Regneøvelse 29/5, 2017

Størrelse: px
Begynne med side:

Download "Regneøvelse 29/5, 2017"

Transkript

1 Regneøvelse 29/5, 2017 Arne Bang Huseby Eksamen STK : oppgave 3 Eksamen STK : oppgave 2

2 Eksamen 2008, oppgave 3 Et vannverk tar prøver av drikkevannet for å kontrollere forekomsten av en bestemt parasitt. La X være antall av denne parasitten i en vannprøve på v liter. a) Forklar at det kan være rimelig å anta at X er Poisson fordelt med parameter v, dvs. at Forklar også at per liter vann. P (X = k) = ( v)k k! e v for k =0, 1, 2,... kan fortolkes som tettheten av den aktuelle parasitten

3 Poissonprosess i en tredimensjonal region: (Se Devore & Berk s ) Forutsetninger: 1. Det finnes en parameter > 0 slik at for ethvert lite volum v så er sannsynligheten for at nøyaktig én parasitt blir funnet lik v + o( v) 2. Sannsynligheten for å finne flere parasitter i et lite volum v er o( v) 3. Antall parasitter i ikke-overlappende volumer er uavhengige av hverandre Forventet antall parasitter i v liter vann er v Parameteren kan dermed fortolkes forventet antall partikler pr. liter vann.

4 b) Anta i dette punktet at tettheten av parasitten er 0.20 per liter vann. Hva er sannsynligheten for at en vannprøve på 1/2 liter ikke inneholder noen parasitter? Hva er sannsynligheten for at den inneholder minst to parasitter? For =0.20 og v =0.50 har vi at P (X =0)=e =0.905 Sannsynligheten er 90.5% for at vannprøven inneholder ingen parasitter. P (X 2) = 1 P (X =0) P (X =1) = 1 e e = = Sannsynligheten er 0.5% for at vannprøven inneholder minst to parasitter.

5 For å kontrollere vannkvaliteten bruker vannverket følgende framgangsmåte. De tar ti prøver som hver er på 1/2 liter. Hvis åtte eller flere av prøvene ikke inneholder parasitter, godkjennes vannkvaliteten. Vi antar at når vannverket tar flere prøver, er antall parasitter i en prøve uavhengig av antall parasitter i de andre prøvene. c) Hva er sannsynligheten for at vannkvaliteten blir godkjent hvis tettheten av parasitten er 0.20 per liter vann? Antall prøver N som ikke inneholder parasitter er binomisk fordelt med p = e = e 0.10 og n = 10. Vi har at P (N 8) = P (N =8)+P (N =9)+P (N =10) = 10X k=8 µ 10 p k (1 p) 10 k k = = Sannsynligheten er 93.8% for at vannkvaliteten vil bli godkjent.

6 Vannverket planlegger å legge om kontrollrutinene. Ved de nye rutinene tar de fortsatt ti prøver som hver er på 1/2 liter. Men i stedet for å analysere prøvene hver for seg, blander de alle prøvene og teller antall parasitter i den samlede prøven. Vannkvaliteten blir godkjent hvis de finner høyst 2 parasitter i den samlede prøven. d) Hva er sannsynligheten for at vannkvaliteten blir godkjent etter de nye kontrollrutinene hvis tettheten av parasitten er 0.20 per liter vann? La X i være antall parasitter i prøve nummer i; i =1, 2,...,10. Da er X i -ene uavhengige og hver av dem er Poisson fordelt med parameter P v = = Da er antall parasitter i den samlede prøven Y = P 10 i=1 X i Poisson fordelt med parameter 10 v = 1. Nåer P (Y 2) = P (Y =0)+P (Y =1)+P (Y =2) = e 1 +1 e e 1 = = Sannsynligheten er 92.0 % for at vannkvaliteten vil bli godkjent etter de nye kontrollrutinene.

7 Eksamen 2004, oppgave 2 La X være årsinntekten til en tilfeldig valgt person i en befolkningsgruppe. Det er vanlig å anta at X er Pareto-fordelt, det vil si at X har sannsynlighetstettheten ( apple x 1 for x>apple f X (x) = (1) 0 ellers. Her er apple minsteinntekten i den befolkningsgruppen vi betrakter, mens > 2 er en parameter som avhenger av lønnsforskjellene i gruppen. (

8 a) Vis at den kumulative sannsynlighetsfordelingen til X er gitt ved F X (x) = ( 1 apple x for x>apple 0 ellers. Vis også at median årsinntekt er 2 1/ apple.

