INF2810: Funksjonell Programmering. Trær og mengder
|
|
- Egil Bø
- 8 år siden
- Visninger:
Transkript
1 INF2810: Funksjonell Programmering Trær og mengder Stephan Oepen Universitetet i Oslo 16. februar 2016
2 Tema 2 Forrige uke Høyereordens prosedyrer lambda, let og lokale variabler Dataabstraksjon I dag Lister av lister Rekursjon på trær Eksempel: Mengder Neste uke Eksempel: Huffmankoding
3 Repetisjon: Lokale variabler, let og lambda 3 Regne ut prosentandel av summen ( normalisering )? (percentages '( )) ( ) (define (percentages items) (map (lambda (x) (/ x (/ (reduce + 0 items) 100))) items)) (define (percentages items) (let ((sumcent (/ (reduce + 0 items) 100))) (map (lambda (x) (/ x sumcent)) items))) (define (percentages items) ((lambda (sumcent) (map (lambda (x) (/ x sumcent)) items)) (/ (reduce + 0 items) 100)))
4 Repetisjon: Dataabstraksjon og komplekse data 4 Ofte behov for å binde sammen en gruppe sammenhengende data. Komplekse datatyper grupperer informasjon som konseptuelt hører sammen (compound data), f.eks. rasjonale tall: 1/3. Dataabstraksjon skjuler en datatypes interne representasjon. Familie av prosedyrer som grensesnitt: konstruktor, selektorer, predikat. (define (make-rat n d) (cons n d)) (define (numer r) (car r)) ;; (define numer (define (denom r) (cdr r)) ;; (lambda (r) (car r))) (define (rat? r) (pair? r)) ;; (define numer car) Nok for å definere prosedyrer som konseptuelt regner på rasjonale tall. Grensesnittet danner dermed en abstraksjonsbarriere iht. kontrakten.
5 Repetisjon: Par som prosedyre! 5 (define (cons x y) (lambda (message) (cond ((= message 0) x) ((= message 1) y)))) (define (car proc) (proc 0)) (define (cdr proc) (proc 1))? (cons 1 2) #<procedure>? (cdr (cons 1 2)) 2? (car (cons 1 (cons 2 3))) 1 Selv datastrukturer kan implementeres som prosedyrer! Par som prosedyre: Returnerer enten car- eller cdr-verdien, avhengig av hvilken kode den får (0/1). Eksempel på såkalt message passing. car og cdr kaller par-prosedyren (laget med cons) med beskjed om hvilken verdi som ønskes.
6 Lag på lag: Prosedyre- og dataabstraksjon 6
7 Trær 7 Et tre er en type graf, en mengde noder forbundet med kanter. Interne noder har barn / døtre: nye subtrær. Den øverste noden kalles rot. Løvnoder har ikke barn (såkalt terminalnoder). Kantene kan ikke være sykliske. Binærtrær: nodene har maks to døtre, venstre/høyre. I Scheme kan vi representere trær som lister av lister.
8 Lister som trær 8 Flate lister: sekvenser. Lister av lister: kan sees som trær. Hvert element i en liste er en gren. Elementer som selv er lister er subtrær. Løvnodene i treet er de atomære elementene som ikke er lister. PS: Har bare verdier på løvnodene her, men etterhvert skal vi lage en mer generell implementasjon av trær.
9 Rekursjon på trær (eksempel 1:3) 9 For eksempel: telle løvnoder (parallelt til length på sekvenser). Må passe på at rekursjonen går ned i hver (element)liste. Må tenke på tre forskjellige situasjoner. Argumentet kan være: den tomme lista en cons-celle (et tre) noe annet (løvnode) (define (count-leaves tree) (cond ((null? tree) 0) ((pair? tree) (+ (count-leaves (car tree)) (count-leaves (cdr tree)))) (else 1)))? (count-leaves '((1 2) 3 4)) 4
10 Rekursjon på trær (eksempel 2:3) 10 (define (fringe tree) (cond ((null? tree) '()) ((pair? tree) (append (fringe (car tree)) (fringe (cdr tree)))) (else (list tree))))? (fringe '((1 2) ((3) 4))) ( ) ;; append kombinerer to lister; ;; sammenlikning med cons:? (append '(1 2) '(3)) (1 2 3)? (cons '(1 2) '(3)) ((1 2) 3) Et annet eksempel: samle opp alle løvnodene i en flat liste. Typisk eksempel på rekursjon på lister av lister: Vi ønsker å gjøre noe for hvert atomære element (løvnodene). Må passe på at rekursjonen går ned i hver liste. To basistilfeller: tomt tre eller løvnode.
11 Rekursjon på trær (eksempel 3:3) 11 map er definert for lister: tree-map kan defineres for lister av lister: (define (tree-map proc tree) (cond ((null? tree) '()) ((pair? tree) (cons (tree-map proc (car tree)) (tree-map proc (cdr tree)))) (else (proc tree))))? (tree-map square '((1 2) 3 4)) ((1 4) 9 16) Alternativt kan map brukes, i kombinasjon med rekursjon: (define (tree-map proc tree) (map (lambda (subtree) (if (pair? subtree) (tree-map proc subtree) (proc subtree))) tree)) Hvorfor trengs det bare én rekursiv oppkalling i denne varianten?
12 Trerekursjon 12 count-leaves, fringe, osv. vil gi en trerekursiv prosess. Fikk dårlig rykte da vi så på fib tidligere: eksponentiell vekst og masse redundante beregninger. Prosesstreet gjenspeilet trinnene i en naiv algoritme. Her gjenspeiler det bare strukturen til inputdata. Kompleksiteten lineær i antall noder i input. Ingen redundans.
13 Veien videre 13 Så langt: Kan representere trær, men bruker bare pair?, null?, cons, car og cdr direkte. Ingen abstraksjon! Vi skal definere abstrakte datatyper for trær der ikke bare løvnodene, men også de interne nodene kan ha verdier. Skal også jobbe med eksempler der rekursjonen velger å kun følge én gren (i stedet for å gå ned i alle subtrær). Som praktiske eksempler skal vi se på hvordan både mengder og komprimeringskoder kan implementeres effektivt som trær.
