Differensiallikninger definisjoner, eksempler og litt om løsning

Størrelse: px
Begynne med side:

Download "Differensiallikninger definisjoner, eksempler og litt om løsning"

Transkript

1 Differensiallikninger definisjoner, eksempler og litt om løsning MEK1100

2 Differensiallikninger Definsjon, litt om generelle egenskaper Noen få anvendte eksempler Teknikker for løsning i formel 3-4 spesielle tilfeller Numeriske teknikker Kan nesten alltid benyttes Differensiallikninger er svært viktig for FAM, MIT og andre programmer Mesteparten av stoffet er hentet fra Kalkulus

3 Planlagt rekkefølge 1 Hva er en differensiallikning? 2 Noen eksempler på differensiallikninger fra kjemi og fysikk 3 Løsning av separable likninger av første grad 4 Løsning av lineær førsteordenslikning Kalkulus, kap Løsning av noen av eksemplene 6 Numerisk løsning av likninger av første orden Kalkulus, kap Sett av likninger 8 Partielle likninger Henvisninger til feks. sats i Kalkulus skrives K

4 NYTT TEMA Om likninger

5 Eksempler på likninger Algebraisk likning En algebraisk likning har ett (eller flere) tall som ukjente. Eksempel: x 2 x 6 = 0. Løsningene x = 2 og x = 3 er de verdiene for x som oppfyller relasjonen.

6 Hva er en differensialikning? En differensiallikning er en relasjon mellom en funksjon og dens deriverte. Funksjonen er den ukjente. Eksempel 1 y + y = 0 for x R En løsning y(x) oppfyller denne relasjonen for alle reelle x. Deriverte tom. orden 1 i relasjon førsteordenslikning Eksempel 2 y + y + xy = 0 for x R, x 0 Deriverte tom. orden 2 i relasjon andreordenslikning

7 Testing av ved innsetting, y + y = 0, x R Er y(x) = x en løsning? y (x) = 1 y + y = x = 0 Oppfylt bare for x = 1 y(x) = x er ikke løsning Er y(x) = e x en løsning? y (x) = e x y + y = 0 e x + e x = 0 0 = 0 Relasjon oppfylt for alle x y(x) = e x er en løsning NB: det finnes flere

8 NYTT TEMA Anvendelser av differensiallikninger. Eksempler fra kjemi og fysikk

9 Hvorfor studere differensiallikninger? Differensiallikninger er helt sentrale for fysiske fag og ingeniørfag. Viktig allerede i FYS-MEK 1110 Klasse av eksempler Hvordan en tilstand endrer seg i tiden avhenger av tilstanden selv. Kan tilstanden beskrives ved en funksjon av tiden, y(t), kan endringen beskrives ved y (t) siden dette er endringsraten av y mhp. t. Resultatet er en relasjon mellom y(t) og y (t). Navn på variabler: bruk av y for ukjent funksjon og t eller x for argument er tilfeldig. I anvendte eksempler velges ofte beskrivende navn.

10 Eksempel A: nedbrytning av radioaktivt stoff Vi har en masse M(t) av et radiokativt stoff. Hvert atom har en viss sannsynlighet for å forvandles (emmitere α eller β partikler) i et gitt tidsrom. Endringsraten av massen er da proposjonal med massen selv. Dersom vi starter med masse M 0 har vi det matematisk problemet M = km, M(0) = M 0 En differensiallikning for M i t og en initialbetingelse, eller startbetingelse, ved t = 0. Konstanten k beskriver hvor ustabilt stoffet er. Kalkulus, eksempel

11 ... Klassifisering: M = km eller M + km = 0 Første orden Lineær Konstante koeffisienter Homogen: alle ledd inneholder M (litt løst) Likninger av denne typen skal vi snart løse.

12 Eksempel B: Kjemisk reaksjon Oksydasjon av nitrogenmonoksyd (NO) til nitrogendioksyd (NO 2 ) Reaksjonslikning (viser omsetning i prosess) 2NO + O 2 2NO 2 To NO molekyler reagerer med ett O 2 til NO 2. Vi antar at alt foregår i et lukket volum, V, med god omrøring. Konsentrasjoner: C NO (t), C O2 (t), C NO2 (t). (molekyler per volum) Reaksjonsrate er proposjonal med C 2 NO C O 2 ( sannsynlighet for sammenstøt av 2 NO og ett O 2 molekyl). dc NO dt der k er en konstant. Det inngår ennå to ukjente. = kc 2 NO C O 2,

13 ... Bevaring av masse (V er totalt volum) Startkonsentrasjoner: C NO (0) = a, C O2 (0) = b Forbruk av NO = 2 (Forbruk av O 2 ) V(a C NO ) = 2V(b C O2 ) som gir C O2 = B C NO der B = b 1 2 a. Insatt i reaksjonslikning fra forrige lysark: dc NO dt = kc 2 NO (B C NO), C NO (0) = a Klassifisering: Første orden, ikkelineær, separabel (forklart senere) Denne kan vi også regne på (er litt slitsom ).