9

10 b) Vis at E(X) = apple 1 og Var(X) = apple 2 ( 1) 2 ( 2)

11

12 I resten av oppgaven vil vi se på en befolkningsgruppe der apple = kroner og =2.5. c) Beregn median årsinntekt og forventet årsinntekt når apple = kroner og =2.5. Hvilken av disse størrelsene gir etter din mening best uttrykk for den typiske årsinntekten? Svaret skal begrunnes!

13

14 Vi lar nå X 1,X 2,...,X 50 være årsinntektene for et tilfeldig utvalg på 50 personer fra den aktuelle befolkningsgruppen. Disse stokastiske variablene er uavhengige, og de har alle sannsynlighetstettheten (1) med apple = kroner og =2.5. d) La S = P 50 i=1 X i. Finn forventningen og standardavviket til S.

15

16 P e) Bestem tilnærmet sannsynligheten for at de 50 personene til sammen vil tjene minst 20 millioner kroner i løpet av ett år.

Regneøvelse 22/5, 2017

Regneøvelse 22/5, 2017 Regneøvelse 22/5, 217 Arne Bang Huseby Eksamen STK11 212: oppgave 1 og 2 Eksamen STK11 28: oppgave 1) og 2 Eksamen 212, oppgave 1 Ved en bestemt butikk i en større dagligvarekjede viser langvarige data

Detaljer

Bernoulli forsøksrekke og binomisk fordeling

Bernoulli forsøksrekke og binomisk fordeling Bernoulli forsøksrekke og binomisk fordeling Bernoulli forsøksrekke i) gjentar et forsøk n ganger ii) hvert forsøk gir enten suksess eller fiasko iii) sannsynligheten for suksess er p i alle forsøkene

Detaljer

A) B) 400 C) 120 D) 60 E) 10. Rett svar: C. Fasit: ( 5 6 = 60. Hvis A, B, C er en partisjon av utfallsrommet S, så er P (A B) lik.

A) B) 400 C) 120 D) 60 E) 10. Rett svar: C. Fasit: ( 5 6 = 60. Hvis A, B, C er en partisjon av utfallsrommet S, så er P (A B) lik. Oppgave 1 Det skal velges en komité bestående av 2 menn og 1 kvinne. Komitéen skal velges fra totalt 5 menn og 6 kvinner. Hvor mange ulike komitéer kan dannes? A) 86400 B) 400 C) 120 D) 60 E) 10 Rett svar:

Detaljer

Høgskolen i Telemark. Institutt for økonomi og informatikk FORMELSAMLING Statistikk I. Til bruk ved eksamen. Per Chr. Hagen

Høgskolen i Telemark. Institutt for økonomi og informatikk FORMELSAMLING Statistikk I. Til bruk ved eksamen. Per Chr. Hagen Høgskolen i Telemark Institutt for økonomi og informatikk FORMELSAMLING 6005 Statistikk I Til bruk ved eksamen Per Chr. Hagen . Sannsynlighetsregning. Regneregler Komplementsetningen: Addisjonssetningen:

Detaljer

Første sett med obligatoriske oppgaver i STK1110 høsten 2015

Første sett med obligatoriske oppgaver i STK1110 høsten 2015 Første sett med obligatoriske oppgaver i STK1110 høsten 2015 Dette er det første obligatoriske oppgavesettet i STK1110 høsten 2015. Oppgavesettet består av fire oppgaver. Du må bruke Matematisk institutts

Detaljer

Diskrete sannsynlighetsfordelinger.

Diskrete sannsynlighetsfordelinger. Diskrete sannsynlighetsfordelinger. Dekkes av kapittel 5 i læreboka. Husk: f() er punktsannsynligheten til en diskret X dersom: 1. f() 0 2. f() =1 3. f() =P (X = ) Vi skal nå sepå situasjoner der vi har

Detaljer

Diskrete sannsynlighetsfordelinger.

Diskrete sannsynlighetsfordelinger. Diskrete sannsynlighetsfordelinger. Dekkes av kapittel 5 i læreboka. Husk: f(x) er punktsannsynligheten til en diskret X dersom: 1. f(x) 0 2. x f(x) =1 3. f(x) =P (X = x) Vi skal nå sepå situasjoner der

Detaljer

Midtveiseksamen i STK1100 våren 2017

Midtveiseksamen i STK1100 våren 2017 Midtveiseksamen i STK1100 våren 2017 Denne midtveiseksamenen består av 20 oppgaver. Det er ett riktig svaralternativ for hvert spørsmål. Hvis svaret er oppgitt som et desimaltall, er det rundet av til

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST 101 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Mandag 30. november 1992. Tid for eksamen: 09.00 15.00.