14 Først 14 Skal se 3 implementasjoner av en abstrakt datatype for mengder (hvorav den tredje er basert på trær).
15 Mengder (som matematisk konsept) 15 En uordnet samling elementer. Uordnet (usortert): {1, 2, 3} = {2, 3, 1} Distinkte (unike) elementer: {1, 2, 3, 3, 1} = {1, 2, 3} Vi skal se på ulike måter å representere mengder. Som dataabstraksjon er eneste krav at vi kan definere følgende: element-of-set? - spør om et element er medlem av en mengde. adjoin-set - returnerer en mengde med et gitt element lagt til som medlem. intersection-set - tar to mengder og returnerer en mengde der kun elementer som er medlem av dem begge er med (snitt). union-set - tar to mengder, returnerer en mengde med alle elementer fra begge.
16 Representasjon av mengder #1: Uordnet liste 16 (define (element-of-set? x set) (cond ((null? set) #f) ((= x (car set)) #t) (else (element-of-set? x (cdr set))))) (define (adjoin-set x set) (if (element-of-set? x set) set (cons x set))) (define (intersection-set set1 set2) (cond ((or (null? set1) (null? set2)) '()) ((element-of-set? (car set1) set2) (cons (car set1) (intersection-set (cdr set1) set2))) (else (intersection-set (cdr set1) set2)))) Mengder som uordnede lister. {5, 1, 3, 9, 7, 11} = '( ) Ingen elementer forekommer mer enn én gang. {} = '() element-of-set? er sentral.
17 Kompleksitet 17 Hva er kompleksiteten til element-of-set?? Predikatet søker sekvensielt gjennom lista helt til vi finner elementet vi ser etter ( #t), eller det ikke er flere elementer igjen ( #f). I værste fall O(n) gitt en mengde med n elementer. Det samme gjelder dermed for adjoin-set. intersection-set involverer sjekk av medlemskap for hvert element i en mengde mot en annen: O(n 2 ) for to lister med n elementer. Det samme vil gjelde union-set.
18 Representasjon av mengder #2: Ordnet liste 18 En enkel måte å gjøre operasjonene mer effektive på er å endre representasjonen til å være ordnet. F.eks: numerisk eller leksikografisk rekkefølge. gi hvert element et numerisk id og sorter på dette. Trenger uansett en måte å sammenlikne objekter på. For strenger kunne vi brukt string>?, string<? og string=?. (PS: Det finnes også en prosedyre symbol->string.) Fortsetter vi å anta at elementene er tall kan vi bruke <, > og =. {5, 1, 3, 9, 7, 11} = ( )
19 Sjekk av medlemskap mot ordnet liste 19 Ny versjon av element-of-set? (Antar at mengden er gitt som en sortert liste av tall.) (define (element-of-set? x set) (cond ((null? set) #f) ((= x (car set)) #t) ((< x (car set)) #f) (else (element-of-set? x (cdr set))))) Trenger ikke lenger nødvendigvis sjekke hvert element: kan avbryte hvis vi finner et større element. Fortsatt teoretisk O(n) vekst (f.eks i tilfellet elementet er det siste). Men i praksis kan vi regne med at antall trinn i snitt vil være n/2.
20 Snitt for ordnede lister (1:2) 20 (define (intersection-set set1 set2) (if (or (null? set1) (null? set2)) '() (let ((x1 (car set1)) (x2 (car set2))) (cond ((= x1 x2) (cons x1 (intersection-set (cdr set1) (cdr set2)))) ((< x1 x2) (intersection-set (cdr set1) set2)) ((< x2 x1) (intersection-set set1 (cdr set2))))))) Enda mer å spare på implementasjonen av snitt: Sammenlikner første element i hver liste: Hvis de er like inkluderer vi det, og ser videre på cdr av listene. Hvis det ene er mindre enn det andre vet vi at det ikke kan være medlem og vi ser på cdr av lista med det minste elementet.
21 Snitt for ordnede lister (2:2) 21 (define (intersection-set set1 set2) (if (or (null? set1) (null? set2)) '() (let ((x1 (car set1)) (x2 (car set2))) (cond ((= x1 x2) (cons x1 (intersection-set (cdr set1) (cdr set2)))) ((< x1 x2) (intersection-set (cdr set1) set2)) ((< x2 x1) (intersection-set set1 (cdr set2))))))) I hvert trinn reduseres problemet til snittet av mindre mengder. Utnytter den ordnede representasjonen direkte, kaller ikke element-of-set?. Antallet trinn er i værste fall proporsjonalt med summen av lengdene på listene (i stedet for produktet) O(n) vekst i stedet for O(n 2 ).
22 Representasjon av mengder #3: Binærtrær 22 Enda mer effektivt: mengde som binærtre med ordnede noder. Hver node lagrer et element en venstregren med mindre elementer en høyregren med større elementer Ved søk etter et gitt element x: Hvis x er mindre enn nodeverdien, søk til venstre. Hvis x er større, søk til høyre. Kan halvere søkerommet i hvert trinn: Logaritmisk vekst: O(log n).
