiske
DetaljerINF2810: Funksjonell Programmering. Oppsummering og eksamensforberedelser
INF2810: Funksjonell programmering INF2810: Funksjonell Programmering Oppsummering og eksamensforberedelser Erik Velldal & Stephan Oepen Universitetet i Oslo 31. mai 2016 I dag Kort oppsummering Praktisk
DetaljerEKSAMEN med løsningsforslag
EKSAMEN med løsningsforslag Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: Eksamenstid: 20. mai 2009 kl 09.00 til kl 13.00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Kalkulator Faglærer:
DetaljerMemoisering, utsatt evaluering og strømmer
Memoisering, utsatt evaluering og strømmer Først litt repetisjon: Utsatt evaluering Gitt (define (p x) (if test (x) something-else)) la E være et Scheme-uttrykk, og la L = (lambda () E). Da vil, ved kallet
DetaljerMemoisering, utsatt evaluering og strømmer
Memoisering, utsatt evaluering og strømmer Først litt repetisjon: Utsatt evaluering Gitt (define (p x) (if test (x) something-else)) la E være et Scheme-uttrykk, og la L = (lambda () E). Da vil, ved kallet
DetaljerINF2810: Funksjonell Programmering. Oppsummering og eksamensforberedelser
INF2810: Funksjonell Programmering Oppsummering og eksamensforberedelser Erik Velldal & Stephan Oepen Universitetet i Oslo 31. mai 2016 I dag 2 Kort oppsummering Praktisk om eksamen Hvem vant konkurransen
DetaljerINF2810: Funksjonell Programmering. Mer om verditilordning og muterbare data.
INF2810: Funksjonell Programmering Mer om verditilordning og muterbare data. Erik Velldal Universitetet i Oslo 16. mars 2017 De siste ukene: destruktive operasjoner 2 set! endrer verditilordningen til
DetaljerINF2810: Funksjonell Programmering. Mer om verditilordning og muterbare data.
INF2810: Funksjonell Programmering Mer om verditilordning og muterbare data. Erik Velldal Universitetet i Oslo 16. mars 2017 De siste ukene: destruktive operasjoner 2 set! endrer verditilordningen til
DetaljerPar og Lister (først et par sider fra forrige uke) Par er byggestener for lister og trær og sammensatte datatyper.
Par og Lister (først et par sider fra forrige uke) Par er byggestener for lister og trær og sammensatte datatyper. Par kan representeres grafiske slik: Som vi ser kan vi bruke cons til å lage par hvis
DetaljerEKSAMENSOPPGAVE. Kontaktperson under eksamen: Steffen Viken Valvåg Telefon:
EKSAMENSOPPGAVE Eksamen i: INF-1100 Innføring i programmering og datamaskiners virkemåte Dato: Tirsdag 8. desember 2015 Tid: Kl 09:00 13:00 Sted: Teorifagbygget, Hus 1 Tillatte hjelpemidler: Ingen Oppgavesettet
DetaljerINF2810: Funksjonell Programmering. Mer om verditilordning. Tabeller. Og strømmer.
INF2810: Funksjonell programmering INF2810: Funksjonell Programmering Mer om verditilordning. Tabeller. Og strømmer. Erik Velldal Universitetet i Oslo 29. mars 2016 De siste ukene: destruktive operasjoner
DetaljerINF2810: Funksjonell programmering: Mer om Scheme. Rekursjon og iterasjon.
INF2810: Funksjonell programmering: Mer om Scheme. Rekursjon og iterasjon. Stephan Oepen & Erik Velldal Universitetet i Oslo 25. januar, 2013 På blokka 2 Forrige uke Introduksjon og oversikt Funksjonell
DetaljerHøgskolen i Gjøvik. Avdeling for elektro- og allmennfag K O N T I N U A S J O N S E K S A M E N. EKSAMENSDATO: 11. august 1995 TID:
Høgskolen i Gjøvik Avdeling for elektro- og allmennfag K O N T I N U A S J O N S E K S A M E N FAGNAVN: FAGNUMMER: Algoritmiske metoder LO 164A EKSAMENSDATO: 11. august 1995 TID: 09.00-14.00 FAGLÆRER:
DetaljerAlgoritmer og Datastrukturer
Eksamen i Algoritmer og Datastrukturer IAI 20102 Høgskolen i Østfold Avdeling for informatikk og automatisering Lødag 5. juni 2004, kl. 09.00-13.00 Hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator.
DetaljerDefinisjon av binært søketre
Binære søketrær Definisjon av binært søketre For alle nodene i et binært søketre gjelder: Alle verdiene i nodens venstre subtre er mindre enn verdien i noden Alle verdiene i nodens høyre subtre er større
DetaljerINF2810: Funksjonell Programmering. Mer om verditilordning. Tabeller. Og strømmer.