Detaljer

Kapittel 6: Kontinuerlige sannsynlighetsfordelinger

Kapittel 6: Kontinuerlige sannsynlighetsfordelinger Kapittel 6: Kontinuerlige sannsynlighetsfordelinger TMA4240 Statistikk (F2 og E7) Foreleses 15. september, 2004. µ µ µ + Basert på slides av Mette Langås p.1/16 6.1 Kontinuerlig uniform fordeling Kontinuerlig

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER HØGSKOLEN I STAVANGER Avdeling for TEKNISK NATURVITEN- EKSAMEN I: TE199 SANNSYNLIGHETSREGNING MED STATISTIKK SKAPELIGE FAG VARIGHET: 4 TIMER DATO: 5. JUNI 2003 TILLATTE HJELPEMIDLER: KALKULATOR OPPGAVESETTET

Detaljer

Forelesning 5: Kontinuerlige fordelinger, normalfordelingen. Jo Thori Lind

Forelesning 5: Kontinuerlige fordelinger, normalfordelingen. Jo Thori Lind Forelesning 5: Kontinuerlige fordelinger, normalfordelingen Jo Thori Lind j.t.lind@econ.uio.no Oversikt 1. Kontinuerlige fordelinger 2. Uniform fordeling 3. Normal-fordelingen 1. Kontinuerlige fordelinger

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 9, blokk II Oppgave 1 X er kontinuerlig fordelt med sannsynlighetstetthet f(x) = 2xe

Detaljer

Oppfriskning av blokk 1 i TMA4240

Oppfriskning av blokk 1 i TMA4240 Oppfriskning av blokk 1 i TMA4240 Geir-Arne Fuglstad November 21, 2016 2 Hva har vi gjort i dette kurset? Vi har studert to sterkt relaterte grener av matematikk Sannsynlighetsteori: matematisk teori for

Detaljer

STK1100 våren Kontinuerlige stokastiske variabler Forventning og varians Momentgenererende funksjoner

STK1100 våren Kontinuerlige stokastiske variabler Forventning og varians Momentgenererende funksjoner STK1100 våren 2017 Kontinuerlige stokastiske variabler Forventning og varians Momentgenererende funksjoner Svarer til avsnittene 4.1 og 4.2 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i

Detaljer

Emnenavn: Eksamenstid: 4 timer. Faglærer: Hans Kristian Bekkevard

Emnenavn: Eksamenstid: 4 timer. Faglærer: Hans Kristian Bekkevard EKSAMEN Emnekode: SFB107111 Emnenavn: Metode 1, statistikk deleksamen Dato: 16. mai 2017 Hjelpemidler: Godkjent kalkulator og vedlagt formelsamling m/tabeller Eksamenstid: 4 timer Faglærer: Hans Kristian

Detaljer

STK juni 2006

STK juni 2006 Løsningsforslag til eksamen i STK11 8. juni 26 Oppgave 1 a) Vi har at Z (Y µ)/ er standardnormalfordelt. For > er derfor den kumulative fordelingen til X gitt ved F () P (X ) P (log X log ) P (Y log )

Detaljer

SFB LØSNING PÅ EKSAMEN HØSTEN 2018

SFB LØSNING PÅ EKSAMEN HØSTEN 2018 SFB107111 - LØSNING PÅ EKSAMEN HØSTEN 018 Eksamen høsten 018 Oppgave 1 Anta at 70% av studentene spiller fotball og at 0% ikke spiller fotball. Anta at av de som spiller fotball så er det 40% som spiller

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer

Detaljer

for x 0 F X (x) = 0 ellers Figur 1: Parallellsystem med to komponenter Figur 2: Seriesystem med n komponenter

for x 0 F X (x) = 0 ellers Figur 1: Parallellsystem med to komponenter Figur 2: Seriesystem med n komponenter TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Innlevering 3, blokk II Dette er den første av to innleveringer i blokk 2. Denne øvingen skal oppsummere

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST0 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Torsdag 9. mai 994. Tid for eksamen: 09.00 5.00. Oppgavesettet

Detaljer

Prøvemidtveiseksamen TMA4240 Statistikk H2004

Prøvemidtveiseksamen TMA4240 Statistikk H2004 Prøvemidtveiseksamen TMA4240 Statistikk H2004 Lagt ut 21.09.2004, løsningsforslag tilgjengelig 04.10.2004. Tilatte hjelpemiddel: Bestemt enkel kalkulator, dvs. HP30S. Tabeller og formler i statistikk (Tapir).

Detaljer

TMA4240 Statistikk. Øving nummer 7. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

TMA4240 Statistikk. Øving nummer 7. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4240 Statistikk Vår 2008 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Oppgave Blandet drops a) Tippekupong På en tippekupong er det gitt 2 fotballkamper.

