INF2810: Funksjonell Programmering. Strømmer
|
|
|
- Kristine Enoksen
- 8 år siden
- Visninger:
Transkript
1 INF2810: Funksjonell Programmering Strømmer Stephan Oepen & Erik Velldal Universitetet i Oslo 12. april 2013
2 Tema 2 Forrige uke Litt mer i dybden om køer Eksperiment: live-programmering Tabeller som hierarkiske lister Grunnleggende om parallelitet I dag Repetisjon: parallelitet Noe helt nytt: strømmer Litt mer live-programmering
3 (Assosiative) Tabeller 3 Også assosiative tabeller kan implementeres med cons-celler i bunnen. Lime sammen nøkkel, verdi -par som cons; så samle de som en liste. Noen operasjoner kan forenkles ved å sette én ekstra cons-celle foran. En slik headed list kan også bruke allerførste car som typemerkelapp.
4 En todimensjonal assosiativ tabell 4
5 Veldig kort om parallelitet (1/3) 5
6 Veldig kort om parallelitet (2/3) 6 Suppose that John, Luke, and Mark share a joint bank account that initially contains $100. Concurrently, John deposits $10, Luke withdraws $20, and Mark withdraws half the money in the account. John (set! balance (+ balance 10)) Luke (set! balance (- balance 20)) Mark (set! balance (- balance (/ balance 2))) Hvor mange mulige sluttsaldoer, hvis hvert set!-uttrykk var atomært? Hvor mange muligheter uten hvilke som helst antakelser om rekkefølge? Hva er kritiske punkter med tanke på parallelitet og tidsdimensjonen?
7 Veldig kort om parallelitet (3/3) 7 For å synkronisere rundt bruk av felles ressurser brukes semaphores; (aka mutex or lock) som ble først diskutert av Edsger Dijkstra (1965). Før kritisk avsnitt, få tak i semaphoren (acquire); Ved utgang fra kritisk avsnitt, slippe (release). Prosesser blokkeres under venting på semaphoren. (define (make-account) (let ((balance 0) (mutex (make-mutex))) (define (withdraw amount) (mutex acquire) (set! balance (- balance amount))) (mutex release) )) Hver konto (som ressurs) har sin egen semaphore.
8 Tilbake til sekvenser som konvensjonell grensesnitt 8 (define (mystery low high) (define (recurse count sum) (cond ((> count high) sum) ((prime? count) (recurse (+ count 1) (+ count sum))) (else (recurse (+ count 1) sum)))) (recurse low 0))? (mystery 1 5) Hva er formålet med mystery, og hva returnerer eksempelkallingen? Ved bruk av høyreordensprosedyrer kan problemet løses elegantere : (define (sum-primes low high) (accumulate + 0 (filter prime? (interval low high)))) Kan vi finne noen relevante forskjell i tids- eller plasskompleksitet?
9 Begrensninger med sekvenser som konvensjonell grensesnitt 9 Satt på spissen, kan teknikken bli svært (og unødvendig) ueffisient:? (car (cdr (filter prime? (interval )))) 103 Det beregnes en lang sekvens, så én til, men bare fire elementer brukes. Helst ta vare på den elegante strukturen men bare beregne etter behov. Utsatt evaluering (delayed evaluation) og strømmer gir oss begge deler. En strøm (stream) skal ha kontrakt som ligner på vanlige lister: (stream-car (cons-stream x y)) x (stream-cdr (cons-stream x y)) y Men elementene (untatt det første) blir først evaluert når de brukes. Også tom strøm the-empty-stream og stream-null?-predikatet. For øyeblikket skal vi bare late som om disse var innebygget i Scheme.
10 Høyreordensprosedyrer for strømmer 10 Etter at grensesnittet er lik lister, kan filter, et al. lett adapteres: (define (stream-interval low high) (if (> low high) the-empty-stream (cons-stream low (stream-interval (+ low 1) high)))) (define (stream-filter predicate stream) (cond ((stream-null? stream) the-empty-stream) ((predicate (stream-car stream)) (cons-stream (stream-car stream) (stream-filter predicate (stream-cdr stream)))) (else (stream-filter predicate (stream-cdr stream))))) Nå litt live-programmering. En strøm utsetter evalueringen av sin cdr inntill den blir etterspurt. Da styrer etterspørselen beregningsrekkefølge (computing on demand).