23 Abstraksjonsbarriere for binærtrær 23 Vi representerer mengder som trær, og trær som lister. Har allerede abstraksjonsbarriere for mengder, men mangler for trær. Konstruktor og selektorer: (define (make-tree entry left right) (list entry left right)) (define (entry tree) (car tree)) (define (left-branch tree) (cadr tree)) (define (right-branch tree) (caddr tree))
24 Mengdeoperasjoner for binærtrær 24 (define (element-of-set? x set) ;; log(n) vekst (cond ((null? set) #f) ((= x (entry set)) #t) ((< x (entry set)) (element-of-set? x (left-branch set))) ((> x (entry set)) (element-of-set? x (right-branch set))))) (define (adjoin-set x set) ;; samme strategi (cond ((null? set) (make-tree x '() '())) ((= x (entry set)) set) ((< x (entry set)) (make-tree (entry set) (adjoin-set x (left-branch set)) (right-branch set))) ((> x (entry set)) (make-tree (entry set) (left-branch set) (adjoin-set x (right-branch set))))))
25 Flere trær for samme mengde 25 Kan finnes flere mulige trær for én og samme mengde. Eksempel på noen mulige trær for {5, 1, 3, 9, 7, 11}:
26 Balanserte trær 26 adjoin-set bruker samme strategi som element-of-set? og får O(log n) vekst. Forutsetter at treet er relativt balansert. Eksempel på tre laget med adjoin-set anvendt i sekvens på 1 til 7. Ingen besparelser i forhold til en ordnet liste. Med tilfeldig distribuerte elementer kan vi forvente at trærne i snitt er balanserte. Men vi har ingen garanti. Kan løses ved å ha en prosedyre som sørger for å balansere treet jevnlig (eller bruke mer sofistikerte trestrukturer).
27 Abstraksjonsbarrieren lekker litt 27 (define (adjoin-set x set) (cond ((null? set) (make-tree x '() '())) ((= x (entry set)) set) ((< x (entry set)) (make-tree (entry set) (adjoin-set x (left-branch set)) (right-branch set))) ((> x (entry set)) (make-tree (entry set) (left-branch set) (adjoin-set x (right-branch set)))))) Koden slik den er gitt i SICP har noen lekkasjer i abstraksjonsbarrieren: Skjuler ikke alle designvalgene våre for binærtrær. Burde hatt et predikat empty-tree? Og kanskje en konstant empty-tree. Eller (make-leaf x) i stedet for (make-tree x '() '()).
28 Og nå En liten digresjon.
29 Aritet 29 Ariteten til en prosedyre refererer til antall argumenter den tar. Vi har allerede sett prosedyrer som kan ta null argumenter (niladic function), ett argument (unær / monadic), to eller flere argumenter (polyadic): to (binær / dyadic), tre (ternær / triadic) osv et variabelt antall argumenter (n-ær / variadic).? (+) 0? (+ 1 2) 3? ( ) 6? ( ) 61 Vi kan også definere våre egne n-ære prosedyrer.
30 Variadiske prosedyrer 30 (define (sum. args) (define (recurse list) (if (null? list) 0 (+ (car list) (recurse (cdr list))))) (recurse args))? (sum 1 2 3) 6 Prikk-notasjon: parameterene etter prikken er valgfrie og samles i listen args. Hvorfor trengs egentlig den indre rekursive prosedyren? (define (sum. args) (if (null? args) 0 (+ (car args) (sum (cdr args))))) Hva vil skje her? Hva er verdien til parameteret args i 1. og 2. oppkalling?? (sum 1 2 3)???
31 Mer om prikk-notasjon, for de spesielt interesserte? (cons 1 (cons 2 3)) (1 2. 3)? (cons 1 (cons 2 (cons 3 '()))) (1 2 3)? '(1. (2. 3)) (1 2. 3)? '(1. (2. (3. ()))) (1 2 3) '(1 2) = cons-kjeden '(1. (2. ())) Er cdr et par eller () sløyfer Scheme punktum og parentes:. (.? (+ 1 2) 3? (+. (1. (2. ()))) 3? (define (square x) (* x x))? (define. ((square. (x. ())). ((*. (x. (x. ()))))))? (define (map fn list1. lists)...) Scheme kan også lese slik dot-notasjon. Husk at kode = lister. Utnytter denne notasjonen til å skrive prosedyrer som tar et variabelt antall argumenter. 31
INF2810: Funksjonell Programmering. Trær og mengder
INF2810: Funksjonell Programmering Trær og mengder Stephan Oepen Universitetet i Oslo 16. februar 2017 Tema 2 Forrige uke Høyereordens prosedyrer lambda, let og lokale variabler Dataabstraksjon I dag Lister
DetaljerINF2810: Funksjonell Programmering. Trær og mengder
INF2810: Funksjonell programmering INF2810: Funksjonell Programmering Trær og mengder Erik Velldal Universitetet i Oslo 19. februar 2015 Tema Forrige uke Høyereordens prosedyrer lambda, let og lokale variabler
DetaljerINF2810: Funksjonell Programmering. Lokale variabler. Og trær.
INF2810: Funksjonell Programmering Lokale variabler. Og trær. Erik Velldal Universitetet i Oslo 11. september 2019 Tema forrige uke 2 Lister som datastruktur quote Rekursjon på lister Høyereordens prosedyrer
DetaljerINF2810: Funksjonell Programmering. Lokale variabler. Og trær.
