INF2810: Funksjonell Programmering. Dataabstraksjon og Trerekursjon

Størrelse: px
Begynne med side:

Download "INF2810: Funksjonell Programmering. Dataabstraksjon og Trerekursjon"

Transkript

1 INF2810: Funksjonell Programmering Dataabstraksjon og Trerekursjon Stephan Oepen & Erik Velldal Universitetet i Oslo 15. februar, 2013

2 Tema 2 Forrige uke Høyere-ordens prosedyrer: Prosedyrer som argumenter Prosedyrer som returverdi Lokale Variabler I dag Noe repetisjon Dataabstraksjon Lister av lister Trerekursjon

3 reduce 3 En annen klassisk høyere-ordens prosedyre (ved siden av map):? (define (reduce proc init items) (if (null? items) init (proc (car items) (reduce proc init (cdr items)))))? (reduce + 0 ( )) 15? (reduce * 1 ( )) 120? (reduce cons () ( )) ( )? (reduce max 0 ( )) 5 reduce er også kjent som fold, compress, accumulate, eller inject.

4 Eksempel på bruk av map + reduce 4 Gitt to vektorer a = 2, 1, 3 b = 1, 3, 0 (define a (list 2 1 3)) (define b (list 1 3 0)) så beregnes prikk-produktet som x y = i x i y i a b = = 5 Versjon 2 med modulær design: kjede av høyere-ordens operasjoner over sekvenser. sekvenser som konvensjonell grensesnitt i SICP-terminologi. (define (dot-product x y) (if (null? x) 0 (+ (* (car x) (car y)) (dot-product (cdr x) (cdr y))))) (define (dot-product x y) (reduce + 0 (map * x y))) (dot-product a b) 5

5 lambda-uttrykk 5? (define square (lambda (x) (* x x)))? (square 4) 16? ((lambda (x) (* x x))) 4) 16? (map (lambda (x) (* x 0.1)) (2 3 4)) ( )? (map (lambda (x) (list x (* x x))) (2 3 4)) ((2 4) (3 9) (4 16)) lambda-uttrykk returnerer prosedyrer. Trenger ikke nødvendigvis bindes til et symbol; Kan kalles direkte som såkalt anonyme prosedyrer. Brukes ofte i forbindelse med høyere-ordens prosedyrer. Terminologien avslører røttene ved Alonzo Church (på 30-tallet).

6 Prosedyrer inn, prosedyrer ut 6 Parametriserbar søk-og-erstatt med anonyme høyere-ordens prosedyrer:? (define (make-replacer pred proc) (lambda (z) (if (pred z) (proc z) z)))? (map (make-replacer odd? (lambda (x) (+ 1 x))) ( )) ( )

7 Lokale variabler og lambda 7 Formål: normalisere sekvens av tall som prosentandel av summen.? (percentages ( )) ( ) (define (percentages items) (map (lambda (x) (* 100 (/ x (reduce + 0 items)))) items)) (define (percentages items) (define (helper sum) (map (lambda (x) (* 100 (/ x sum))) items)) (helper (reduce + 0 items))) (define (percentages items) ((lambda (sum) (map (lambda (x) (* 100 (/ x sum))) items)) (reduce + 0 items))) Parameteret til den indre prosedyre fungerer som en lokal variable.

8 Lokale variabler, lambda, og let 8 Bruk av lokale variabler er så vanlig at det finnes en kortform: let. (define (percentages items) ((lambda (sum) (map (lambda (x) (* 100 (/ x sum))) items)) (reduce + 0 items))) (define (percentages items) (let ((sum (reduce + 0 items))) (map (lambda (x) (* 100 (/ x sum)) items)))) let er å regne som syntaktisk sukker i Scheme (gir økt lesbarhet). Navnet gjenspeiler matematisk språkbruk ( Let a be a vector... ).

9 Lokale variabler, lambda, og let 9 Generell form for let Ekvivalent lambda-uttrykk (let (( var1 exp1 ) ( var2 exp2 ). ( varn expn )) body ) ((lambda ( var1 var2... varn ) body ) exp1 exp2... expn ) Rekkevidden til variablene er kroppen til let-uttrykket. Verdiene ( exp 1... exp n ) beregnes utenfor let-uttrykket. Variablene har ikke tilgang til hverandre under bindingen. let* som kortform for flere omsluttende let-uttrykk.

10 Noen eksempler med let? (define foo 42)? (let ((x foo) (y 1)) (list x y)) (42 1)? (let ((x foo) (y foo)) (list x y)) (42 42)? (let ((x foo) (y x)) (list x y)) error: x undefined? (let ((foo 7) (y foo)) (list foo y)) (7 42)? (let ((foo 7)) (let ((y foo)) (list foo y))) (7 7)? (let* ((foo 7) (y foo)) (list foo y)) (7 7) 10

11 Dataabstraksjon 11 Så langt: modularisering og abstraksjon av prosesser (beregninger). Like viktig er modularisering og abstraksjon av data ( kunnskap ). Hvilke typer data kjenner vi (i Scheme)? tall integer, real, rational 42, , 2/3 sekvens av tegn string "foo bar" sannhetsverdi boolean #t, #f par (2-tuple) pair (cons) (47. 11) tom sekvens null () funksjoner prosedyre (lambda) +, (lambda (x) (* x x)) Skille mellom abstrakte datatyper og deres implementasjon i Scheme.

12 Repetisjon: Lister 12 Kjeder av cons-par der siste elementet er den tomme lista; ().? (cons 1 (cons 2 (cons 3 (cons 4 ()))))) ( ) Lister kan defineres rekursivt som: () eller et par der cdr er en liste.

13 Lister som vår første komplekse datatype 13 (define (list? object) (or (null? object) (and (pair? object) (list? (cdr object)))))? (list? (list )) #t? (list? (1)) #t? (list? (cons 1 ())) #t? (list? ()) #t? (list? 1) #f? (list? (cons 1 2)) #f

14 Dataabstraksjon og komplekse data 14 Ofte behov for å binde sammen en gruppe sammenhengende data. Komplekse datatyper grupperer informasjon som konseptuelt hører sammen (compound data), f.eks. rasjonale tall: 1/3. Dataabstraksjon skjuler en datatypes intern representasjon. Familie av prosedyrer som grensesnitt: constructor, selectors, predicate. (define (make-rat n d) (cons n d)) (define (rat-numer r) (car r)) (define (rat-denom r) (cdr r)) (define (rat? r) (pair? r)) Her bruker vi cons for å lime sammen to heltall: teller og nevner. Nok for å definere prosedyrer som konseptuelt regner på rasjonale tall.