11 Uendelige strømmer 11 (define (integers-starting-from n) (cons-stream n (integers-starting-from (+ n 1)))) (define integers (integers-starting-from 1)) En strøm kan definere en uendelig sekvens uten å faktisk beregne den. Dette kan kombineres med andre strøm-prosedyrer og strømmer, f.eks. (define primes (stream-filter prime? integers))? (stream-ref primes 3) 7 (define (add-streams stream1 stream2) (stream-map + stream1 stream2)) (define ones (cons-stream 1 ones)) (define integers (cons-stream 1 (add-streams ones integers)))
12 Previously on Twin Peaks: Fibonaccitall 12 For å illustrere nok en annen type rekursiv prosess skal vi se på en prosedyre for å beregne tall i den såkalte Fibonacci-rekken: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,... Bortsett fra de to første er hvert tall gitt som summen av de to foregående. Litt mer liveprogrammering 0 hvis n = 0 fib(n) = 1 hvis n = 1 fib(n 1) + fib(n 2) ellers? (define (fib n) (cond ((= n 0) 0) ((= n 1) 1) (else (+ (fib (- n 1)) (fib (- n 2))))))? (fib 5) 5? (fib 6) 8? (fib 7) 13? (fib 8) 21? (fib 9) 34
13 Fibonacci-rekken som en uendelig strøm 13 Kjenner man til de to siste verdiene, kan neste verdi enkelt beregnes. Igjen, en rekursiv prosedyre som strøm-generator, med to argumenter. Prosedyreargumente tar vare på relevant historie: f (n 2) og f (n 1). (define (fib n) (define (generator x y) (cons-stream x (generator y (+ x y)))) (stream-ref (generator 0 1) n))? (fib 10) 55 Kan selvfølgelig også skrives som en ekvivalent prosedyre uten strøm. Men den har ikke like godt samsvar med den matematiske definisjonen.
14 Nok en strøm: Sielen til Eratosthenes Også primtallene danner en uendelig sekvens: 2, 3, 5, 7, 11, 13, 17, 19,... Altså en strøm der ingen element er delbart på tidligere elementer. Kan modelleres som lag på lag av strømmer: hvert lag filtrerer videre: (define (sieve stream) (cons-stream (stream-car stream) (sieve (stream-filter (lambda (x) (not (divisible? x (stream-car stream)))) (stream-cdr stream))))) (define primes (sieve (integers-starting-from 2)))? (stream-ref primes 3) 7 14
INF2810: Funksjonell Programmering. Køer, tabeller, og (litt om) parallelitet
INF2810: Funksjonell Programmering Køer, tabeller, og (litt om) parallelitet Stephan Oepen & Erik Velldal Universitetet i Oslo 5. april 2013 Tema 2 Siste gang Kort om underveisevaluering Destruktive listeoperasjoner
INF2810: Funksjonell Programmering. Mer om strømmer
INF2810: Funksjonell Programmering Mer om strømmer Stephan Oepen & Erik Velldal Universitetet i Oslo 19. april 2013 Tema 2 Forrige uke Repetisjon: parallelitet Noe helt nytt: strømmer Noe quizzaktivitet
INF2810: Funksjonell Programmering. Strømmer og utsatt evaluering
INF2810: Funksjonell Programmering Strømmer og utsatt evaluering Stephan Oepen Universitetet i Oslo 30. mars 2017 Forrige forelesning 2 Mer om (prosedyre)navn, bindinger, og verditilordning Nok en ny abstrakt
INF2810: Funksjonell Programmering. Muterbare data
INF2810: Funksjonell Programmering Muterbare data Stephan Oepen Universitetet i Oslo 15. mars 2016 Agenda Forrige uke Prosedyrebasert objektorientering Lokale tilstandsvariabler Innkapsling + set! Eksempel:
INF2810: Funksjonell Programmering. Mer om verditilordning. Tabeller. Og strømmer.
INF2810: Funksjonell Programmering Mer om verditilordning. Tabeller. Og strømmer. Erik Velldal Universitetet i Oslo 29. mars 2016 De siste ukene: destruktive operasjoner 2 set! endrer verditilordningen
INF2810: Funksjonell Programmering. Mer om verditilordning. Tabeller. Og strømmer.