INF2810: Funksjonell Programmering Lokale variabler. Og trær. Erik Velldal Universitetet i Oslo 11. september 2019 Tema forrige uke 2 Lister som datastruktur quote Rekursjon på lister Høyereordens prosedyrer
DetaljerINF2810: Funksjonell Programmering. Dataabstraksjon og Trerekursjon
INF2810: Funksjonell Programmering Dataabstraksjon og Trerekursjon Stephan Oepen & Erik Velldal Universitetet i Oslo 15. februar, 2013 Tema 2 Forrige uke Høyere-ordens prosedyrer: Prosedyrer som argumenter
DetaljerINF2810: Funksjonell Programmering. Mengder og lokal tilstand
INF2810: Funksjonell Programmering Mengder og lokal tilstand Stephan Oepen & Erik Velldal Universitetet i Oslo Kvinnedagen, 2013 Forrige gang 2 Dagens dont 3 Del 1 Litt mer om hierarkisk data. Representasjon
DetaljerINF2810: Funksjonell Programmering
INF2810: Funksjonell Programmering Høyereordens prosedyrer, lambda og lokale variabler Erik Velldal Universitetet i Oslo 9. februar 2017 Tema 2 Forrige uke Lister og listerekursjon quote Høyereordens prosedyrer
DetaljerINF2810: Funksjonell Programmering
INF2810: Funksjonell Programmering Høyereordens prosedyrer, lambda og lokale variabler Erik Velldal Universitetet i Oslo 9. februar 2017 Tema 2 Forrige uke Lister og listerekursjon quote Høyereordens prosedyrer
DetaljerINF2810: Funksjonell Programmering
INF2810: Funksjonell Programmering Høyereordens prosedyrer, lambda og lokale variabler Stephan Oepen Universitetet i Oslo 9. februar 2015 Tema 2 Forrige uke Lister og listerekursjon quote Høyereordens
DetaljerINF2810: Funksjonell Programmering
INF2810: Funksjonell Programmering Høyereordens prosedyrer, lambda og lokale variabler Stephan Oepen Universitetet i Oslo 9. februar 2015 Tema 2 Forrige uke Lister og listerekursjon quote Høyereordens
DetaljerINF2810: Funksjonell Programmering
INF2810: Funksjonell Programmering Omgivelsesmodeller og destruktive listeoperasjoner Stephan Oepen & Erik Velldal Universitetet i Oslo 15. mars 2013 Tema 2 Forrige uke Representasjon av mengder Sorterte
DetaljerINF2810: Funksjonell Programmering
INF2810: Funksjonell Programmering Omgivelsesmodeller og destruktive listeoperasjoner Stephan Oepen & Erik Velldal Universitetet i Oslo 15. mars 2013 Tema 2 Forrige uke Representasjon av mengder Sorterte
DetaljerIN2040: Funksjonell programmering. Trær, mengder og huffmankoding
IN2040: Funksjonell programmering Trær, mengder og huffmankoding Erik Velldal Universitetet i Oslo 18. september 2019 Tema 2 Forrige uke lambda, let og lokale variabler Dataabstraksjon Lister av lister:
DetaljerINF2810: Funksjonell Programmering. Huffman-koding
INF2810: Funksjonell Programmering Huffman-koding Stephan Oepen & Erik Velldal Universitetet i Oslo 22. februar, 2013 Tema 2 Forrige uke Data-abstraksjon Lister av lister Tre-rekursjon Prosedyrer som datastruktur
DetaljerINF2810: Funksjonell Programmering. Huffman-koding
INF2810: Funksjonell Programmering Huffman-koding Stephan Oepen & Erik Velldal Universitetet i Oslo 22. februar, 2013 Tema 2 Forrige uke Data-abstraksjon Lister av lister Tre-rekursjon Prosedyrer som datastruktur
DetaljerINF2810: Funksjonell Programmering. Huffman-koding
INF2810: Funksjonell Programmering Huffman-koding Stephan Oepen Universitetet i Oslo 1. mars 2016 Tema 2 Sist Trær som lister av lister Trerekursjon Mengder som trær I dag Hierarkisk og symbolsk data Eksempel:
DetaljerHøyere-ordens prosedyrer
INF2810: Funksjonell programmering Høyere-ordens prosedyrer Stephan Oepen & Erik Velldal Universitetet i Oslo 8. februar, 2013 Tema 2 Forrige uke Lister og listerekursjon Høyere-ordens prosedyrer Prosedyrer
DetaljerINF2810: Funksjonell Programmering. Huffman-koding
INF2810: Funksjonell Programmering Huffman-koding Stephan Oepen Universitetet i Oslo 1. mars 2016 Tema 2 Sist Trær som lister av lister Trerekursjon Mengder som trær I dag Hierarkisk og symbolsk data Eksempel:
DetaljerINF2810: Funksjonell Programmering. Kommentarer til prøveeksamen
INF2810: Funksjonell programmering INF2810: Funksjonell Programmering Kommentarer til prøveeksamen Erik Velldal Universitetet i Oslo 1: Grunnleggende (6 poeng)? (define foo '(a b))? (define bar foo)? (set!
DetaljerINF2810: Funksjonell Programmering. Huffmankoding
INF2810: Funksjonell programmering INF2810: Funksjonell Programmering Huffmankoding Erik Velldal Universitetet i Oslo 20. februar 2015 Tema I går Trær som lister av lister Trerekursjon Mengder som trær
DetaljerRekursjon og lister. Stephan Oepen & Erik Velldal. 1. februar, Universitetet i Oslo
INF2810: Funksjonell programmering Rekursjon og lister Stephan Oepen & Erik Velldal Universitetet i Oslo 1. februar, 2013 Agenda 2 Forrige uke Scheme Substitusjonsmodellen Blokkstruktur Predikater Kondisjonale
DetaljerINF2810: Funksjonell Programmering. Lister og høyereordens prosedyrer
INF2810: Funksjonell Programmering Lister og høyereordens prosedyrer Erik Velldal Universitetet i Oslo 2. februar 2017 Agenda 2 Forrige uke Substitusjonsmodellen og evalueringsstrategier. Blokkstruktur
DetaljerINF2810: Funksjonell Programmering. Mer om verditilordning. Tabeller. Og strømmer.
INF2810: Funksjonell programmering INF2810: Funksjonell Programmering Mer om verditilordning. Tabeller. Og strømmer. Erik Velldal Universitetet i Oslo 29. mars 2016 De siste ukene: destruktive operasjoner
DetaljerINF2810: Funksjonell Programmering. Mer om verditilordning. Tabeller. Og strømmer.
INF2810: Funksjonell Programmering Mer om verditilordning. Tabeller. Og strømmer. Erik Velldal Universitetet i Oslo 29. mars 2016 De siste ukene: destruktive operasjoner 2 set! endrer verditilordningen
DetaljerINF2810: Funksjonell Programmering. Lister og høyereordens prosedyrer
INF2810: Funksjonell programmering INF2810: Funksjonell Programmering Lister og høyereordens prosedyrer Erik Velldal Universitetet i Oslo 5. februar 2015 Agenda Forrige uke Substitusjonsmodellen og evalueringsstrategier.
DetaljerINF2810: Funksjonell Programmering. Mer om verditilordning og muterbare data.