15 Aritmetikk med rasjonale tall 15 a b an a d a+b an a d bn b d = + bn b d an bn a d b n = an b d + b n a d a d b n Operasjoner på rasjonale tall er uavhengig av intern representasjon. Abstraksjonsbarriere: dataabstraksjon skjuler limet (cons-cellen i bunnen). Closure property: limet kan brukes på ting som selv er blitt limet sammen. Hvilken type lim bruker vi i Scheme? Holder oss til bare cons i flere uker. (define (mul-rat a b) (make-rat (* (rat-numer a) (rat-numer b)) (* (rat-denom a) (rat-denom b)))) (define (add-rat a b) (make-rat (+ (* (rat-numer a) (rat-denom b)) (* (rat-numer b) (rat-denom a))) (* (rat-denom a) (rat-denom b))))...

16 På sidespor: Blanding av datatyper = = 4 3 Scheme gjør det enkelt å definere såkalte polymorfe prosedyrer. Bunnoperasjonene avgjør hvordan kombinere forskjellige typer data. (define (add-rat a b) (let ((a (if (integer? a) (make-rat a 1) a)) (b (if (integer? b) (make-rat b 1) b))) (make-rat (+ (* (rat-numer a) (rat-denom b)) (* (rat-numer b) (rat-denom a))) (* (rat-denom a) (rat-denom b)))))? (add-rat 1 (make-rat 1 3)) (4. 3) Inklusjon av datatyper: integer rational automatisk coercion.

17 Nok en gang: Lister 17 Kjeder av cons-par der siste elementet er den tomme lista; ().? (cons 1 (cons 2 (cons 3 (cons 4 ()))))) ( ) closure property: vi kan bygge komplekse strukturer fra bunnen av.

18 Prosedyrer vs. data 18 Husk at prosedyrer i Scheme er førsteklasses objekter, altså data; f.eks. som argument eller returverdi; Scheme-koden skrives som lister. Prosedyrer kan også brukes som lim til komplekse data, istedenfor cons. (define (cons x y) (lambda (message) (cond ((= message 0) x) ((= message 1) y)))) (define (car proc) (proc 0)) (define (cdr proc) (proc 1))? (cons 1 2)) #<procedure>

19 Hjelp! Hva skjer? 19 Et par kan bindes sammen som en prosedyre som returnerer enten car-verdien eller cdr-verdien, avhengig av hvilken beskjed den får. Så implementeres car og cdr som oppkalling av cons-prosedyren. Ved denne oppkallingen sender car en beskjed som velger ut riktig. Mindre effisient representasjon enn cons-celle (dvs. par av to pekere). Konseptuelt interessant: message passing; dette kommer vi tilbake til. (define (cons x y) (lambda (proc) (proc x y))) (define (car proc) (proc (lambda (p q) p)))

20 Lister som hierarkiske strukturer 20 Hvert liste-element kan selv være en liste... Som igjen kan bestå av nye lister.? (cons (list 1 2) (list 3 4)) ((1 2) 3 4)

21 Lister som trær 21 Lister av lister kan sees som trær: Hvert element i en liste er en gren. Elementer som selv er lister er subtrær. Løvnodene i treet er de atomære elementene som ikke er lister. NB: så langt kan vi bare ha verdier på løvnodene, og vi skal etterhvert lage en generalisert implementasjon av trær.

22 Rekursjon på lister av lister 22 Må passe på at rekursjonen går ned i hver (element)liste. For eksempel: telle løvnoder (parallelt til length på sekvenser). Må tenke på tre forskjellige situasjoner; Argumentet kan være: den tomme lista en cons-celle (et tre) noe annet (define (count-leaves tree) (cond ((null? tree) 0) ((pair? tree) (+ (count-leaves (car tree)) (count-leaves (cdr tree)))) (else 1)))? (count-leaves ((1 2) 3 4)) 4

23 Rekursjon på lister av lister (forts.) 23 For eksempel: samle opp løvnoder i en flat list (fringe eller flatten. Må tenke på tre forskjellige situasjoner; Argumentet kan være: den tomme lista en cons-celle (et tre) noe annet (define (fringe tree) (cond ((null? tree) ()) ((pair? tree) (append (fringe (car tree)) (fringe (cdr tree)))) (else (list tree))))? (fringe ((1 2) 3 4)) ( )

24 Rekursjon på lister av lister 24 map er definert for lister; tree-map kan defineres for lister av lister: (define (tree-map proc tree) (cond ((null? tree) ()) ((pair? tree) (cons (tree-map proc (car tree)) (tree-map proc (cdr tree)))) (else (proc tree))))? (tree-map square ((1 2) 3 4)) ((1 4) 9 16) Alternativt kan map brukes, i kombinasjon med rekursjon: (define (tree-map proc tree) (map (lambda (subtree) (if (pair? subtree) (tree-map proc subtree) (proc subtree))) tree)) Hvorfor trengs det bare én rekursiv oppkalling i denne varianten?

25 På sidespor: dotted pairs vs. lister 25 Hvordan Scheme viser cons-celler:? (cons 1 2) (1. 2)? (cons 1 (cons 2 ())) (1 2)? (cons (list 1 2) 3) ((1 2). 3) I bunnen er (1 2 3) en cons-kjede (1. (2. (3. ()))); Er cdr-verdien et par sløyfer Scheme punktum og parentes:. (.? (1. (2. (3. ()))) (1 2 3) Dermed kan vi skrive prosedyrer som tar et variabel antall argumenter: (define (map fn. lists)...)

INF2810: Funksjonell Programmering

INF2810: Funksjonell Programmering INF2810: Funksjonell Programmering Høyereordens prosedyrer, lambda og lokale variabler Stephan Oepen Universitetet i Oslo 9. februar 2015 Tema 2 Forrige uke Lister og listerekursjon quote Høyereordens

Detaljer

INF2810: Funksjonell Programmering

INF2810: Funksjonell Programmering INF2810: Funksjonell Programmering Høyereordens prosedyrer, lambda og lokale variabler Stephan Oepen Universitetet i Oslo 9. februar 2015 Tema 2 Forrige uke Lister og listerekursjon quote Høyereordens

Detaljer

INF2810: Funksjonell Programmering. Lokale variabler. Og trær.

INF2810: Funksjonell Programmering. Lokale variabler. Og trær. INF2810: Funksjonell Programmering Lokale variabler. Og trær. Erik Velldal Universitetet i Oslo 11. september 2019 Tema forrige uke 2 Lister som datastruktur quote Rekursjon på lister Høyereordens prosedyrer

Detaljer

INF2810: Funksjonell Programmering. Lokale variabler. Og trær.