INF2810: Funksjonell Programmering Mer om verditilordning. Tabeller. Og strømmer. Erik Velldal Universitetet i Oslo 29. mars 2016 De siste ukene: destruktive operasjoner 2 set! endrer verditilordningen
DetaljerInnlevering 2a i INF2810, vår 2017
Innlevering 2a i INF2810, vår 2017 Hovedtematikken denne gang er Huffman-koding, som ble dekket i 6. forelesning (23. februar) og i seksjon 2.3.4 i SICP. Det er viktig å ha lest denne seksjonen før dere
DetaljerDefinisjon: Et sortert tre
Binære søketrær Definisjon: Et sortert tre For alle nodene i et binært søketre gjelder: Alle verdiene i nodens venstre subtre er mindre enn verdien i noden Alle verdiene i nodens høyre subtre er større
DetaljerKap 9 Tre Sist oppdatert 15.03
Kap 9 Tre Sist oppdatert 15.03 Definere et tre som en datastruktur. Definere begreper knyttet til tre. Diskutere mulige implementasjoner av tre Analysere implementasjoner av tre som samlinger. Diskutere
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2810, Funksjonell Programmering Eksamensdag: Fredag 10. juni 2016 Tid for eksamen: 14.30 Oppgavesettet er på 5 sider (ekskl.
DetaljerINF2220: Forelesning 2
INF2220: Forelesning 2 Mer om analyse av algoritmer Analyse av binære søketrær Balanserte søketrær Rød-svarte trær (kapittel12.2) B-trær (kapittel 4.7) ANALYSE AV ALGORITMER 2 Analyse av tidsforbruk Hvor
DetaljerINF2220: Forelesning 1. Praktisk informasjon Analyse av algoritmer (kapittel 2) (Binær)trær (kapittel )
INF2220: Forelesning 1 Praktisk informasjon Analyse av algoritmer (kapittel 2) (Binær)trær (kapittel 4.1-4.3 + 4.6) PRAKTISK INFORMASJON 2 Praktisk informasjon Kursansvarlige Ragnhild Kobro Runde (ragnhilk@ifi.uio.no)
DetaljerFra Kap.10 Binære søketre (BS-tre) Sist oppdatert 20.03.10 Definere en abstrakt datastruktur binært søketre. Vise hvordan binær søketre kan brukes
Fra Kap.10 Binære søketre (BS-tre) Sist oppdatert 20.03.10 Definere en abstrakt datastruktur binært søketre. Vise hvordan binær søketre kan brukes til å løse problemer. Undersøke ulike implementasjoner
DetaljerVi skal se på lambda-uttrykk. Følgende er definerte og vil bli brukt gjennom oppgaven
SLI 230 - side 2 av 8 EKSAMENSOPPGAVE - SLI 230 - VÅR 2000 Nedenfor følger eksamensoppgaver i SLI 230. Først om oppgavene Bakerst følger to sider med hjelp slik det er avtalt - liste over primitiver fra
DetaljerLisp 2: Lister og funksjoner
Eirik Alderslyst Nygaard Øystein Ingmar Skartsæterhagen Programvareverkstedet 11. mars 2010 (Lister) (Par) (Listeoperasjoner) (Assosiasjonslister)... lists are the heart of Lisp... Guy L. Steele Jr. (Par)
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1010 Objektorientert programmering Eksamensdag: 6. juni 2013 Tid for eksamen: 09.00 15.00 Oppgavesettet er på 5 sider. Vedlegg:
DetaljerINF2810: Funksjonell Programmering. Mengder og lokal tilstand
INF2810: Funksjonell Programmering Mengder og lokal tilstand Stephan Oepen & Erik Velldal Universitetet i Oslo Kvinnedagen, 2013 Forrige gang 2 Dagens dont 3 Del 1 Litt mer om hierarkisk data. Representasjon
DetaljerEKSAMENSOPPGAVE. INF-1101 Datastrukturer og algoritmer. Adm.bygget, rom K1.04 og B154 Ingen
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: Dato: 15.mai 2018 Klokkeslett: 09:00 13:00 Sted: Tillatte hjelpemidler: Adm.bygget, rom K1.04 og B154 Ingen Type innføringsark (rute/linje):
DetaljerLøsnings forslag i java In115, Våren 1998
Løsnings forslag i java In115, Våren 1998 Oppgave 1 // Inne i en eller annen klasse private char S[]; private int pardybde; private int n; public void lagalle(int i) if (i==n) bruks(); else /* Sjekker
DetaljerINF2810: Funksjonell Programmering. En Scheme-evaluator i Scheme
INF2810: Funksjonell Programmering En Scheme-evaluator i Scheme Erik Velldal Universitetet i Oslo 19. april 2016 Tema 2 Forrige uke Strømmer og utsatt evaluering Kort om makroer I dag Kap. 4 Metasirkulær
DetaljerINF2810: Funksjonell Programmering. Køer, tabeller, og (litt om) parallelitet
INF2810: Funksjonell Programmering Køer, tabeller, og (litt om) parallelitet Stephan Oepen & Erik Velldal Universitetet i Oslo 5. april 2013 Tema 2 Siste gang Kort om underveisevaluering Destruktive listeoperasjoner
DetaljerOppgave 1. Sekvenser (20%)
Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I BERGEN Eksamen i emnet I 20 - Algoritmer, datastrukturer og programmering Mandag 2.Mai 200, kl. 09-5. Ingen hjelpemidler tillatt. Oppgavesettet