INF2810: Funksjonell Programmering Mer om verditilordning og muterbare data. Erik Velldal Universitetet i Oslo 16. mars 2017 De siste ukene: destruktive operasjoner 2 set! endrer verditilordningen til
DetaljerINF2810: Funksjonell Programmering. Huffman-koding
INF2810: Funksjonell Programmering Huffman-koding Erik Velldal Universitetet i Oslo 23. februar 2017 Tema 2 Sist Trær som lister av lister Trerekursjon Mengder som trær Dataabstraksjon I dag Hierarkisk
DetaljerINF2810: Funksjonell Programmering. Mer om verditilordning og muterbare data.
INF2810: Funksjonell Programmering Mer om verditilordning og muterbare data. Erik Velldal Universitetet i Oslo 16. mars 2017 De siste ukene: destruktive operasjoner 2 set! endrer verditilordningen til
DetaljerInnlevering 2a i INF2810, vår 2017
Innlevering 2a i INF2810, vår 2017 Hovedtematikken denne gang er Huffman-koding, som ble dekket i 6. forelesning (23. februar) og i seksjon 2.3.4 i SICP. Det er viktig å ha lest denne seksjonen før dere
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2810 Eksamensdag: Fredag 5. juni 2015 Tid for eksamen: 14:30 (4 timer) Oppgavesettet er på 4 sider (ikke medregnet denne siden)
DetaljerINF2810: Funksjonell Programmering. En Scheme-evaluator i Scheme
INF2810: Funksjonell Programmering En Scheme-evaluator i Scheme Erik Velldal Universitetet i Oslo 19. april 2016 Tema 2 Forrige uke Strømmer og utsatt evaluering Kort om makroer I dag Kap. 4 Metasirkulær
DetaljerINF2810: Funksjonell Programmering. Huffman-koding
INF2810: Funksjonell Programmering Huffman-koding Erik Velldal Universitetet i Oslo 23. februar 2017 Tema 2 Sist Trær som lister av lister Trerekursjon Mengder som trær Dataabstraksjon I dag Hierarkisk
DetaljerINF2810: Funksjonell Programmering. En metasirkulær evaluator
INF2810: Funksjonell Programmering En metasirkulær evaluator Stephan Oepen & Erik Velldal Universitetet i Oslo 26. april 2013 Tema 2 Forrige uke Strømmer og utsatt evaluering Memoisering Kort om makroer
DetaljerINF2810: Funksjonell Programmering. Strømmer og utsatt evaluering
INF2810: Funksjonell Programmering Strømmer og utsatt evaluering Stephan Oepen Universitetet i Oslo 30. mars 2017 Forrige forelesning 2 Mer om (prosedyre)navn, bindinger, og verditilordning Nok en ny abstrakt
DetaljerINF2810: Funksjonell Programmering. Muterbare data
INF2810: Funksjonell Programmering Muterbare data Stephan Oepen Universitetet i Oslo 9. mars 2017 Agenda Forrige uke Prosedyrebasert objektorientering Lokale tilstandsvariabler Innkapsling + set! Eksempel:
DetaljerINF2810: Funksjonell Programmering. En metasirkulær evaluator
INF2810: Funksjonell Programmering En metasirkulær evaluator Stephan Oepen & Erik Velldal Universitetet i Oslo 26. april 2013 Tema 2 Forrige uke Strømmer og utsatt evaluering Memoisering Kort om makroer
DetaljerINF2810: Funksjonell Programmering. Eksamensforberedelser
INF2810: Funksjonell Programmering Eksamensforberedelser Stephan Oepen & Erik Velldal Universitetet i Oslo 24. mai 2013 I dag 2 Kort oppsummering Praktisk om eksamen Hvem vant konkurransen om flest oblig-poeng
DetaljerINF2810: Funksjonell Programmering. En Scheme-evaluator i Scheme
INF2810: Funksjonell Programmering En Scheme-evaluator i Scheme Erik Velldal Universitetet i Oslo 27. april 2017 Tema 2 Forrige forelesning Strømmer og utsatt evaluering Kort om makroer I dag Kap. 4 Metasirkulær
DetaljerINF2810: Funksjonell Programmering. En metasirkulær evaluator, del 2
INF2810: Funksjonell Programmering En metasirkulær evaluator, del 2 Stephan Oepen & Erik Velldal Universitetet i Oslo 03. mai 2013 Tema 2 Forrige uke SICP 4.1. Structure and interpretation of computer
DetaljerINF2810: Funksjonell Programmering. Strømmer
INF2810: Funksjonell Programmering Strømmer Stephan Oepen & Erik Velldal Universitetet i Oslo 12. april 2013 Tema 2 Forrige uke Litt mer i dybden om køer Eksperiment: live-programmering Tabeller som hierarkiske
DetaljerINF2810: Funksjonell Programmering. En metasirkulær evaluator, del 2
INF2810: Funksjonell Programmering En metasirkulær evaluator, del 2 Stephan Oepen & Erik Velldal Universitetet i Oslo 03. mai 2013 Tema 2 Forrige uke SICP 4.1. Structure and interpretation of computer
DetaljerINF2810: Funksjonell Programmering. Strømmer
INF2810: Funksjonell Programmering Strømmer Stephan Oepen & Erik Velldal Universitetet i Oslo 12. april 2013 Tema 2 Forrige uke Litt mer i dybden om køer Eksperiment: live-programmering Tabeller som hierarkiske
DetaljerINF2810: Funksjonell Programmering. Oppsummering og eksamensforberedelser
INF2810: Funksjonell Programmering Oppsummering og eksamensforberedelser Erik Velldal & Stephan Oepen Universitetet i Oslo 18. mai 2017 I dag 2 Kort oppsummering Praktisk om eksamen Hvem vant konkurransen