INF2810: Funksjonell Programmering. Lokale variabler. Og trær. INF2810: Funksjonell Programmering Lokale variabler. Og trær. Erik Velldal Universitetet i Oslo 11. september 2019 Tema forrige uke 2 Lister som datastruktur quote Rekursjon på lister Høyereordens prosedyrer

Detaljer

INF2810: Funksjonell Programmering

INF2810: Funksjonell Programmering INF2810: Funksjonell Programmering Høyereordens prosedyrer, lambda og lokale variabler Erik Velldal Universitetet i Oslo 9. februar 2017 Tema 2 Forrige uke Lister og listerekursjon quote Høyereordens prosedyrer

Detaljer

INF2810: Funksjonell Programmering

INF2810: Funksjonell Programmering INF2810: Funksjonell Programmering Høyereordens prosedyrer, lambda og lokale variabler Erik Velldal Universitetet i Oslo 9. februar 2017 Tema 2 Forrige uke Lister og listerekursjon quote Høyereordens prosedyrer

Detaljer

Høyere-ordens prosedyrer

Høyere-ordens prosedyrer INF2810: Funksjonell programmering Høyere-ordens prosedyrer Stephan Oepen & Erik Velldal Universitetet i Oslo 8. februar, 2013 Tema 2 Forrige uke Lister og listerekursjon Høyere-ordens prosedyrer Prosedyrer

Detaljer

INF2810: Funksjonell Programmering. Trær og mengder

INF2810: Funksjonell Programmering. Trær og mengder INF2810: Funksjonell Programmering Trær og mengder Stephan Oepen Universitetet i Oslo 16. februar 2017 Tema 2 Forrige uke Høyereordens prosedyrer lambda, let og lokale variabler Dataabstraksjon I dag Lister

Detaljer

INF2810: Funksjonell Programmering. Trær og mengder

INF2810: Funksjonell Programmering. Trær og mengder INF2810: Funksjonell Programmering Trær og mengder Stephan Oepen Universitetet i Oslo 16. februar 2016 Tema 2 Forrige uke Høyereordens prosedyrer lambda, let og lokale variabler Dataabstraksjon I dag Lister

Detaljer

INF2810: Funksjonell Programmering. Lister og høyereordens prosedyrer

INF2810: Funksjonell Programmering. Lister og høyereordens prosedyrer INF2810: Funksjonell programmering INF2810: Funksjonell Programmering Lister og høyereordens prosedyrer Erik Velldal Universitetet i Oslo 5. februar 2015 Agenda Forrige uke Substitusjonsmodellen og evalueringsstrategier.

Detaljer

INF2810: Funksjonell Programmering. Lister og høyereordens prosedyrer

INF2810: Funksjonell Programmering. Lister og høyereordens prosedyrer INF2810: Funksjonell Programmering Lister og høyereordens prosedyrer Erik Velldal Universitetet i Oslo 2. februar 2017 Agenda 2 Forrige uke Substitusjonsmodellen og evalueringsstrategier. Blokkstruktur

Detaljer

INF2810: Funksjonell Programmering. Trær og mengder

INF2810: Funksjonell Programmering. Trær og mengder INF2810: Funksjonell programmering INF2810: Funksjonell Programmering Trær og mengder Erik Velldal Universitetet i Oslo 19. februar 2015 Tema Forrige uke Høyereordens prosedyrer lambda, let og lokale variabler

Detaljer

INF2810: Funksjonell Programmering

INF2810: Funksjonell Programmering INF2810: Funksjonell Programmering Omgivelsesmodeller og destruktive listeoperasjoner Stephan Oepen & Erik Velldal Universitetet i Oslo 15. mars 2013 Tema 2 Forrige uke Representasjon av mengder Sorterte

Detaljer

INF2810: Funksjonell Programmering

INF2810: Funksjonell Programmering INF2810: Funksjonell Programmering Omgivelsesmodeller og destruktive listeoperasjoner Stephan Oepen & Erik Velldal Universitetet i Oslo 15. mars 2013 Tema 2 Forrige uke Representasjon av mengder Sorterte

Detaljer

Rekursjon og lister. Stephan Oepen & Erik Velldal. 1. februar, Universitetet i Oslo

Rekursjon og lister. Stephan Oepen & Erik Velldal. 1. februar, Universitetet i Oslo INF2810: Funksjonell programmering Rekursjon og lister Stephan Oepen & Erik Velldal Universitetet i Oslo 1. februar, 2013 Agenda 2 Forrige uke Scheme Substitusjonsmodellen Blokkstruktur Predikater Kondisjonale

Detaljer

INF2810: Funksjonell Programmering. Kommentarer til prøveeksamen

INF2810: Funksjonell Programmering. Kommentarer til prøveeksamen INF2810: Funksjonell programmering INF2810: Funksjonell Programmering Kommentarer til prøveeksamen Erik Velldal Universitetet i Oslo 1: Grunnleggende (6 poeng)? (define foo '(a b))? (define bar foo)? (set!

Detaljer

INF2810: Funksjonell Programmering. Mer om verditilordning. Tabeller. Og strømmer.

INF2810: Funksjonell Programmering. Mer om verditilordning. Tabeller. Og strømmer. INF2810: Funksjonell programmering INF2810: Funksjonell Programmering Mer om verditilordning. Tabeller. Og strømmer. Erik Velldal Universitetet i Oslo 29. mars 2016 De siste ukene: destruktive operasjoner

Detaljer

INF2810: Funksjonell Programmering. Mer om verditilordning. Tabeller. Og strømmer.

INF2810: Funksjonell Programmering. Mer om verditilordning. Tabeller. Og strømmer. INF2810: Funksjonell Programmering Mer om verditilordning. Tabeller. Og strømmer. Erik Velldal Universitetet i Oslo 29. mars 2016 De siste ukene: destruktive operasjoner 2 set! endrer verditilordningen

Detaljer

INF2810: Funksjonell Programmering. Strømmer og utsatt evaluering

INF2810: Funksjonell Programmering. Strømmer og utsatt evaluering INF2810: Funksjonell Programmering Strømmer og utsatt evaluering Stephan Oepen Universitetet i Oslo 30. mars 2017 Forrige forelesning 2 Mer om (prosedyre)navn, bindinger, og verditilordning Nok en ny abstrakt

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2810 Eksamensdag: Fredag 5. juni 2015 Tid for eksamen: 14:30 (4 timer) Oppgavesettet er på 4 sider (ikke medregnet denne siden)

Detaljer

INF2810: Funksjonell Programmering. Eksamensforberedelser

INF2810: Funksjonell Programmering. Eksamensforberedelser INF2810: Funksjonell Programmering Eksamensforberedelser Stephan Oepen & Erik Velldal Universitetet i Oslo 24. mai 2013 I dag 2 Kort oppsummering Praktisk om eksamen Hvem vant konkurransen om flest oblig-poeng

Detaljer

INF2810: Funksjonell Programmering. Huffman-koding

INF2810: Funksjonell Programmering. Huffman-koding INF2810: Funksjonell Programmering Huffman-koding Stephan Oepen & Erik Velldal Universitetet i Oslo 22. februar, 2013 Tema 2 Forrige uke Data-abstraksjon Lister av lister Tre-rekursjon Prosedyrer som datastruktur

Detaljer

INF2810: Funksjonell Programmering. Mer om verditilordning og muterbare data.