INF2810: Funksjonell programmering INF2810: Funksjonell Programmering Mer om verditilordning. Tabeller. Og strømmer. Erik Velldal Universitetet i Oslo 29. mars 2016 De siste ukene: destruktive operasjoner
INF2810: Funksjonell Programmering
INF2810: Funksjonell Programmering Høyereordens prosedyrer, lambda og lokale variabler Erik Velldal Universitetet i Oslo 9. februar 2017 Tema 2 Forrige uke Lister og listerekursjon quote Høyereordens prosedyrer
INF2810: Funksjonell Programmering
INF2810: Funksjonell Programmering Høyereordens prosedyrer, lambda og lokale variabler Erik Velldal Universitetet i Oslo 9. februar 2017 Tema 2 Forrige uke Lister og listerekursjon quote Høyereordens prosedyrer
INF2810: Funksjonell Programmering. Kommentarer til prøveeksamen
INF2810: Funksjonell programmering INF2810: Funksjonell Programmering Kommentarer til prøveeksamen Erik Velldal Universitetet i Oslo 1: Grunnleggende (6 poeng)? (define foo '(a b))? (define bar foo)? (set!
INF2810: Funksjonell Programmering
INF2810: Funksjonell Programmering Omgivelsesmodeller og destruktive listeoperasjoner Stephan Oepen & Erik Velldal Universitetet i Oslo 15. mars 2013 Tema 2 Forrige uke Representasjon av mengder Sorterte
INF2810: Funksjonell Programmering
INF2810: Funksjonell Programmering Høyereordens prosedyrer, lambda og lokale variabler Stephan Oepen Universitetet i Oslo 9. februar 2015 Tema 2 Forrige uke Lister og listerekursjon quote Høyereordens
INF2810: Funksjonell Programmering. Eksamensforberedelser
INF2810: Funksjonell Programmering Eksamensforberedelser Stephan Oepen & Erik Velldal Universitetet i Oslo 24. mai 2013 I dag 2 Kort oppsummering Praktisk om eksamen Hvem vant konkurransen om flest oblig-poeng
Rekursjon og lister. Stephan Oepen & Erik Velldal. 1. februar, Universitetet i Oslo
INF2810: Funksjonell programmering Rekursjon og lister Stephan Oepen & Erik Velldal Universitetet i Oslo 1. februar, 2013 Agenda 2 Forrige uke Scheme Substitusjonsmodellen Blokkstruktur Predikater Kondisjonale
Høyere-ordens prosedyrer
INF2810: Funksjonell programmering Høyere-ordens prosedyrer Stephan Oepen & Erik Velldal Universitetet i Oslo 8. februar, 2013 Tema 2 Forrige uke Lister og listerekursjon Høyere-ordens prosedyrer Prosedyrer
INF2810: Funksjonell Programmering. En metasirkulær evaluator, del 2
INF2810: Funksjonell Programmering En metasirkulær evaluator, del 2 Stephan Oepen & Erik Velldal Universitetet i Oslo 03. mai 2013 Tema 2 Forrige uke SICP 4.1. Structure and interpretation of computer
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2810 Eksamensdag: 5. juni, 2014 Tid for eksamen: 14:30 (4 timer) Oppgavesettet er på 4 sider. Vedlegg: Ingen Tillatte hjelpemidler:
INF2810: Funksjonell Programmering. En metasirkulær evaluator, del 2
INF2810: Funksjonell Programmering En metasirkulær evaluator, del 2 Stephan Oepen & Erik Velldal Universitetet i Oslo 03. mai 2013 Tema 2 Forrige uke SICP 4.1. Structure and interpretation of computer
INF2810: Funksjonell Programmering. Lokale variabler. Og trær.
INF2810: Funksjonell Programmering Lokale variabler. Og trær. Erik Velldal Universitetet i Oslo 11. september 2019 Tema forrige uke 2 Lister som datastruktur quote Rekursjon på lister Høyereordens prosedyrer
INF2810: Funksjonell Programmering. Muterbare data
INF2810: Funksjonell Programmering Muterbare data Stephan Oepen Universitetet i Oslo 9. mars 2017 Agenda Forrige uke Prosedyrebasert objektorientering Lokale tilstandsvariabler Innkapsling + set! Eksempel:
INF2810: Funksjonell Programmering. Lister og høyereordens prosedyrer
INF2810: Funksjonell Programmering Lister og høyereordens prosedyrer Erik Velldal Universitetet i Oslo 2. februar 2017 Agenda 2 Forrige uke Substitusjonsmodellen og evalueringsstrategier. Blokkstruktur
INF2810: Funksjonell Programmering. Lister og høyereordens prosedyrer
INF2810: Funksjonell programmering INF2810: Funksjonell Programmering Lister og høyereordens prosedyrer Erik Velldal Universitetet i Oslo 5. februar 2015 Agenda Forrige uke Substitusjonsmodellen og evalueringsstrategier.