DetaljerINF2810: Funksjonell Programmering. En Scheme-evaluator i Scheme, del 2
INF2810: Funksjonell programmering INF2810: Funksjonell Programmering En Scheme-evaluator i Scheme, del 2 Erik Velldal Universitetet i Oslo 7. mai 2015 Tema Forrige uke SICP 4.1. Structure and interpretation
DetaljerINF2220: Forelesning 1. Praktisk informasjon Analyse av algoritmer (kapittel 2) (Binær)trær (kapittel )
INF2220: Forelesning 1 Praktisk informasjon Analyse av algoritmer (kapittel 2) (Binær)trær (kapittel 4.1-4.3 + 4.6) PRAKTISK INFORMASJON 2 Praktisk informasjon Kursansvarlige Ragnhild Kobro Runde (ragnhilk@ifi.uio.no)
DetaljerINF2810: Funksjonell Programmering. Oppsummering og eksamensforberedelser
INF2810: Funksjonell Programmering Oppsummering og eksamensforberedelser Erik Velldal & Stephan Oepen Universitetet i Oslo 18. mai 2017 I dag 2 Kort oppsummering Praktisk om eksamen Hvem vant konkurransen
DetaljerINF2810: Funksjonell Programmering. Oppsummering og eksamensforberedelser
INF2810: Funksjonell programmering INF2810: Funksjonell Programmering Oppsummering og eksamensforberedelser Erik Velldal & Stephan Oepen Universitetet i Oslo 31. mai 2016 I dag Kort oppsummering Praktisk
DetaljerINF2810: Funksjonell Programmering. Oppsummering og eksamensforberedelser
INF2810: Funksjonell programmering INF2810: Funksjonell Programmering Oppsummering og eksamensforberedelser Erik Velldal Universitetet i Oslo 28. mai 2015 I dag Kort oppsummering Praktisk om eksamen Hvem
DetaljerINF2810: Funksjonell Programmering. Strømmer og utsatt evaluering
INF2810: Funksjonell programmering INF2810: Funksjonell Programmering Strømmer og utsatt evaluering Erik Velldal Universitetet i Oslo 5. april 2016 Forrige forelesning Mer om (prosedyre)navn, bindinger,
DetaljerINF2810: Funksjonell Programmering. Oppsummering og eksamensforberedelser
INF2810: Funksjonell Programmering Oppsummering og eksamensforberedelser Erik Velldal & Stephan Oepen Universitetet i Oslo 31. mai 2016 I dag 2 Kort oppsummering Praktisk om eksamen Hvem vant konkurransen
DetaljerINF2810: Funksjonell Programmering. Muterbare data
INF2810: Funksjonell Programmering Muterbare data Stephan Oepen Universitetet i Oslo 15. mars 2016 Agenda Forrige uke Prosedyrebasert objektorientering Lokale tilstandsvariabler Innkapsling + set! Eksempel:
DetaljerINF2810: Funksjonell programmering: Mer om Scheme. Rekursjon og iterasjon.
INF2810: Funksjonell programmering: Mer om Scheme. Rekursjon og iterasjon. Stephan Oepen & Erik Velldal Universitetet i Oslo 25. januar, 2013 På blokka 2 Forrige uke Introduksjon og oversikt Funksjonell
DetaljerEksamen i HUMIT 2710, Funksjonell programmering, våren Ingen hjelpemidler er tillatt. <resten av forsiden> Side 1 av 7
Eksamen i HUMIT 2710, Funksjonell programmering, våren 2005 Ingen hjelpemidler er tillatt. Side 1 av 7 Oppgave 1 Rekursjon Fakultetsfunksjonen, her kalt Fak, kan defineres rekursivt
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2810 Eksamensdag: 5. juni, 2014 Tid for eksamen: 14:30 (4 timer) Oppgavesettet er på 4 sider. Vedlegg: Ingen Tillatte hjelpemidler:
DetaljerINF2810: Funksjonell Programmering. En Scheme-evaluator i Scheme, del 2
INF2810: Funksjonell Programmering En Scheme-evaluator i Scheme, del 2 Erik Velldal Universitetet i Oslo 4. mai 2017 Tema 2 Forrige uke SICP 4.1. Structure and interpretation of computer programs Metacircular
DetaljerINF2810: Funksjonell Programmering. Mer om strømmer
INF2810: Funksjonell Programmering Mer om strømmer Stephan Oepen & Erik Velldal Universitetet i Oslo 19. april 2013 Tema 2 Forrige uke Repetisjon: parallelitet Noe helt nytt: strømmer Noe quizzaktivitet
DetaljerINF2810: Funksjonell Programmering. En Scheme-evaluator i Scheme, del 2
INF2810: Funksjonell Programmering En Scheme-evaluator i Scheme, del 2 Erik Velldal Universitetet i Oslo 4. mai 2017 Tema 2 Forrige uke SICP 4.1. Structure and interpretation of computer programs Metacircular
DetaljerOppgave 1 Minimum edit distance
INF-2810 V 2012 Oppgavesett 10, kalenderuke 12. Oppgave 1 Minimum edit distance Vi vil finne det minste antall redigeringsoperasjoner som kreves for å komme fra strengen A til strengen B. Strengene oppgis
DetaljerINF2810: Funksjonell Programmering. Køer, tabeller, og (litt om) parallelitet
INF2810: Funksjonell Programmering Køer, tabeller, og (litt om) parallelitet Stephan Oepen & Erik Velldal Universitetet i Oslo 5. april 2013 Tema 2 Siste gang Kort om underveisevaluering Destruktive listeoperasjoner
DetaljerSide 1. Oppgave 1. Prosedyrer 1.1. Prosedyrene f og g skal begge returnere prosedyrer. a. Skriv f slik at ((f a) b) returnerer summen av a og b.