INF2810: Funksjonell Programmering. Mer om verditilordning og muterbare data. INF2810: Funksjonell Programmering Mer om verditilordning og muterbare data. Erik Velldal Universitetet i Oslo 16. mars 2017 De siste ukene: destruktive operasjoner 2 set! endrer verditilordningen til

Detaljer

INF2810: Funksjonell Programmering. Huffman-koding

INF2810: Funksjonell Programmering. Huffman-koding INF2810: Funksjonell Programmering Huffman-koding Stephan Oepen & Erik Velldal Universitetet i Oslo 22. februar, 2013 Tema 2 Forrige uke Data-abstraksjon Lister av lister Tre-rekursjon Prosedyrer som datastruktur

Detaljer

INF2810: Funksjonell Programmering. Mer om verditilordning og muterbare data.

INF2810: Funksjonell Programmering. Mer om verditilordning og muterbare data. INF2810: Funksjonell Programmering Mer om verditilordning og muterbare data. Erik Velldal Universitetet i Oslo 16. mars 2017 De siste ukene: destruktive operasjoner 2 set! endrer verditilordningen til

Detaljer

INF2810: Funksjonell Programmering. Strømmer

INF2810: Funksjonell Programmering. Strømmer INF2810: Funksjonell Programmering Strømmer Stephan Oepen & Erik Velldal Universitetet i Oslo 12. april 2013 Tema 2 Forrige uke Litt mer i dybden om køer Eksperiment: live-programmering Tabeller som hierarkiske

Detaljer

INF2810: Funksjonell Programmering. En metasirkulær evaluator

INF2810: Funksjonell Programmering. En metasirkulær evaluator INF2810: Funksjonell Programmering En metasirkulær evaluator Stephan Oepen & Erik Velldal Universitetet i Oslo 26. april 2013 Tema 2 Forrige uke Strømmer og utsatt evaluering Memoisering Kort om makroer

Detaljer

INF2810: Funksjonell Programmering. En Scheme-evaluator i Scheme

INF2810: Funksjonell Programmering. En Scheme-evaluator i Scheme INF2810: Funksjonell Programmering En Scheme-evaluator i Scheme Erik Velldal Universitetet i Oslo 19. april 2016 Tema 2 Forrige uke Strømmer og utsatt evaluering Kort om makroer I dag Kap. 4 Metasirkulær

Detaljer

INF2810: Funksjonell Programmering. En metasirkulær evaluator

INF2810: Funksjonell Programmering. En metasirkulær evaluator INF2810: Funksjonell Programmering En metasirkulær evaluator Stephan Oepen & Erik Velldal Universitetet i Oslo 26. april 2013 Tema 2 Forrige uke Strømmer og utsatt evaluering Memoisering Kort om makroer

Detaljer

INF2810: Funksjonell Programmering. Strømmer

INF2810: Funksjonell Programmering. Strømmer INF2810: Funksjonell Programmering Strømmer Stephan Oepen & Erik Velldal Universitetet i Oslo 12. april 2013 Tema 2 Forrige uke Litt mer i dybden om køer Eksperiment: live-programmering Tabeller som hierarkiske

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2810 Eksamensdag: 5. juni, 2014 Tid for eksamen: 14:30 (4 timer) Oppgavesettet er på 4 sider. Vedlegg: Ingen Tillatte hjelpemidler:

Detaljer

INF2810: Funksjonell Programmering. Køer, tabeller, og (litt om) parallelitet

INF2810: Funksjonell Programmering. Køer, tabeller, og (litt om) parallelitet INF2810: Funksjonell Programmering Køer, tabeller, og (litt om) parallelitet Stephan Oepen & Erik Velldal Universitetet i Oslo 5. april 2013 Tema 2 Siste gang Kort om underveisevaluering Destruktive listeoperasjoner

Detaljer

INF2810: Funksjonell Programmering. En Scheme-evaluator i Scheme

INF2810: Funksjonell Programmering. En Scheme-evaluator i Scheme INF2810: Funksjonell Programmering En Scheme-evaluator i Scheme Erik Velldal Universitetet i Oslo 27. april 2017 Tema 2 Forrige forelesning Strømmer og utsatt evaluering Kort om makroer I dag Kap. 4 Metasirkulær

Detaljer

INF2810: Funksjonell Programmering. Tilstand og verditilordning

INF2810: Funksjonell Programmering. Tilstand og verditilordning INF2810: Funksjonell Programmering Tilstand og verditilordning Stephan Oepen Universitetet i Oslo 8. mars 2016 Forrige gang 2 I dag 3 Vi blar om til kapittel 3 i SICP. Tilstand og verditilordning. Destruktive

Detaljer

INF2810: Funksjonell Programmering. Strømmer og utsatt evaluering

INF2810: Funksjonell Programmering. Strømmer og utsatt evaluering INF2810: Funksjonell programmering INF2810: Funksjonell Programmering Strømmer og utsatt evaluering Erik Velldal Universitetet i Oslo 5. april 2016 Forrige forelesning Mer om (prosedyre)navn, bindinger,

Detaljer

INF2810: Funksjonell Programmering. Lister og høyereordens prosedyrer

INF2810: Funksjonell Programmering. Lister og høyereordens prosedyrer INF2810: Funksjonell Programmering Lister og høyereordens prosedyrer Stephan Oepen Universitetet i Oslo 2. februar 2016 Agenda 2 Forrige uke Substitusjonsmodellen og evalueringsstrategier Blokkstruktur

Detaljer

INF2810: Funksjonell Programmering. Tilstand og verditilordning

INF2810: Funksjonell Programmering. Tilstand og verditilordning INF2810: Funksjonell Programmering Tilstand og verditilordning Stephan Oepen Universitetet i Oslo 2. mars 2017 Forrige gang 2 I dag 3 Vi blar om til kapittel 3 i SICP. Tilstand og verditilordning. Destruktive

Detaljer

INF2810: Funksjonell Programmering. Køer, tabeller, og (litt om) parallelitet

INF2810: Funksjonell Programmering. Køer, tabeller, og (litt om) parallelitet INF2810: Funksjonell Programmering Køer, tabeller, og (litt om) parallelitet Stephan Oepen & Erik Velldal Universitetet i Oslo 5. april 2013 Tema 2 Siste gang Kort om underveisevaluering Destruktive listeoperasjoner

Detaljer

INF2810: Funksjonell Programmering. Tilstand og verditilordning

INF2810: Funksjonell Programmering. Tilstand og verditilordning INF2810: Funksjonell programmering INF2810: Funksjonell Programmering Tilstand og verditilordning Erik Velldal Universitetet i Oslo 26. februar 2015 Forrige gang 2 I dag Vi blar om til kapittel 3 i SICP.