Detaljer

(Det tas forbehold om feil i løsningsforslaget.) Oppgave 1

(Det tas forbehold om feil i løsningsforslaget.) Oppgave 1 ÅMA1 Sannsylighetsregning og statistikk Løsningsforslag til eksamen vår 2011, s. 1 (Det tas forbehold om feil i løsningsforslaget.) Oppgave 1 a) Data: x 1, x 2, x 3, x 4, x 5 Gjennomsnitt: x = 1 5 (x 1

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Sara Martino a, Torstein Fjeldstad b Tlf: a 994 03 330, b 962 09 710 Eksamensdato: 28. november 2018 Eksamenstid

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland a, Sara Martino b Tlf: a 48 22 18 96, b 99 40 33 30 Eksamensdato: 30. november 2017 Eksamenstid

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER HØGSKOLEN I STAVANGER Avdeling for TEKNISK NATURVITEN- EKSAMEN I: TE199 SANNSYNLIGHETSREGNING MED STATISTIKK SKAPELIGE FAG VARIGHET: 4 TIMER DATO: 30. AUGUST 2003 TILLATTE HJELPEMIDLER: KALKULATOR OPPGAVESETTET

Detaljer

onsdag_19_09_2018_poisson_eksponential_normalfordelng_vikartime_bygg_v2.notebook

onsdag_19_09_2018_poisson_eksponential_normalfordelng_vikartime_bygg_v2.notebook September 19, The story so far Kap. 3: Diskrete stokastiske variable variablene er "diskrete", dvs. tellevariable som kun har verdier X = 0, X = 1, X = 2,... beregne forventningsverdi og varians for variabel

Detaljer

TMA4240 Statistikk H2010 Kapittel 5: Diskrete sannsynlighetsfordelinger : Uniform, binomisk, hypergeometrisk fordeling

TMA4240 Statistikk H2010 Kapittel 5: Diskrete sannsynlighetsfordelinger : Uniform, binomisk, hypergeometrisk fordeling TMA4240 Statistikk H2010 Kapittel 5: Diskrete sannsynlighetsfordelinger 5.1-5.4: Uniform, binomisk, hypergeometrisk fordeling Mette Langaas 2 Arbeidshverdag etter endt studium Studere et fenomen (f.eks.

Detaljer

STK1100 våren 2019 Mere om konfidensintevaller

STK1100 våren 2019 Mere om konfidensintevaller STK1100 våren 2019 Mere om konfidensintevaller Svarer til avsnitt 8.2 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Konfidensintervall for µ i store utvalg Anta at de stokastiske

Detaljer

Poissonprosesser og levetidsfordelinger

Poissonprosesser og levetidsfordelinger Poissonprosesser og levetidsfordelinger Poissonfordeling som grensetilfelle for binomisk fordeling La X være binomisk fordelt med fordeling P (X = x) = ( ) n p x (1 p) n x, for x = 0, 1,... n. (1) x Forventningsverdien

Detaljer

Eksamensoppgave i TMA4240 / TMA4245 Statistikk

Eksamensoppgave i TMA4240 / TMA4245 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 / TMA4245 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland Tlf: 48 22 18 96 Eksamensdato: 10. august 2017 Eksamenstid (fra til): 09.00-13.00

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST101 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Mandag 29. november 1993. Tid for eksamen: 09.00 15.00. Oppgavesettet

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 Statistisk inferens: 8.1: Tilfeldig utvalg 9.1-9.3: Estimering Mette Langaas Foreleses uke 40, 2010 2 Utfordring Ved en bedrift produseres en elektrisk komponent. Komponenten må

Detaljer

Utfordring. TMA4240 Statistikk H2010. Mette Langaas. Foreleses uke 40, 2010

Utfordring. TMA4240 Statistikk H2010. Mette Langaas. Foreleses uke 40, 2010 TMA4240 Statistikk H2010 Statistisk inferens: 8.1: Tilfeldig utvalg 9.1-9.3: Estimering Mette Langaas Foreleses uke 40, 2010 2 Utfordring Ved en bedrift produseres en elektrisk komponent. Komponenten må

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 Kapittel 6: Kontinuerlige sannsynlighetsfordelinger 6.4-5.7: Normalfordelingen, normalapproksimasjon, eksponensial og gamma. Mette Langaas Foreleses mandag 27. september 2010 2

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 11, blokk II I denne øvingen skal vi fokusere på hypotesetesting. Vi ønsker å gi dere

Detaljer

Andre sett med obligatoriske oppgaver i STK1110 høsten 2010

Andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Dette er det andre settet med obligatoriske oppgaver i STK1110 høsten 2010. Oppgavesettet består av fire oppgaver. Det er valgfritt om du vil

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren

ÅMA110 Sannsynlighetsregning med statistikk, våren ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Oppsummering Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 24. april Bjørn H. Auestad Oppsummering våren