(define (naer-nok-kuberot? y x) (< (abs (- (kube y) x)) 0.001)) (define (naermere-kuberot y x) (/ (+ (* y 2) (/ x (kvadrat y))) 3))
Oppgave 1 For å komme nærmere kuberoten (tredjeroten) til et tall x fra en foreløpig tilnærming y, kan vi bruke formelen (2y + x/y 2 )/3. Skriv prosedyrene (nær-nok-kuberot? y x), (nærmere-kuberot y x)
INF2810: Funksjonell Programmering. En Scheme-evaluator i Scheme, del 2
INF2810: Funksjonell programmering INF2810: Funksjonell Programmering En Scheme-evaluator i Scheme, del 2 Erik Velldal Universitetet i Oslo 7. mai 2015 Tema Forrige uke SICP 4.1. Structure and interpretation
INF2810: Funksjonell Programmering. Trær og mengder
INF2810: Funksjonell programmering INF2810: Funksjonell Programmering Trær og mengder Erik Velldal Universitetet i Oslo 19. februar 2015 Tema Forrige uke Høyereordens prosedyrer lambda, let og lokale variabler
INF2810: Funksjonell programmering: Mer om Scheme. Rekursjon og iterasjon.
INF2810: Funksjonell programmering: Mer om Scheme. Rekursjon og iterasjon. Stephan Oepen & Erik Velldal Universitetet i Oslo 25. januar, 2013 På blokka 2 Forrige uke Introduksjon og oversikt Funksjonell
Memoisering, utsatt evaluering og strømmer
Memoisering, utsatt evaluering og strømmer Først litt repetisjon: Utsatt evaluering Gitt (define (p x) (if test (x) something-else)) la E være et Scheme-uttrykk, og la L = (lambda () E). Da vil, ved kallet
INF2810: Funksjonell Programmering. En Scheme-evaluator i Scheme, del 2
INF2810: Funksjonell Programmering En Scheme-evaluator i Scheme, del 2 Erik Velldal Universitetet i Oslo 4. mai 2017 Tema 2 Forrige uke SICP 4.1. Structure and interpretation of computer programs Metacircular
INF2810: Funksjonell Programmering. En Scheme-evaluator i Scheme, del 2
INF2810: Funksjonell Programmering En Scheme-evaluator i Scheme, del 2 Erik Velldal Universitetet i Oslo 4. mai 2017 Tema 2 Forrige uke SICP 4.1. Structure and interpretation of computer programs Metacircular
INF2810: Funksjonell Programmering. En Scheme-evaluator i Scheme
INF2810: Funksjonell Programmering En Scheme-evaluator i Scheme Erik Velldal Universitetet i Oslo 19. april 2016 Tema 2 Forrige uke Strømmer og utsatt evaluering Kort om makroer I dag Kap. 4 Metasirkulær
INF2810: Funksjonell Programmering. En metasirkulær evaluator
INF2810: Funksjonell Programmering En metasirkulær evaluator Stephan Oepen & Erik Velldal Universitetet i Oslo 26. april 2013 Tema 2 Forrige uke Strømmer og utsatt evaluering Memoisering Kort om makroer
INF2810: Funksjonell Programmering. En metasirkulær evaluator
INF2810: Funksjonell Programmering En metasirkulær evaluator Stephan Oepen & Erik Velldal Universitetet i Oslo 26. april 2013 Tema 2 Forrige uke Strømmer og utsatt evaluering Memoisering Kort om makroer
INF2810: Funksjonell Programmering. Oppsummering og eksamensforberedelser
INF2810: Funksjonell Programmering Oppsummering og eksamensforberedelser Erik Velldal & Stephan Oepen Universitetet i Oslo 18. mai 2017 I dag 2 Kort oppsummering Praktisk om eksamen Hvem vant konkurransen
INF2810: Funksjonell Programmering. En Scheme-evaluator i Scheme
INF2810: Funksjonell Programmering En Scheme-evaluator i Scheme Erik Velldal Universitetet i Oslo 27. april 2017 Tema 2 Forrige forelesning Strømmer og utsatt evaluering Kort om makroer I dag Kap. 4 Metasirkulær
INF2810: Funksjonell Programmering. Oppsummering og eksamensforberedelser
INF2810: Funksjonell programmering INF2810: Funksjonell Programmering Oppsummering og eksamensforberedelser Erik Velldal & Stephan Oepen Universitetet i Oslo 31. mai 2016 I dag Kort oppsummering Praktisk
INF2810: Funksjonell Programmering. Oppsummering og eksamensforberedelser
INF2810: Funksjonell programmering INF2810: Funksjonell Programmering Oppsummering og eksamensforberedelser Erik Velldal Universitetet i Oslo 28. mai 2015 I dag Kort oppsummering Praktisk om eksamen Hvem
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2810, Funksjonell Programmering Eksamensdag: Fredag 10. juni 2016 Tid for eksamen: 14.30 Oppgavesettet er på 5 sider (ekskl.