Side 1 Oppgave 1. Prosedyrer 1.1. Prosedyrene f og g skal begge returnere prosedyrer. a. Skriv f slik at ((f a) b) returnerer summen av a og b. (define (f a) (lambda (b) (add a b ))) b. Skriv g, uten å
DetaljerINF2810: Funksjonell Programmering. Mer om strømmer
INF2810: Funksjonell Programmering Mer om strømmer Stephan Oepen & Erik Velldal Universitetet i Oslo 19. april 2013 Tema 2 Forrige uke Repetisjon: parallelitet Noe helt nytt: strømmer Noe quizzaktivitet
DetaljerINF2810: Funksjonell Programmering. Køer, tabeller, og (litt om) parallelitet
INF2810: Funksjonell Programmering Køer, tabeller, og (litt om) parallelitet Stephan Oepen & Erik Velldal Universitetet i Oslo 5. april 2013 Tema 2 Siste gang Kort om underveisevaluering Destruktive listeoperasjoner
DetaljerINF Algoritmer og datastrukturer. Hva er INF2220? Algoritmer og datastrukturer
Praktiske opplysninger INF2220 - Algoritmer og datastrukturer HØSTEN 2007 Institutt for informatikk, Universitetet i Oslo Tid og sted: Mandag kl. 12:15-14:00 Store auditorium, Informatikkbygningen Kursansvarlige
DetaljerGjennomgåelse av eksamensoppgaven i HUMIT2710 fra våren 2004
Gjennomgåelse av eksamensoppgaven i HUMIT2710 fra våren 2004 Oppgave 1 For å komme nærmere kvadratroten til et tall fra en foreløpig tilnærming y, kan vi bruke formelen (y + /y)/2. Dette gir grunnlag for
DetaljerINF2810: Funksjonell Programmering. Muterbare data
INF2810: Funksjonell Programmering Muterbare data Stephan Oepen Universitetet i Oslo 9. mars 2017 Agenda Forrige uke Prosedyrebasert objektorientering Lokale tilstandsvariabler Innkapsling + set! Eksempel:
DetaljerUNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2810 Eksamensdag: 6. juni Tid for eksamen: 14.30 Oppgavesettet er på 4 sider pluss vedlegg Tillatte hjelpemiddel: Ingen
DetaljerPar og Lister (først et par sider fra forrige uke) Par er byggestener for lister og trær og sammensatte datatyper.
Par og Lister (først et par sider fra forrige uke) Par er byggestener for lister og trær og sammensatte datatyper. Par kan representeres grafiske slik: Som vi ser kan vi bruke cons til å lage par hvis
DetaljerINF2810: Funksjonell Programmering. Utsatt evaluering og strømmer
INF2810: Funksjonell Programmering Utsatt evaluering og strømmer Stephan oepen Universitetet i Oslo 6. april 2017 Tema 2 Forrige gang Ny datastruktur, ny teknikk: Strømmer Utsatt evaluering I dag Uendelige
Detaljer(define (naer-nok-kuberot? y x) (< (abs (- (kube y) x)) 0.001)) (define (naermere-kuberot y x) (/ (+ (* y 2) (/ x (kvadrat y))) 3))
Oppgave 1 For å komme nærmere kuberoten (tredjeroten) til et tall x fra en foreløpig tilnærming y, kan vi bruke formelen (2y + x/y 2 )/3. Skriv prosedyrene (nær-nok-kuberot? y x), (nærmere-kuberot y x)
DetaljerUNIVERSITETET I OSLO
Eksamen i UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamensdag: 13. desember 2011 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 7 sider. Vedlegg: INF2220 lgoritmer og datastrukturer
DetaljerINF2810: Funksjonell Programmering. Tilstand og verditilordning
INF2810: Funksjonell programmering INF2810: Funksjonell Programmering Tilstand og verditilordning Erik Velldal Universitetet i Oslo 26. februar 2015 Forrige gang 2 I dag Vi blar om til kapittel 3 i SICP.
DetaljerINF2810: Funksjonell Programmering. Lister og høyereordens prosedyrer
INF2810: Funksjonell Programmering Lister og høyereordens prosedyrer Stephan Oepen Universitetet i Oslo 2. februar 2016 Agenda 2 Forrige uke Substitusjonsmodellen og evalueringsstrategier Blokkstruktur
DetaljerUNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2810 Eksamensdag: 7. juni Tid for eksamen: 14.30 Oppgavesettet er på 5 sider Vedlegg Relevante prosedyrer Tillatte
DetaljerINF2810: Funksjonell Programmering. Utsatt evaluering og strømmer
INF2810: Funksjonell Programmering Utsatt evaluering og strømmer Stephan oepen Universitetet i Oslo 6. april 2017 Tema 2 Forrige gang Ny datastruktur, ny teknikk: Strømmer Utsatt evaluering I dag Uendelige
DetaljerHva er en algoritme? INF HØSTEN 2006 INF1020. Kursansvarlige Ragnar Normann E-post: Dagens tema
va er en algoritme? Vanlig sammenligning: Oppskrift. nput lgoritme NF1020 - ØSTEN 2006 Kursansvarlige Ragnar Normann E-post: ragnarn@ifi.uio.no Output Knuth : tillegg til å være et endelig sett med regler
DetaljerINF2810: Funksjonell Programmering. Tilstand og verditilordning
INF2810: Funksjonell Programmering Tilstand og verditilordning Stephan Oepen Universitetet i Oslo 2. mars 2017 Forrige gang 2 I dag 3 Vi blar om til kapittel 3 i SICP. Tilstand og verditilordning. Destruktive
DetaljerINF2810: Funksjonell Programmering. Tilstand og verditilordning
INF2810: Funksjonell Programmering Tilstand og verditilordning Stephan Oepen Universitetet i Oslo 8. mars 2016 Forrige gang 2 I dag 3 Vi blar om til kapittel 3 i SICP. Tilstand og verditilordning. Destruktive
DetaljerEksamen i SLI230, vår 2003.
Eksamen i SLI230, vår 2003. Oppgavesettet har 8 sider medregnet denne forsiden. Ingen hjelpemidler er tillatt. Vedlegg: To sider som inneholder en liste over primitiver fra scheme (og simply.scm) samt
DetaljerBinære søketrær. Et notat for INF1010 Stein Michael Storleer 16. mai 2013
Binære søketrær Et notat for INF Stein Michael Storleer 6. mai 3 Dette notatet er nyskrevet og inneholder sikkert feil. Disse vil bli fortløpende rettet og datoen over blir oppdatert samtidig. Hvis du
DetaljerInnlevering 2b i INF2810, vår 2017
Innlevering 2b i INF2810, vår 2017 Dette er del to av den andre obligatoriske oppgaven i INF2810. Man kan oppnå 10 poeng for oppgavene i 2b, og man må ha minst 12 poeng tilsammen for 2a + 2b for å få godkjent.