Detaljer

INF2810: Funksjonell Programmering. En Scheme-evaluator i Scheme, del 2

INF2810: Funksjonell Programmering. En Scheme-evaluator i Scheme, del 2 INF2810: Funksjonell programmering INF2810: Funksjonell Programmering En Scheme-evaluator i Scheme, del 2 Erik Velldal Universitetet i Oslo 7. mai 2015 Tema Forrige uke SICP 4.1. Structure and interpretation

Detaljer

INF2810: Funksjonell Programmering. En metasirkulær evaluator, del 2

INF2810: Funksjonell Programmering. En metasirkulær evaluator, del 2 INF2810: Funksjonell Programmering En metasirkulær evaluator, del 2 Stephan Oepen & Erik Velldal Universitetet i Oslo 03. mai 2013 Tema 2 Forrige uke SICP 4.1. Structure and interpretation of computer

Detaljer

INF2810: Funksjonell Programmering. En metasirkulær evaluator, del 2

INF2810: Funksjonell Programmering. En metasirkulær evaluator, del 2 INF2810: Funksjonell Programmering En metasirkulær evaluator, del 2 Stephan Oepen & Erik Velldal Universitetet i Oslo 03. mai 2013 Tema 2 Forrige uke SICP 4.1. Structure and interpretation of computer

Detaljer

INF2810: Funksjonell Programmering. Mengder og lokal tilstand

INF2810: Funksjonell Programmering. Mengder og lokal tilstand INF2810: Funksjonell Programmering Mengder og lokal tilstand Stephan Oepen & Erik Velldal Universitetet i Oslo Kvinnedagen, 2013 Forrige gang 2 Dagens dont 3 Del 1 Litt mer om hierarkisk data. Representasjon

Detaljer

INF2810: Funksjonell Programmering. Mer om strømmer

INF2810: Funksjonell Programmering. Mer om strømmer INF2810: Funksjonell Programmering Mer om strømmer Stephan Oepen & Erik Velldal Universitetet i Oslo 19. april 2013 Tema 2 Forrige uke Repetisjon: parallelitet Noe helt nytt: strømmer Noe quizzaktivitet

Detaljer

INF2810: Funksjonell Programmering. Muterbare data

INF2810: Funksjonell Programmering. Muterbare data INF2810: Funksjonell Programmering Muterbare data Stephan Oepen Universitetet i Oslo 15. mars 2016 Agenda Forrige uke Prosedyrebasert objektorientering Lokale tilstandsvariabler Innkapsling + set! Eksempel:

Detaljer

INF2810: Funksjonell Programmering. Tilstand og verditilordning

INF2810: Funksjonell Programmering. Tilstand og verditilordning INF2810: Funksjonell Programmering Tilstand og verditilordning Erik Velldal Universitetet i Oslo 1. mars 2018 Forrige gang 2 Kode som trær 3 Ved evaluering oversettes kildekoden i et språk først til et

Detaljer

INF2810: Funksjonell Programmering. Mer om strømmer

INF2810: Funksjonell Programmering. Mer om strømmer INF2810: Funksjonell Programmering Mer om strømmer Stephan Oepen & Erik Velldal Universitetet i Oslo 19. april 2013 Tema 2 Forrige uke Repetisjon: parallelitet Noe helt nytt: strømmer Noe quizzaktivitet

Detaljer

INF2810: Funksjonell Programmering. En Scheme-evaluator i Scheme, del 2

INF2810: Funksjonell Programmering. En Scheme-evaluator i Scheme, del 2 INF2810: Funksjonell Programmering En Scheme-evaluator i Scheme, del 2 Erik Velldal Universitetet i Oslo 4. mai 2017 Tema 2 Forrige uke SICP 4.1. Structure and interpretation of computer programs Metacircular

Detaljer

INF2810: Funksjonell Programmering. En Scheme-evaluator i Scheme, del 2

INF2810: Funksjonell Programmering. En Scheme-evaluator i Scheme, del 2 INF2810: Funksjonell Programmering En Scheme-evaluator i Scheme, del 2 Erik Velldal Universitetet i Oslo 4. mai 2017 Tema 2 Forrige uke SICP 4.1. Structure and interpretation of computer programs Metacircular

Detaljer

INF2810: Funksjonell programmering: Mer om Scheme. Rekursjon og iterasjon.

INF2810: Funksjonell programmering: Mer om Scheme. Rekursjon og iterasjon. INF2810: Funksjonell programmering: Mer om Scheme. Rekursjon og iterasjon. Stephan Oepen & Erik Velldal Universitetet i Oslo 25. januar, 2013 På blokka 2 Forrige uke Introduksjon og oversikt Funksjonell

Detaljer

INF2810: Funksjonell Programmering. Utsatt evaluering og strømmer

INF2810: Funksjonell Programmering. Utsatt evaluering og strømmer INF2810: Funksjonell Programmering Utsatt evaluering og strømmer Stephan oepen Universitetet i Oslo 6. april 2017 Tema 2 Forrige gang Ny datastruktur, ny teknikk: Strømmer Utsatt evaluering I dag Uendelige

Detaljer

INF2810: Funksjonell Programmering. Huffmankoding

INF2810: Funksjonell Programmering. Huffmankoding INF2810: Funksjonell programmering INF2810: Funksjonell Programmering Huffmankoding Erik Velldal Universitetet i Oslo 20. februar 2015 Tema I går Trær som lister av lister Trerekursjon Mengder som trær

Detaljer

INF2810: Funksjonell Programmering. Utsatt evaluering og strømmer

INF2810: Funksjonell Programmering. Utsatt evaluering og strømmer INF2810: Funksjonell Programmering Utsatt evaluering og strømmer Stephan oepen Universitetet i Oslo 6. april 2017 Tema 2 Forrige gang Ny datastruktur, ny teknikk: Strømmer Utsatt evaluering I dag Uendelige