INF2810: Funksjonell Programmering. Oppsummering og eksamensforberedelser
INF2810: Funksjonell Programmering Oppsummering og eksamensforberedelser Erik Velldal & Stephan Oepen Universitetet i Oslo 31. mai 2016 I dag 2 Kort oppsummering Praktisk om eksamen Hvem vant konkurransen
INF2810: Funksjonell Programmering. Mer om Scheme. Rekursjon og iterasjon.
INF2810: Funksjonell Programmering Mer om Scheme. Rekursjon og iterasjon. Stephan Oepen Universitetet i Oslo 26. januar 2017 På blokka 2 Forrige uke Introduksjon og oversikt Praktiske detaljer Funksjonell
INF2810: Funksjonell Programmering. Mer om Scheme. Rekursjon og iterasjon.
INF2810: Funksjonell Programmering Mer om Scheme. Rekursjon og iterasjon. Stephan Oepen Universitetet i Oslo 26. januar 2016 På blokka Forrige uke Introduksjon og oversikt Praktiske detaljer Funksjonell
INF2810: Funksjonell Programmering. Mer om Scheme. Rekursjon og iterasjon.
INF2810: Funksjonell Programmering Mer om Scheme. Rekursjon og iterasjon. Stephan Oepen Universitetet i Oslo 26. januar 2017 På blokka Forrige uke Introduksjon og oversikt Praktiske detaljer Funksjonell
Vi skal se på lambda-uttrykk. Følgende er definerte og vil bli brukt gjennom oppgaven
SLI 230 - side 2 av 8 EKSAMENSOPPGAVE - SLI 230 - VÅR 2000 Nedenfor følger eksamensoppgaver i SLI 230. Først om oppgavene Bakerst følger to sider med hjelp slik det er avtalt - liste over primitiver fra
INF2810: Funksjonell Programmering. Eksamensforberedelser
INF2810: Funksjonell Programmering Eksamensforberedelser Stephan Oepen & Erik Velldal Universitetet i Oslo 24. mai 2013 I dag 2 Kort oppsummering Praktisk om eksamen Hvem vant konkurransen om flest oblig-poeng
INF2810: Funksjonell Programmering. Huffman-koding
INF2810: Funksjonell Programmering Huffman-koding Stephan Oepen & Erik Velldal Universitetet i Oslo 22. februar, 2013 Tema 2 Forrige uke Data-abstraksjon Lister av lister Tre-rekursjon Prosedyrer som datastruktur
INF2810: Funksjonell Programmering. Lister og høyereordens prosedyrer
INF2810: Funksjonell Programmering Lister og høyereordens prosedyrer Stephan Oepen Universitetet i Oslo 2. februar 2016 Agenda 2 Forrige uke Substitusjonsmodellen og evalueringsstrategier Blokkstruktur
INF2810: Funksjonell Programmering. Huffman-koding
INF2810: Funksjonell Programmering Huffman-koding Stephan Oepen & Erik Velldal Universitetet i Oslo 22. februar, 2013 Tema 2 Forrige uke Data-abstraksjon Lister av lister Tre-rekursjon Prosedyrer som datastruktur
Innlevering 2b i INF2810, vår 2017
Innlevering 2b i INF2810, vår 2017 Dette er del to av den andre obligatoriske oppgaven i INF2810. Man kan oppnå 10 poeng for oppgavene i 2b, og man må ha minst 12 poeng tilsammen for 2a + 2b for å få godkjent.