DetaljerINF2810: Funksjonell Programmering. Tilstand og verditilordning
INF2810: Funksjonell Programmering Tilstand og verditilordning Erik Velldal Universitetet i Oslo 1. mars 2018 Forrige gang 2 Kode som trær 3 Ved evaluering oversettes kildekoden i et språk først til et
DetaljerINF110 Algoritmer og datastrukturer TRÆR. Vi skal i denne forelesningen se litt på ulike typer trær:
TRÆR Vi skal i denne forelesningen se litt på ulike typer trær: Generelle trær (kap. 4.1) Binærtrær (kap. 4.2) Binære søketrær (kap. 4.3) Den siste typen trær vi skal behandle, B-trær (kap. 4.7) kommer
DetaljerSymbolske data SICP 2.3
Symbolske data SICP 2.3 Vi har så langt alt vesentlig sett på tall enkeltstående tall, talluttrykk, og lister og trær med tall. Et av målene for John McCarthy (opphavsmannen til Lisp) var å lage et språk
DetaljerINF2810: Funksjonell Programmering. Utsatt evaluering og strømmer
INF2810: Funksjonell Programmering Utsatt evaluering og strømmer Erik Velldal Universitetet i Oslo 12. april 2016 Tema 2 Forrige gang Ny datastruktur, ny teknikk: Strømmer Utsatt evaluering Uendelige sekvenser
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 115 og IN 110 Algoritmer og datastrukturer Eksamensdag: 14. mai 1996 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 8 sider.
DetaljerFra Kap.10 Binære søketre (BS-tre) Sist oppdatert 20.03.10 Definere en abstrakt datastruktur binært søketre. Vise hvordan binær søketre kan brukes
Fra Kap.10 Binære søketre (BS-tre) Sist oppdatert 20.03.10 Definere en abstrakt datastruktur binært søketre. Vise hvordan binær søketre kan brukes til å løse problemer. Undersøke ulike implementasjoner
DetaljerIN Algoritmer og datastrukturer
IN2010 - Algoritmer og datastrukturer HØSTEN 2018 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 3: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2010 H2018, forelesning
DetaljerINF2810: Funksjonell Programmering. Utsatt evaluering og strømmer
INF2810: Funksjonell programmering INF2810: Funksjonell Programmering Utsatt evaluering og strømmer Erik Velldal Universitetet i Oslo 12. april 2016 Tema Forrige gang Ny datastruktur, ny teknikk: Strømmer
DetaljerVi skal se på lambda-uttrykk. Følgende er definerte og vil bli brukt gjennom oppgaven
SLI 230 - side 2 av 8 EKSAMENSOPPGAVE - SLI 230 - VÅR 2000 Nedenfor følger eksamensoppgaver i SLI 230. Først om oppgavene Bakerst følger to sider med hjelp slik det er avtalt - liste over primitiver fra
DetaljerBinære søketrær. En ordnet datastruktur med raske oppslag. Sigmund Hansen
Binære søketrær En ordnet datastruktur med raske oppslag Sigmund Hansen Lister og trær Rekke (array): 1 2 3 4 Lenket liste (dobbelt-lenket): 1 2 3 4 Binært søketre: 3 1 4 2 Binære
DetaljerINF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer HØSTEN 2017 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 4: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2220 H2017, forelesning
DetaljerLøsnings forslag i java In115, Våren 1998
Løsnings forslag i java In115, Våren 1998 Oppgave 1 // Inne i en eller annen klasse private char S[]; private int pardybde; private int n; public void lagalle(int i) if (i==n) bruks(); else /* Sjekker
DetaljerINF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer HØSTEN 2009 Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 13: Eksamensgjennomgang Bjarne Holen (Ifi, UiO) INF2220 H2009, forelesning 13 1 /
DetaljerUNIVERSITETET I OSLO
Eksamen i UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamensdag: 15. desember 2010 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler: INF2220
DetaljerINF2220: Forelesning 2. Balanserte søketrær Rød-svarte trær (kapittel12.2) B-trær (kapittel 4.7)
INF2220: Forelesning 2 Balanserte søketrær Rød-svarte trær (kapittel12.2) B-trær (kapittel 4.7) REPETISJON: BINÆRE SØKETRÆR 2 Binære søketrær 8 4 12 2 7 9 15 6 11 13 16 For enhver node i et binært søketre
DetaljerINF2220: Forelesning 2
INF2220: Forelesning 2 Mer om analyse av algoritmer Analyse av binære søketrær Balanserte søketrær Rød-svarte trær (kapittel12.2) B-trær (kapittel 4.7) ANALYSE AV ALGORITMER 2 Analyse av tidsforbruk Hvor
DetaljerINF2220: Forelesning 2
INF2220: Forelesning 2 Balanserte søketrær Rød-svarte trær (kapittel12.2) B-trær (kapittel 4.7) REPETISJON: BINÆRE SØKETRÆR 2 Binære søketrær 8 4 12 2 7 9 15 6 11 13 16 For enhver node i et binært søketre
DetaljerINF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer HØSTEN 2016 Institutt for informatikk, Universitetet i Oslo Forelesning 6: Grafer II Ingrid Chieh Yu (Ifi, UiO) INF2220 28.09.2016 1 / 30 Dagens plan: Dijkstra fort.
DetaljerMAT1030 Diskret Matematikk
MAT1030 Diskret Matematikk Forelesning 26: Trær Roger Antonsen Institutt for informatikk, Universitetet i Oslo 5. mai 2009 (Sist oppdatert: 2009-05-06 22:27) Forelesning 26 MAT1030 Diskret Matematikk 5.
DetaljerINF2810: Funksjonell Programmering. Mer om Scheme. Rekursjon og iterasjon.
INF2810: Funksjonell Programmering Mer om Scheme. Rekursjon og iterasjon. Stephan Oepen Universitetet i Oslo 26. januar 2017 På blokka 2 Forrige uke Introduksjon og oversikt Praktiske detaljer Funksjonell
Detaljer