Detaljer

INF2810: Funksjonell Programmering. Oppsummering og eksamensforberedelser

INF2810: Funksjonell Programmering. Oppsummering og eksamensforberedelser INF2810: Funksjonell Programmering Oppsummering og eksamensforberedelser Erik Velldal & Stephan Oepen Universitetet i Oslo 18. mai 2017 I dag 2 Kort oppsummering Praktisk om eksamen Hvem vant konkurransen

Detaljer

INF2810: Funksjonell Programmering. Utsatt evaluering og strømmer

INF2810: Funksjonell Programmering. Utsatt evaluering og strømmer INF2810: Funksjonell programmering INF2810: Funksjonell Programmering Utsatt evaluering og strømmer Erik Velldal Universitetet i Oslo 12. april 2016 Tema Forrige gang Ny datastruktur, ny teknikk: Strømmer

Detaljer

INF2810: Funksjonell Programmering. Oppsummering og eksamensforberedelser

INF2810: Funksjonell Programmering. Oppsummering og eksamensforberedelser INF2810: Funksjonell Programmering Oppsummering og eksamensforberedelser Erik Velldal & Stephan Oepen Universitetet i Oslo 18. mai 2017 I dag 2 Kort oppsummering Praktisk om eksamen Hvem vant konkurransen

Detaljer

INF2810: Funksjonell Programmering. Utsatt evaluering og strømmer

INF2810: Funksjonell Programmering. Utsatt evaluering og strømmer INF2810: Funksjonell Programmering Utsatt evaluering og strømmer Erik Velldal Universitetet i Oslo 12. april 2016 Tema 2 Forrige gang Ny datastruktur, ny teknikk: Strømmer Utsatt evaluering Uendelige sekvenser

Detaljer

INF2810: Funksjonell Programmering. Oppsummering og eksamensforberedelser

INF2810: Funksjonell Programmering. Oppsummering og eksamensforberedelser INF2810: Funksjonell programmering INF2810: Funksjonell Programmering Oppsummering og eksamensforberedelser Erik Velldal Universitetet i Oslo 28. mai 2015 I dag Kort oppsummering Praktisk om eksamen Hvem

Detaljer

INF2810: Funksjonell Programmering. Oppsummering og eksamensforberedelser

INF2810: Funksjonell Programmering. Oppsummering og eksamensforberedelser INF2810: Funksjonell programmering INF2810: Funksjonell Programmering Oppsummering og eksamensforberedelser Erik Velldal & Stephan Oepen Universitetet i Oslo 31. mai 2016 I dag Kort oppsummering Praktisk

Detaljer

INF2810: Funksjonell Programmering. Oppsummering og eksamensforberedelser

INF2810: Funksjonell Programmering. Oppsummering og eksamensforberedelser INF2810: Funksjonell Programmering Oppsummering og eksamensforberedelser Erik Velldal & Stephan Oepen Universitetet i Oslo 31. mai 2016 I dag 2 Kort oppsummering Praktisk om eksamen Hvem vant konkurransen

Detaljer

INF2810: Funksjonell Programmering. Huffman-koding

INF2810: Funksjonell Programmering. Huffman-koding INF2810: Funksjonell Programmering Huffman-koding Stephan Oepen Universitetet i Oslo 1. mars 2016 Tema 2 Sist Trær som lister av lister Trerekursjon Mengder som trær I dag Hierarkisk og symbolsk data Eksempel:

Detaljer

Par og Lister (først et par sider fra forrige uke) Par er byggestener for lister og trær og sammensatte datatyper.

Par og Lister (først et par sider fra forrige uke) Par er byggestener for lister og trær og sammensatte datatyper. Par og Lister (først et par sider fra forrige uke) Par er byggestener for lister og trær og sammensatte datatyper. Par kan representeres grafiske slik: Som vi ser kan vi bruke cons til å lage par hvis

Detaljer

Innlevering 2a i INF2810, vår 2017

Innlevering 2a i INF2810, vår 2017 Innlevering 2a i INF2810, vår 2017 Hovedtematikken denne gang er Huffman-koding, som ble dekket i 6. forelesning (23. februar) og i seksjon 2.3.4 i SICP. Det er viktig å ha lest denne seksjonen før dere

Detaljer

Side 1. Oppgave 1. Prosedyrer 1.1. Prosedyrene f og g skal begge returnere prosedyrer. a. Skriv f slik at ((f a) b) returnerer summen av a og b.

Side 1. Oppgave 1. Prosedyrer 1.1. Prosedyrene f og g skal begge returnere prosedyrer. a. Skriv f slik at ((f a) b) returnerer summen av a og b. Side 1 Oppgave 1. Prosedyrer 1.1. Prosedyrene f og g skal begge returnere prosedyrer. a. Skriv f slik at ((f a) b) returnerer summen av a og b. (define (f a) (lambda (b) (add a b ))) b. Skriv g, uten å

Detaljer

INF2810: Funksjonell Programmering. Huffman-koding

INF2810: Funksjonell Programmering. Huffman-koding INF2810: Funksjonell Programmering Huffman-koding Erik Velldal Universitetet i Oslo 23. februar 2017 Tema 2 Sist Trær som lister av lister Trerekursjon Mengder som trær Dataabstraksjon I dag Hierarkisk

Detaljer

IN2040: Funksjonell programmering. Trær, mengder og huffmankoding

IN2040: Funksjonell programmering. Trær, mengder og huffmankoding IN2040: Funksjonell programmering Trær, mengder og huffmankoding Erik Velldal Universitetet i Oslo 18. september 2019 Tema 2 Forrige uke lambda, let og lokale variabler Dataabstraksjon Lister av lister:

Detaljer

INF2810: Funksjonell Programmering. Huffman-koding

INF2810: Funksjonell Programmering. Huffman-koding INF2810: Funksjonell Programmering Huffman-koding Stephan Oepen Universitetet i Oslo 1. mars 2016 Tema 2 Sist Trær som lister av lister Trerekursjon Mengder som trær I dag Hierarkisk og symbolsk data Eksempel:

Detaljer

Vi skal se på lambda-uttrykk. Følgende er definerte og vil bli brukt gjennom oppgaven

Vi skal se på lambda-uttrykk. Følgende er definerte og vil bli brukt gjennom oppgaven SLI 230 - side 2 av 8 EKSAMENSOPPGAVE - SLI 230 - VÅR 2000 Nedenfor følger eksamensoppgaver i SLI 230. Først om oppgavene Bakerst følger to sider med hjelp slik det er avtalt - liste over primitiver fra

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2810 Eksamensdag: 6. juni Tid for eksamen: 14.30 Oppgavesettet er på 4 sider pluss vedlegg Tillatte hjelpemiddel: Ingen