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 0, blokk II Løsningsskisse Oppgave Surhetsgrad i ferskvann Eksamen august 00, oppgave av 3 a) En god estimator

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON130 Statistikk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 1306017 Sensur kunngjøres senest: 3006017 Tid for eksamen: kl 09:00 1:00 Oppgavesettet er på 5 sider Tillatte

Detaljer

UNIVERSITETET I OSLO Matematisk Institutt

UNIVERSITETET I OSLO Matematisk Institutt UNIVERSITETET I OSLO Matematisk Institutt Midtveiseksamen i: STK 1000: Innføring i anvendt statistikk Tid for eksamen: Onsdag 9. oktober 2013, 11:00 13:00 Hjelpemidler: Lærebok, ordliste for STK1000, godkjent

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806

Detaljer

Hypotesetesting. Hvorfor og hvordan? Gardermoen 21. april 2016 Ørnulf Borgan. H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf:

Hypotesetesting. Hvorfor og hvordan? Gardermoen 21. april 2016 Ørnulf Borgan. H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf: Hypotesetesting Hvorfor og hvordan? Gardermoen 21. april 2016 Ørnulf Borgan H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf: 22 400 400 www.aschehoug.no 1 Oversikt Sannsynlighetsregning og statistikk

Detaljer

TMA4240 Statistikk Eksamen desember 2015

TMA4240 Statistikk Eksamen desember 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4240 Statistikk Eksamen desember 15 Oppgave 1 La den kontinuerlige stokastiske variabelen X ha fordelingsfunksjon (sannsynlighetstetthet

Detaljer

TMA4240 Statistikk 2014

TMA4240 Statistikk 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 5, blokk I Løsningsskisse Oppgave 1 X og Y er uavhengige Poisson-fordelte stokastiske variable, X p(x;5 og Y p(y;1.

Detaljer

EKSAMENSOPPGAVE Georg Elvebakk NB! Det er ikke tillatt å levere inn kladd sammen med besvarelsen

EKSAMENSOPPGAVE Georg Elvebakk NB! Det er ikke tillatt å levere inn kladd sammen med besvarelsen Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-1001. Dato: 30.mai 2016. Klokkeslett: 09 13. Sted: Tillatte hjelpemidler: Teorifagbygget, «Tabeller og formler i statistikk» av Kvaløy

Detaljer

TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger

TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger Binomisk fordeling* ( ) n b(x; n, p) = p x (1 p) n x = x ( ) n p x q n x, x x = 0, 1, 2,..., n Fenomén: i) n forsøk. ii) Suksess/fiasko

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 3.3: Kontinuerlige sannsynlighetsfordelinger 4.1: Matematisk forventing (univariat del) Mette Langaas Foreleses mandag 6. september 2010 2 3.1 Stokastisk variabel (repetisjon)

Detaljer

3.1 Stokastisk variabel (repetisjon)

3.1 Stokastisk variabel (repetisjon) TMA4240 Statistikk H2010 3.3: Kontinuerlige sannsynlighetsfordelinger 4.1: Matematisk forventing (univariat del) Mette Langaas Foreleses mandag 6. september 2010 2 3.1 Stokastisk variabel (repetisjon)

Detaljer

EKSAMEN I EMNE TMA4265/SIF5072 STOKASTISKE PROSESSER Onsdag 10. august 2005 Tid: 09:00 13:00

EKSAMEN I EMNE TMA4265/SIF5072 STOKASTISKE PROSESSER Onsdag 10. august 2005 Tid: 09:00 13:00 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Bokmål Faglig kontakt under eksamen: Håkon Tjelmeland 73 59 35 38 EKSAMEN I EMNE TMA4265/SIF5072 STOKASTISKE PROSESSER

Detaljer

Oppgaven består av 10 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<, >>, Oppgave 1

Oppgaven består av 10 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<, >>, Oppgave 1 ECON 130 EKSAMEN 005 VÅR SENSORVEILEDNING Oppgaven består av 10 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom , Oppgave 1 I denne oppgaven kan du anta at

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 5 Løsningsskisse Oppgave 1 En lottorekke kan oppfattes som et ikke-ordnet utvalg på

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Fra første forelesning: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av

Detaljer

STK1100 våren Normalfordelingen. Normalfordelingen er den viktigste av alle sannsynlighetsfordelinger

STK1100 våren Normalfordelingen. Normalfordelingen er den viktigste av alle sannsynlighetsfordelinger STK00 våren 206 Normalfordelingen Svarer til avsnitt 4.3 i læreboka Geir Storvik Matematisk institutt Universitetet i Oslo Normalfordelingen er den viktigste av alle sannsynlighetsfordelinger Normalfordelingen