14 Eksempel C: Bevegelse av partikkel langs linje Newton s 2 lov, rettlinjet bevegelse ma = F, der m = masse, a = akselerasjon og F = kraft. Posisjon gis som y(t) Fart er endringsrate av posisjon dy dt Akselerasjon er endringsrate av fart a d dt (dy dt ) = d2 y dt 2. Hvis kraft kan uttrykkes ved posisjon, fart og tid: F = F(y, dy dt, t) Newton s 2 lov m d2 y dy = F(y, dt2 dt, t) Klassifisering: Differensiallikning av orden 2.

15 Eksempel C: Konkret tilfelle Legeme i fritt fall (y måles vertikalt nedover) ( y ) 2 F = mg C t, tyngde luftmotstand, Konstanten C avhenger av legemets størrelse og form. Innsetting i likning på forrige lysark d 2 y dt 2 = g C m Klassifisering: Andreordens, ikkelineær (Kan skrives om til separabel) ( ) dy 2 dt

16 NYTT TEMA Løsning av førsteordens lineær likning i formel

17 Førsteordenslikninger Generell førsteordenslikning y = F(x, y), der F er et gitt uttrykk av to variable (x og y). Separabel førsteordenslikning q(y)y = p(x), Svarer til F(x, y) = p(x)/q(y). Løsning i formel. Lineær førsteordenslikning y + f (x)y = g(x). Svarer til F(x, y) = g(x) f (x)y.løsning i formel.

18 Lineær, homogen likning av orden 1 Fellesnevner av de to nederste typer på forrige lysark y + f (x)y = 0 Vi skriver den om til (fri variabel x) som har form: 1 y y = f (x) Funksjon av y ganger y = funksjon av x Likninger som kan skrives slik kalles separabel Vi tar den videre regning i små steg

19 ... 1 y y = f (x) Vi integrerer begge sider mhp. x 1 y y dx = f (x)dx. Poenget er at vi med en gang kan subsitituere y dx = dy 1 y y dx = dy y = ln y + C, der C er en integrasjonskonstant. Derved ln y + C = f (x)dx

20 ... Vi anvender eksponensialfunksjonen på begge sider e ln y +C = e R f (x)dx, bruker e ln y = y og løser opp y får vi y = e C e R f (x)dx y = Ae R f (x)dx, ( ) der A = ±e C er en reell konstant, som kan være både positiv og negativ. Uttrykk svarer til K for g 0.

21 Initialbetingelse Entydig skrevet form av (*) kan vi få ved å velge det ubestemte integralet y = Ae for en gitt a. Initialbetingelsen y(a) = y a gir da y = y a e xr f (t)dt a, xr f (t)dt a Eksplisitt uttrykk dersom f kan integreres i formel.

22 Generell separabel likning (K. kap. 10.4) Form Integrasjon gir q(y)y = p(x). q(y)y dx q(y)dy = p(x)dx. Dersom Q og P er antideriverte av hhv. q og p Q(y) = P(x) + C (SI), der C er en integrasjonskonstant.

23 Initialbetingelse mm. Q(y) = P(x) + C (SI), Initialbetingelse y(a) = y a Q(y a ) = P(a) + C C = Q(y a ) P(a) Løsning i eksplisitt formel forusetter 1 Q og P kan finnes 2 y må kunne løses fra (SI). Trinn 1 og 2 kan alternativt utføres numerisk. Ofte kan viktig informasjon finnes fra løsningen skrevet på den implistte formen (SI).

24 Eksempel C; løsning Legeme i fall med luftmotstand ( fallskjermhopper ) d 2 y dt 2 = g C m ( ) dy 2 dt der y er posisjon. y selv inngår ikke, bytter avhengig variabel der u er farten. Likning blir da u = dy dt, du dt = g C m u2,

25 ... eller du dt g C = 1. mu2 Separabel likning q(y)y = p(x) med y u, x t, p 1, q = 1/(g C m u2 ). Denne gangen bytter vi ikke navn på variable! Initialbetingelse Ved t=0 starter vi fra ro u(0) = 0. Sammen med likningen ovenfor bestemmer denne betingelsen bevegelsen.

26 ... Integrasjon gir du dt g C m u2dt = dt = t + B, der B er en integrasjonskonstant. Integrasjon av venstresiden gir du dt g C m u2dt = = du g C m u2 1 g + C ln 2 g C gc m m u m u der B 1 kan settes lik 0. (utregning kommer senere)) + B 1,

27 gc m g + C m ln u = t + B, g C m u ( ) der vi har antatt g C/mu > 0. Innsetting u(0) = 0 gir B = 0. Vi kan løse u fra (**). Multiplikasjon med 2 gc, anvendelse av eksponentialfunksjonen på begge sider gir g + C m u q 2 gc = e m t g C m u Ganger vi opp med nevneren får vi en lineær likning i u som lett løses.

28 ... u = mg C e q gc m t Vi ser at u mg C og u 0 når t. Sjekk t Likning u = g C m u2. Insetting u = 0 gir u = mg C. Fysisk beskrivelse: farten øker inntil luftmotstand balanserer tyngden.