Detaljer

Eksamen i HUMIT 2710, Funksjonell programmering, våren Ingen hjelpemidler er tillatt. <resten av forsiden> Side 1 av 7

Eksamen i HUMIT 2710, Funksjonell programmering, våren Ingen hjelpemidler er tillatt. <resten av forsiden> Side 1 av 7 Eksamen i HUMIT 2710, Funksjonell programmering, våren 2005 Ingen hjelpemidler er tillatt. Side 1 av 7 Oppgave 1 Rekursjon Fakultetsfunksjonen, her kalt Fak, kan defineres rekursivt

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2810 Eksamensdag: 7. juni Tid for eksamen: 14.30 Oppgavesettet er på 5 sider Vedlegg Relevante prosedyrer Tillatte

Detaljer

Innlevering 2b i INF2810, vår 2017

Innlevering 2b i INF2810, vår 2017 Innlevering 2b i INF2810, vår 2017 Dette er del to av den andre obligatoriske oppgaven i INF2810. Man kan oppnå 10 poeng for oppgavene i 2b, og man må ha minst 12 poeng tilsammen for 2a + 2b for å få godkjent.

Detaljer

(define (naer-nok-kuberot? y x) (< (abs (- (kube y) x)) 0.001)) (define (naermere-kuberot y x) (/ (+ (* y 2) (/ x (kvadrat y))) 3))

(define (naer-nok-kuberot? y x) (< (abs (- (kube y) x)) 0.001)) (define (naermere-kuberot y x) (/ (+ (* y 2) (/ x (kvadrat y))) 3)) Oppgave 1 For å komme nærmere kuberoten (tredjeroten) til et tall x fra en foreløpig tilnærming y, kan vi bruke formelen (2y + x/y 2 )/3. Skriv prosedyrene (nær-nok-kuberot? y x), (nærmere-kuberot y x)

Detaljer

INF2810: Funksjonell programmering: Introduksjon

INF2810: Funksjonell programmering: Introduksjon INF2810: Funksjonell programmering: Introduksjon Stephan Oepen & Erik Velldal Universitetet i Oslo 18. januar, 2013 Tema for i dag 2 Introduksjon Praktiske detaljer Pensum Obliger Lærebok Hva skal vi lære?

Detaljer

Eksamen i SLI230, vår 2003.

Eksamen i SLI230, vår 2003. Eksamen i SLI230, vår 2003. Oppgavesettet har 8 sider medregnet denne forsiden. Ingen hjelpemidler er tillatt. Vedlegg: To sider som inneholder en liste over primitiver fra scheme (og simply.scm) samt

Detaljer

INF2810: Funksjonell Programmering. Huffman-koding

INF2810: Funksjonell Programmering. Huffman-koding INF2810: Funksjonell Programmering Huffman-koding Erik Velldal Universitetet i Oslo 23. februar 2017 Tema 2 Sist Trær som lister av lister Trerekursjon Mengder som trær Dataabstraksjon I dag Hierarkisk

Detaljer

INF2810: Funksjonell Programmering. Muterbare data

INF2810: Funksjonell Programmering. Muterbare data INF2810: Funksjonell Programmering Muterbare data Stephan Oepen Universitetet i Oslo 9. mars 2017 Agenda Forrige uke Prosedyrebasert objektorientering Lokale tilstandsvariabler Innkapsling + set! Eksempel:

Detaljer

Gjennomgåelse av eksamensoppgaven i HUMIT2710 fra våren 2004

Gjennomgåelse av eksamensoppgaven i HUMIT2710 fra våren 2004 Gjennomgåelse av eksamensoppgaven i HUMIT2710 fra våren 2004 Oppgave 1 For å komme nærmere kvadratroten til et tall fra en foreløpig tilnærming y, kan vi bruke formelen (y + /y)/2. Dette gir grunnlag for

Detaljer

Det er ikke tillatt med andre hjelpemidler enn de to sidene som er vedlagt oppgavesettet. Følgende funksjoner er definert og brukes i oppgaven:

Det er ikke tillatt med andre hjelpemidler enn de to sidene som er vedlagt oppgavesettet. Følgende funksjoner er definert og brukes i oppgaven: Eksamen SLI 230 Bakerst ligger to sider med oversikt over standardprosedyrer og spesialformer i Scheme, samt oversikt over prosedyrer fra Simply Scheme og en enkel oversikt over konvertering mellom datatyper

Detaljer

Oppgave 1 Minimum edit distance

Oppgave 1 Minimum edit distance INF-2810 V 2012 Oppgavesett 10, kalenderuke 12. Oppgave 1 Minimum edit distance Vi vil finne det minste antall redigeringsoperasjoner som kreves for å komme fra strengen A til strengen B. Strengene oppgis

Detaljer

INF2810: Funksjonell Programmering. Mer om Scheme. Rekursjon og iterasjon.

INF2810: Funksjonell Programmering. Mer om Scheme. Rekursjon og iterasjon. INF2810: Funksjonell Programmering Mer om Scheme. Rekursjon og iterasjon. Stephan Oepen Universitetet i Oslo 26. januar 2017 På blokka 2 Forrige uke Introduksjon og oversikt Praktiske detaljer Funksjonell

Detaljer

INF2810: Funksjonell Programmering. Eksamensforberedelser

INF2810: Funksjonell Programmering. Eksamensforberedelser INF2810: Funksjonell Programmering Eksamensforberedelser Stephan Oepen & Erik Velldal Universitetet i Oslo 24. mai 2013 I dag 2 Kort oppsummering Praktisk om eksamen Hvem vant konkurransen om flest oblig-poeng

Detaljer

Memoisering, utsatt evaluering og strømmer

Memoisering, utsatt evaluering og strømmer Memoisering, utsatt evaluering og strømmer Først litt repetisjon: Utsatt evaluering Gitt (define (p x) (if test (x) something-else)) la E være et Scheme-uttrykk, og la L = (lambda () E). Da vil, ved kallet

Detaljer

Memoisering, utsatt evaluering og strømmer

Memoisering, utsatt evaluering og strømmer Memoisering, utsatt evaluering og strømmer Først litt repetisjon: Utsatt evaluering Gitt (define (p x) (if test (x) something-else)) la E være et Scheme-uttrykk, og la L = (lambda () E). Da vil, ved kallet

Detaljer

Par og Lister (først et par sider fra forrige uke) Par er byggestener for lister og trær og sammensatte datatyper.