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>. 1 ECON213: EKSAMEN 217 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i

Detaljer

STK1100 våren Generell introduksjon. Omhandler delvis stoffet i avsnitt 1.1 i læreboka (resten av kapittel 1 blir gjennomgått ved behov)

STK1100 våren Generell introduksjon. Omhandler delvis stoffet i avsnitt 1.1 i læreboka (resten av kapittel 1 blir gjennomgått ved behov) STK1100 våren 2017 Generell introduksjon Omhandler delvis stoffet i avsnitt 1.1 i læreboka (resten av kapittel 1 blir gjennomgått ved behov) Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 «Overalt»

Detaljer

ÅMA110 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 2010, s. 1. Oppgave 1. Histogram over frekvenser.

ÅMA110 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 2010, s. 1. Oppgave 1. Histogram over frekvenser. ÅMA1 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 0, s. 1 (Det tas forbehold om feil i løsningsforslaget.) a) Gjennomsnitt: x = 1 Emp. standardavvik: Median: 1 (1.33 + 1.) = 1.35

Detaljer

Tyngdepunkt. Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at. Kapittel 4

Tyngdepunkt. Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at. Kapittel 4 3 Tyngdepunkt Kapittel 4 Forventningsverdi, varians, kovarians for én stokastisk variabel og funksjoner av stokastiske variabler TMA4240 H2006: Eirik Mo 2 4.1 Forventing til en stokastisk variabel DEF

Detaljer

FORMELSAMLING TIL STK1100 OG STK1110

FORMELSAMLING TIL STK1100 OG STK1110 FORMELSAMLING TIL STK1100 OG STK1110 (Versjon av 16. november 2009) 1. Sannsynlighet La A, B, A 1, A 2,...,B 1, B 2,... være begivenheter, dvs. delmengder av et utfallsrom Ω. a) Aksiomene: Et sannsynlighetsmål

Detaljer

EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Xxxdag xx. juni 2008 Tid: 09:0013:00

EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Xxxdag xx. juni 2008 Tid: 09:0013:00 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: NN EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Xxxdag xx. juni 2008 Tid: 09:0013:00 Tillatte

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 21. april Bjørn H. Auestad Oppsummering våren

Detaljer

Kapittel 6: Kontinuerlige sannsynlighetsfordelinger 6.4-5.7: Normalfordelingen, normalapproksimasjon, eksponensial og gamma.

Kapittel 6: Kontinuerlige sannsynlighetsfordelinger 6.4-5.7: Normalfordelingen, normalapproksimasjon, eksponensial og gamma. TMA4240 Statistikk H2010 Kapittel 6: Kontinuerlige sannsynlighetsfordelinger 6.4-5.7: Normalfordelingen, normalapproksimasjon, eksponensial og gamma. Mette Langaas Foreleses mandag 27. september 2010 2

Detaljer

ECON Statistikk 1 Forelesning 4: Stokastiske variable, fordelinger. Jo Thori Lind

ECON Statistikk 1 Forelesning 4: Stokastiske variable, fordelinger. Jo Thori Lind ECON2130 - Statistikk 1 Forelesning 4: Stokastiske variable, fordelinger Jo Thori Lind j.t.lind@econ.uio.no Oversikt 1. Betinget sannsynlighet 2. Stokastiske variable 3. Forventning og varians 4. Regneregler

Detaljer

Kap. 6, Kontinuerlege Sannsynsfordelingar

Kap. 6, Kontinuerlege Sannsynsfordelingar Kapittel 6, Kontinuerlege Sannsynsfordelingar Sjå på eit utval av ofte brukte kontinuerlege sannsynsfordelingar Uniform I går Normal I går Eksponensial I dag Gamma I dag Kji-kvadrat I dag Nokre eigenskapar

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 9 Løsningsskisse Oppgave 1 a) Vi lar her Y være antall fugler som kolliderer med vindmølla i løpet av den gitte

Detaljer

TMA4240 Statistikk 2014

TMA4240 Statistikk 2014 TMA4240 Statistikk 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 12, blokk II Oppgave 1 På ein av vegane inn til Trondheim er UP interessert i å måle effekten

Detaljer

Observatorar og utvalsfordeling. Torstein Fjeldstad Institutt for matematiske fag, NTNU

Observatorar og utvalsfordeling. Torstein Fjeldstad Institutt for matematiske fag, NTNU Observatorar og utvalsfordeling Torstein Fjeldstad Institutt for matematiske fag, NTNU 08.10.2018 I dag Til no i emnet Observatorar Utvalsfordelingar Sentralgrenseteoremet 2 Til no i emnet definisjon av