DetaljerINF2810: Funksjonell Programmering. Lister og høyereordens prosedyrer
INF2810: Funksjonell Programmering Lister og høyereordens prosedyrer Stephan Oepen Universitetet i Oslo 2. februar 2016 Agenda 2 Forrige uke Substitusjonsmodellen og evalueringsstrategier Blokkstruktur
DetaljerBinære trær: Noen algoritmer og anvendelser
Binære trær: Noen algoritmer og anvendelser Algoritmer / anvendelser: Søking i usortert binært tre Telling av antall noder og nivåer i treet Traversering av binære trær Binære uttrykkstrær Kunstig intelligens(?):
DetaljerBOKMÅL Side 1 av 7. KONTINUASJONSEKSAMEN I FAG TDT4100 Objektorientert programmering / IT1104 Programmering, videregående kurs
BOKMÅL Side 1 av 7 NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap KONTINUASJONSEKSAMEN
DetaljerINF2810: Funksjonell Programmering. Køer, tabeller, og (litt om) parallelitet
INF2810: Funksjonell Programmering Køer, tabeller, og (litt om) parallelitet Stephan Oepen & Erik Velldal Universitetet i Oslo 5. april 2013 Tema 2 Siste gang Kort om underveisevaluering Destruktive listeoperasjoner
DetaljerBinære søketrær. Et notat for INF1010 Stein Michael Storleer 16. mai 2013
Binære søketrær Et notat for INF Stein Michael Storleer 6. mai 3 Dette notatet er nyskrevet og inneholder sikkert feil. Disse vil bli fortløpende rettet og datoen over blir oppdatert samtidig. Hvis du
DetaljerINF2810: Funksjonell Programmering. Huffmankoding
INF2810: Funksjonell programmering INF2810: Funksjonell Programmering Huffmankoding Erik Velldal Universitetet i Oslo 20. februar 2015 Tema I går Trær som lister av lister Trerekursjon Mengder som trær
DetaljerKONTINUASJONSEKSAMEN
Høgskolen i Gjøvik Avdeling for Teknologi KONTINUASJONSEKSAMEN FAGNAVN: FAGNUMMER: Algoritmiske metoder I L 189 A EKSAMENSDATO: 13. august 2001 KLASSE: 99HINDA / 99HINDB / 99HINEA / 00HDESY ( 2DA / 2DB
DetaljerEksamen i IN 110, 18. mai 1993 Side 2 Del 1 (15%) Vi skal se på prioritetskøer av heltall, der vi hele tiden er interessert i å få ut den minste verdi
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 18. mai 1993 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 7 sider. Vedlegg: Tillatte hjelpemidler: IN 110 Algoritmer
DetaljerINF2810: Funksjonell Programmering. Huffman-koding
INF2810: Funksjonell Programmering Huffman-koding Stephan Oepen Universitetet i Oslo 1. mars 2016 Tema 2 Sist Trær som lister av lister Trerekursjon Mengder som trær I dag Hierarkisk og symbolsk data Eksempel:
DetaljerINF2810: Funksjonell Programmering. Huffman-koding
INF2810: Funksjonell Programmering Huffman-koding Erik Velldal Universitetet i Oslo 23. februar 2017 Tema 2 Sist Trær som lister av lister Trerekursjon Mengder som trær Dataabstraksjon I dag Hierarkisk
DetaljerINF1010 Binære søketrær ++
INF1010 Binære søketrær ++ Programeksempler med insetting, gjenfinning av noder i et binært søketre samt eksempler på hvordan lage en liste av et binærtre. Hva må du kunne om binære søketrær i INF1010
DetaljerINF2810: Funksjonell Programmering. En metasirkulær evaluator
INF2810: Funksjonell Programmering En metasirkulær evaluator Stephan Oepen & Erik Velldal Universitetet i Oslo 26. april 2013 Tema 2 Forrige uke Strømmer og utsatt evaluering Memoisering Kort om makroer
DetaljerDet matematisk-naturvitenskapelige fakultet
LØSNINGSFORSLAG - KOMMENTARER til SENSOR N.B. RETTELSE 23.05 og 26.05 pkt. e) :UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : IN 5 Eksamensdag : Lørdag 20 mai, 2000 Tillatte
DetaljerAlgoritmer og Datastrukturer
Eksamen i Algoritmer og Datastrukturer IAI 20102 Høgskolen i Østfold Avdeling for informatikk og automatisering Lødag 5. juni 2004, kl. 09.00-13.00 LØSNINGSFORSLAG 1 Del 1 60% Oppgave 1.1-10% Forklar kort
DetaljerINF2810: Funksjonell Programmering. En Scheme-evaluator i Scheme
INF2810: Funksjonell Programmering En Scheme-evaluator i Scheme Erik Velldal Universitetet i Oslo 27. april 2017 Tema 2 Forrige forelesning Strømmer og utsatt evaluering Kort om makroer I dag Kap. 4 Metasirkulær
DetaljerUNIVERSITETET I OSLO
Eksamen i UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamensdag: 13. desember 2011 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 7 sider. Vedlegg: INF2220 lgoritmer og datastrukturer
Detaljer