Par og Lister (først et par sider fra forrige uke) Par er byggestener for lister og trær og sammensatte datatyper. Par og Lister (først et par sider fra forrige uke) Par er byggestener for lister og trær og sammensatte datatyper. Par kan representeres grafiske slik: Som vi ser kan vi bruke cons til å lage par hvis

Detaljer

INF2810: Funksjonell programmering: Introduksjon

INF2810: Funksjonell programmering: Introduksjon NF2810: Funksjonell programmering: ntroduksjon Stephan Oepen & Erik Velldal Universitetet i Oslo 18. januar, 2013 Tema for i dag 2 ntroduksjon Praktiske detaljer Pensum Obliger Lærebok Hva skal vi lære?

Detaljer

INF2810: Funksjonell Programmering. Mer om Scheme. Rekursjon og iterasjon.

INF2810: Funksjonell Programmering. Mer om Scheme. Rekursjon og iterasjon. INF2810: Funksjonell Programmering Mer om Scheme. Rekursjon og iterasjon. Stephan Oepen Universitetet i Oslo 26. januar 2017 På blokka Forrige uke Introduksjon og oversikt Praktiske detaljer Funksjonell

Detaljer

INF2810: Funksjonell Programmering. Mer om Scheme. Rekursjon og iterasjon.

INF2810: Funksjonell Programmering. Mer om Scheme. Rekursjon og iterasjon. INF2810: Funksjonell Programmering Mer om Scheme. Rekursjon og iterasjon. Stephan Oepen Universitetet i Oslo 26. januar 2016 På blokka Forrige uke Introduksjon og oversikt Praktiske detaljer Funksjonell

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2810, Funksjonell Programmering Eksamensdag: Fredag 10. juni 2016 Tid for eksamen: 14.30 Oppgavesettet er på 5 sider (ekskl.

Detaljer

LISP PVV-kurs 25. oktober 2012

LISP PVV-kurs 25. oktober 2012 LISP PVV-kurs 25. oktober 2012 Hva er Lisp? Grunnleggende konsepter Variabler (Pause) Lister Løkker Funksjoner Oversikt over kurset Først: Få tak i en implementasjon av Common Lisp Mange implementasjoner

Detaljer

INF2220: Forelesning 1. Praktisk informasjon Analyse av algoritmer (kapittel 2) (Binær)trær (kapittel )

INF2220: Forelesning 1. Praktisk informasjon Analyse av algoritmer (kapittel 2) (Binær)trær (kapittel ) INF2220: Forelesning 1 Praktisk informasjon Analyse av algoritmer (kapittel 2) (Binær)trær (kapittel 4.1-4.3 + 4.6) PRAKTISK INFORMASJON 2 Praktisk informasjon Kursansvarlige Ragnhild Kobro Runde (ragnhilk@ifi.uio.no)

Detaljer

INF2810: Funksjonell Programmering. Introduksjon

INF2810: Funksjonell Programmering. Introduksjon INF2810: Funksjonell Programmering Introduksjon Stephan Oepen Universitetet i Oslo 19. januar 2019 Nummer 2 2 Erik Velldal Nummer 2 2 Erik Velldal Hver tar halvparten av forelesningene; hyppig bytte frem

Detaljer

Plan: Parameter-overføring Alias Typer (Ghezzi&Jazayeri kap.3 frem til 3.3.1) IN 211 Programmeringsspråk

Plan: Parameter-overføring Alias Typer (Ghezzi&Jazayeri kap.3 frem til 3.3.1) IN 211 Programmeringsspråk Plan: Parameter-overføring Alias Typer (Ghezzi&Jazayeri kap.3 frem til 3.3.1) Funksjonelle språk (Ghezzi&Jazayeri kap.7 frem til 7.4) Neste uke: ML Ark 1 av 16 Forelesning 16.10.2000 Parameteroverføring

Detaljer

INF3110 Programmeringsspråk. Dagens tema. Typer (Kapittel 3 frem til ) Innføring i ML (Kapittel & ML-kompendiet.) 1/19

INF3110 Programmeringsspråk. Dagens tema. Typer (Kapittel 3 frem til ) Innføring i ML (Kapittel & ML-kompendiet.) 1/19 Dagens tema Typer (Kapittel 3 frem til 3.3.1.) Innføring i ML (Kapittel 7.4.3 & ML-kompendiet.) 1/19 Forelesning 2 27.8.2003 Typer En (data-)type består av: en mengde verdier en mengde operasjoner man

Detaljer

Typer. 1 Type: boolean. 2 Verdimengde: {true, false} 3 Operatorer: NOT, AND, OR... 1/19. Forelesning Forelesning

Typer. 1 Type: boolean. 2 Verdimengde: {true, false} 3 Operatorer: NOT, AND, OR... 1/19. Forelesning Forelesning Dagens tema Typer (Kapittel 3 frem til 331) Innføring i ML (Kapittel 743 & ML-kompendiet) Typer En (data-)type består av: en mengde verdier en mengde operasjoner man kan anvende på disse verdiene Eksempel:

Detaljer

Appendiks A Kontinuasjoner

Appendiks A Kontinuasjoner Appendiks A Kontinuasjoner Fra R5RS: "Whenever a Scheme expression is evaluated there is a continuation wanting the result of the expression." Eller med andre ord: En kontinuasjon i et program under utførelse

Detaljer

Innhold uke 7. Objektorientert programmering i Python: Introduksjon. Lite tilbakeblikk: Programflyt og skop. Lite tilbakeblikk: Funksjoner er uttrykk

Innhold uke 7. Objektorientert programmering i Python: Introduksjon. Lite tilbakeblikk: Programflyt og skop. Lite tilbakeblikk: Funksjoner er uttrykk Innhold uke 7 Objektorientert programmering i Python: Introduksjon IN1000 Høst 2017 uke 7 Siri Moe Jensen Lite tilbakeblikk: Prosedyrer og funksjoner Objektorientert programmering Introduksjon: Hvorfor,

Detaljer

INF110 Algoritmer og datastrukturer TRÆR. Vi skal i denne forelesningen se litt på ulike typer trær:

INF110 Algoritmer og datastrukturer TRÆR. Vi skal i denne forelesningen se litt på ulike typer trær: TRÆR Vi skal i denne forelesningen se litt på ulike typer trær: Generelle trær (kap. 4.1) Binærtrær (kap. 4.2) Binære søketrær (kap. 4.3) Den siste typen trær vi skal behandle, B-trær (kap. 4.7) kommer

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 115 og IN 110 Algoritmer og datastrukturer Eksamensdag: 14. mai 1996 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 8 sider.

Detaljer

INF Gruppelærerenes side

INF Gruppelærerenes side INF2810 - Gruppelærerenes side Lars Tveito March 3, 2015 Contents Oversikt Dette siden er ment som et hjelpemiddel for oppgaveløsning, og inneholder også litt informasjon om gruppetimene. Det er skrevet

Detaljer