Detaljer

TMA4240 Statistikk Høst 2007

TMA4240 Statistikk Høst 2007 TMA4240 Statistikk Høst 2007 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b4 Løsningsskisse Oppgave 1 Eksamen juni 1999, oppgave 3 av 3 a) µ populasjonsgjennomsnitt,

Detaljer

TMA4245 Statistikk. Innlevering 3. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

TMA4245 Statistikk. Innlevering 3. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Vår 2017 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Innlevering 3 Dette er den første av to innleveringer i blokk 2 Denne øvingen skal oppsummere pensum

Detaljer

Eksamensoppgave i Løsningsskisse TMA4240 Statistikk

Eksamensoppgave i Løsningsskisse TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i Løsningsskisse TMA440 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland a, Sara Martino b Tlf: a 48 18 96, b 99 40 33 30 Eksamensdato: 30. november

Detaljer

Eksamensoppgave i ST0103 Brukerkurs i statistikk

Eksamensoppgave i ST0103 Brukerkurs i statistikk Institutt for matematiske fag Eksamensoppgave i ST0103 Brukerkurs i statistikk Faglig kontakt under eksamen: Jarle Tufto Tlf: 99 70 55 19 Eksamensdato: 3. desember 2016 Eksamenstid (fra til): 09:00-13:00

Detaljer

EKSAMEN I EMNE SIF5072 STOKASTISKE PROSESSER Onsdag 31. juli 2002 Tid: 09:00 14:00

EKSAMEN I EMNE SIF5072 STOKASTISKE PROSESSER Onsdag 31. juli 2002 Tid: 09:00 14:00 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Bokmål Faglig kontakt under eksamen: Bo Lindqvist 73 59 35 32 EKSAMEN I EMNE SIF5072 STOKASTISKE PROSESSER Onsdag

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: Eksamensdag: Torsdag 2. juni 24 Tid for eksamen: 4.3 8.3 Oppgavesettet er på 5 sider. Vedlegg: Tillatte hjelpemidler: STK429

Detaljer

Løsning eksamen desember 2016

Løsning eksamen desember 2016 Løsning eksamen desember 016 Oppgave 1 a) En drone har to uavhengige motorer. Vi innfører hendelsene A: motor 1 svikter B: motor svikter Dronen er avhengig av at begge virker, slik at sannsynligheten for

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>. 1 ECON130: EKSAMEN 014 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variason i vanskelighetsgrad. Svarene er gitt i >. Oppgave 1 Fra en eldre

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 6, blokk I Løsningsskisse Oppgave 1 Vi antar X er normalfordelt, X N(3315, 55 2. Ved bruk av formelheftet finner

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 Kapittel 5: Diskrete sannsynlighetsfordelinger 5.5-5.6: Negativ binomisk, geometrisk, Poisson Mette Langaas Foreleses mandag 20. september 2010 2 Kabel En kabel består av mange

Detaljer

b) Hva er sannsynligheten for at re tilfeldig utvalgte bilmotorer alle har en levetid på minst 17 år?

b) Hva er sannsynligheten for at re tilfeldig utvalgte bilmotorer alle har en levetid på minst 17 år? Oppgave 1 Levetiden T til en bestemt type bilmotor er normalfordelt med forventning µ = 15 år og standardavvik σ = 3 år. a) Vis at sannsynligheten for at en tilfeldig utvalgt bilmotor har en levetid på

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b5 Løsningsskisse Oppgave 1 Vi ønsker å finne ut om et nytt serum kan stanse leukemi.

Detaljer

TMA4240 Statistikk Høst 2008

TMA4240 Statistikk Høst 2008 TMA4240 Statistikk Høst 2008 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Oppgave 1 Tippekonkurranse Denne oppgaven er ment som en kjapp test på hva du har

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Deleksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 13. oktober 2010. Tid for eksamen: 15:00 17:00. Oppgavesettet

Detaljer

DEL 1 GRUNNLEGGENDE STATISTIKK

DEL 1 GRUNNLEGGENDE STATISTIKK INNHOLD 1 INNLEDNING 15 1.1 Parallelle verdener........................... 18 1.2 Telle gunstige.............................. 20 1.3 Regneverktøy og webstøtte....................... 22 1.4 Oppgaver................................

Detaljer

Eksamensoppgåve i TMA4240 / TMA4245 Statistikk

Eksamensoppgåve i TMA4240 / TMA4245 Statistikk Institutt for matematiske fag Eksamensoppgåve i TMA4240 / TMA4245 Statistikk Fagleg kontakt under eksamen: Håkon Tjelmeland Tlf: 48 22 18 96 Eksamensdato: 10. august 2017 Eksamenstid (frå til): 09.00-13.00

Detaljer

Eksamensoppgave i ST1201/ST6201 Statistiske metoder

Eksamensoppgave i ST1201/ST6201 Statistiske metoder Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 20. desember 2016 Eksamenstid (fra til): 09:00

Detaljer

Løsningsforslag, eksamen statistikk, juni 2015

Løsningsforslag, eksamen statistikk, juni 2015 Løsningsforslag, eksamen statistikk, juni 0 Oppgave 1 Siden det spørres om tall fra et intervall, som oppgaven viser kan være et reelle, er det tydelig at tallene er tatt fra en kontinuerlig fordeling.