INF2810: Funksjonell Programmering. Huffman-koding
INF2810: Funksjonell Programmering Huffman-koding Stephan Oepen Universitetet i Oslo 1. mars 2016 Tema 2 Sist Trær som lister av lister Trerekursjon Mengder som trær I dag Hierarkisk og symbolsk data Eksempel:
Memoisering. I de følgende memoiseringeksemplene brukes tabeller, og vi tar derfor først en repetisjon av dette.
Memoisering I de følgende memoiseringeksemplene brukes tabeller, og vi tar derfor først en repetisjon av dette. Vi definere en allmenn tabelltype ved en prosedyre med - tabellen som en lokal tilstandsvariabel,
Par og Lister (først et par sider fra forrige uke) Par er byggestener for lister og trær og sammensatte datatyper.
Par og Lister (først et par sider fra forrige uke) Par er byggestener for lister og trær og sammensatte datatyper. Par kan representeres grafiske slik: Som vi ser kan vi bruke cons til å lage par hvis
INF2810: Funksjonell programmering: Introduksjon
INF2810: Funksjonell programmering: Introduksjon Stephan Oepen & Erik Velldal Universitetet i Oslo 18. januar, 2013 Tema for i dag 2 Introduksjon Praktiske detaljer Pensum Obliger Lærebok Hva skal vi lære?
INF2810: Funksjonell Programmering. Huffman-koding
INF2810: Funksjonell Programmering Huffman-koding Stephan Oepen Universitetet i Oslo 1. mars 2016 Tema 2 Sist Trær som lister av lister Trerekursjon Mengder som trær I dag Hierarkisk og symbolsk data Eksempel:
Lisp 2: Lister og funksjoner
Eirik Alderslyst Nygaard Øystein Ingmar Skartsæterhagen Programvareverkstedet 11. mars 2010 (Lister) (Par) (Listeoperasjoner) (Assosiasjonslister)... lists are the heart of Lisp... Guy L. Steele Jr. (Par)
Innlevering 2a i INF2810, vår 2017
Innlevering 2a i INF2810, vår 2017 Hovedtematikken denne gang er Huffman-koding, som ble dekket i 6. forelesning (23. februar) og i seksjon 2.3.4 i SICP. Det er viktig å ha lest denne seksjonen før dere
Rekursiv programmering
Rekursiv programmering Babushka-dukker En russisk Babushkadukke er en sekvens av like dukker inne i hverandre, som kan åpnes Hver gang en dukke åpnes er det en mindre utgave av dukken inni, inntil man
INF2810: Funksjonell programmering: Introduksjon
NF2810: Funksjonell programmering: ntroduksjon Stephan Oepen & Erik Velldal Universitetet i Oslo 18. januar, 2013 Tema for i dag 2 ntroduksjon Praktiske detaljer Pensum Obliger Lærebok Hva skal vi lære?
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: December 16th. 2005 Tid for eksamen: 14.30 17.30 Oppgavesettet er på 11 sider. Vedlegg: INF3140/4140 Models of Concurrency
Uke 4: z-transformasjonen
Uke 4: z-transformasjonen Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/26 Dagens temaer z-dometet; ett av tre domener z-transformasjonen; definisjon og egenskaper
INF2810: Funksjonell Programmering. Huffman-koding
INF2810: Funksjonell Programmering Huffman-koding Erik Velldal Universitetet i Oslo 23. februar 2017 Tema 2 Sist Trær som lister av lister Trerekursjon Mengder som trær Dataabstraksjon I dag Hierarkisk
INF3140 Modeller for parallellitet INF3140/4140: Låser og Barrierer
INF3140/4140: Låser og Barrierer Uke 2, side 1. Praktisk Obligatorisk oppgave 1 Er nå lagt ut. Merk: Frist fredag 21. sept. Guppelærer Mohammad Ali Norozi [email protected] Merk: Kun gruppe 1 åpen! Forelesningssted
Side om side. Trettende forelesning
Side om side Trettende forelesning 1 Det finnes mange modeller for parallellitet. Her får dere en liten smak av én av dem som er ment å modellere trådbasert parallellitet/ multicoreprogrammering. Parallellitet