Detaljer

Formelsamling i medisinsk statistikk

Formelsamling i medisinsk statistikk Formelsamling i medisinsk statistikk Versjon av 6. mai 208 Dette er en formelsamling til O. O. Aalen (red.): Statistiske metoder i medisin og helsefag, Gyldendal, 208. Gjennomsnitt x = n (x + x 2 + x 3

Detaljer

Notasjon. Løsninger. Problem. Kapittel 7

Notasjon. Løsninger. Problem. Kapittel 7 3 Notasjon Kapittel 7 Funksjoner av stokastiske variabler Har n stokastiske variabler, X 1, X 2,..., X n, med kjent fordeling f( 1, 2,..., n ) og kumulativ fordeling F( 1, 2,..., n ). Ser på Y = u(x 1,

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON2130 - Statistikk 1 Eksamensdag: 19.06.2014 Tid for eksamen: kl. 09:00 12:00 Oppgavesettet er på 4 sider UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Tillatte hjelpemidler: Alle trykte

Detaljer

Kapittel 2: Hendelser

Kapittel 2: Hendelser Kapittel 2: Hendelser FENOMEN Eksperiment Utfall Utfallsrom Eksperiment. Utfall. Eksperiment Utfall Hendelse Sannsynlighet: egenskaper, gunstige vs. mulige, relativ frekvens Sannsynlighet for mer enn en

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: STK Sannsynlighetsregning og statistisk modellering Eksamensdag: Mandag 4. mars 26 Tid for eksamen: 5. 7. Oppgavesettet er

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4 ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 27. mars Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer

Kap. 6, Kontinuerlege Sannsynsfordelingar

Kap. 6, Kontinuerlege Sannsynsfordelingar Kapittel 6, Kontinuerlege Sannsynsfordelingar Sjå på eit utval av ofte brukte kontinuerlege sannsynsfordelingar Uniform Onsdag Normal Onsdag Eksponensial I dag Gamma I dag Kji-kvadrat I dag Student-T (Kap

Detaljer

Fasit for tilleggsoppgaver

Fasit for tilleggsoppgaver Fasit for tilleggsoppgaver Uke 5 Oppgave: Gitt en rekke med observasjoner x i (i = 1,, 3,, n), definerer vi variansen til x i som gjennomsnittlig kvadratavvik fra gjennomsnittet, m.a.o. Var(x i ) = (x

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Deleksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 12. oktober 2011. Tid for eksamen: 15:00 17:00. Oppgavesettet

Detaljer

Eksamensoppgave i ST0103 Brukerkurs i statistikk

Eksamensoppgave i ST0103 Brukerkurs i statistikk Institutt for matematiske fag Eksamensoppgave i ST0103 Brukerkurs i statistikk Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: August 2018 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte

Detaljer

Kvantifisering av operasjonell risiko basert på kombinering av hendelsesdata og subjektive risikovurderinger

Kvantifisering av operasjonell risiko basert på kombinering av hendelsesdata og subjektive risikovurderinger Kvantifisering av operasjonell risiko basert på kombinering av hendelsesdata og subjektive risikovurderinger Arne Bang Huseby 1 and Jan Thomsen 2 1 University of Oslo, Norway 2 Norges Bank Investment Management,

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 3 Diskrete tilfeldige variable. Diskrete tilfeldige variable, varians (kp. 3.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 3 Diskrete tilfeldige variable. Diskrete tilfeldige variable, varians (kp. 3. ÅMA Sannsynlighetsregning med statistikk, våren 8 Kp. Diskrete tilfeldige variable Kp. Diskrete tilfeldige variable Har sett på (tidligere: begrep/definisjoner; tilfeldig (stokastisk variabel sannsynlighetsfordeling

Detaljer

Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering

Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering TMA4245 Statistikk Kapittel 8.1-8.5. Kapittel 9.1-9.3+9.15 Turid.Follestad@math.ntnu.no p.1/21 Har sett

Detaljer

Binomisk sannsynlighetsfunksjon

Binomisk sannsynlighetsfunksjon ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Binomisk sannsynlighetsfunksjon La det være n forsøk, sannsynlighet p for suksess og sannsynlighet q for fiasko. Den tilfeldige

Detaljer