29 ... u mg C terminalhast. t Små t: tyngden dominerer u øker lineært. Store t: u går mot terminalhastighet. Vi kan finne y(t) ved å integrere u.

30 Utregning av integral* Delbrøkoppspalting du g C = 1 m u2 2 g = 1 2 = 1 2 gc m gc m du + g + C m u du g C m u ( C ) ln g + m u C ln g m u + B 1 g + C ln g C m u m u + B 1,

31 Inhomogen, lineær likning av orden 1 Alternativ til bruk av integrerende faktor i K. kap y + f (x)y = g(x) (IN) Knep: variasjon av parameteren Vi kjenner løsningen av den homogene delen nemlig y = u = e R f (x)dx Vi skriver løsningen av (IN) der v er den nye ukjente. y + f (x)y = 0, y(x) = v(x)u(x)

32 ... Substitusjon y(x) = v(x)u(x) i y + f (x)y = g(x) (IN) gir uv + u v + fuv = g Fordi u løser den homogene likningen kansellerer de siste to ledd på venstre side v = g u v = g(x)er f (x)dx dx

33 ... For y kan vi da skrive (K ) y = e R ( ) f (x)dx f (x)dx g(x)er dx + C, Alle løsninger må ha denne formen. Dersom (IN) skal løses med y(c) = d utføres integraler fra c til x (u = e R x c f (t)dt ) og eneste mulige løsning er (K ) xr y = e f (t)dt x R t c g(t)e c f (s)ds dt + d, c Vist: y + f (x)y = g(x), x I, y(c) = d har entydig løsning når f og g er integrerbare.

34 Alternativ løsning lineær likning av orden 1. Kalkulus, kap y + f (x)y = g(x) (IN) Skal oppfylles i et intervall Knep: integrerende faktor En integrerende faktor er en funksjon vi ganger likningen med, slik at vi kan integrere den opp direkte. Er oftest vanskelig (eller umulig) å finne. Opp av hatten kommer faktoren som virker for (IN) e F(x) der F er en antiderivert til f ; dvs. F = f.

35 Bruk av integrerende faktor Multipliserer (IN) med faktor e F(x) der F = f e F(x) y + e F(x) f (x)y = e F(x) g(x) For andre ledd har vi e F(x) f (x) = e F(x) F (x) = (e F(x) ) ( e F(x) y + e F(x)) y = e F(x) g(x) Produktregel, brukt baklengs, gir så Nå kan begge sider integreres ( e F(x) y) = e F(x) g(x)

36 ... Integrasjon gir e F(x) y = e F(x) g(x)dx + C Der C er en vilkårlig konstant Alle løsninger av likningen vår kan da skrives Setning K y = e F(x) ( ) e F(x) g(x)dx + C Merk: Det kan være umulig å løse integralet i K i formel; Likevel sier vi at differensiallikningen er løst

37 Eksempel A: løsning Nedbrytning av radioaktivt stoff M = km, M(0) = M 0 Klassifisering: Første orden, lineær, konst. koeff., homogen. Fri variabel: tid betegnes med x. Svarer til y + f (x)y = 0, med f k og y M. Kan bruke K , men starter fra Her:f (x) = k og y(x) = Ce kx. y = e R f (x)dx.

38 ... Løsning av differensiallikning M(x) = Ce kx Initialbetingelse gir M 0 = M(0) = C, M(x) = M 0 e kx Halveringstid, t 1, er definert ved M(T + t 1 = 2 2)/M(T) = M(T + t 1 ) 2 M(T) Bruk av logaritmen på begge sider t 1 2 Merk: svar uavhengig av T. = M 0e k(t+t 1 2 ) M 0 e kt = e kt 1 2 = log(2)/k

39 Kommentar til løsning av y + ky = 0 Homogen likning av første orden med konstant koeffisient har en eksponentialfunksjon y = Ce kx som løsning. Dette henger sammen med at eksponentialfunksjonen e αx har α ganger seg selv som derivert. Vi setter y = Ce αx inn i likning 0 = y + ky = Cαe αx + kce αx. Begge ledd har formen: konstant e αx. For α = k vil leddene nulle hverandre ut og vi har en løsning. Ekspontialfunksjonen (og sin og cos) spiller tilsvarende roller også for andre lineære likninger med konstante koeffisienter.

40 Likninger med konstante koeffissienter Andre ordens likning (behandlet i Kalkulus) y + by + cy = 0 Orden n: y (n) + b n 1 y (n 1) +...b 0 y = 0 Vi prøver y = e kx, der k C. Løsning når k n + b n 1 k n b 0 = 0, n ulike røtter n løsninger. k dobbel rot xe kx også løsning etc Kompleks k: k også rot; DeMoivres formel relle løsninger Lineær superposisjon

41 NYTT TEMA Numerisk løsning

42 Diskretsering Utgangspunkt: differensiallikning for y(x) y tilnærmes i diskrete punkter x n = nh: y(x n ) y n. Tilnærmelse til y representeres ved følge (sample). Settet av x-verdier {x n } kalles ofte gitter el. grid y y 3 y 0 y 1 y 2 h x x 0 x 1 x 2 x 3 y 1, y 2, y 3... beregnes helst en for en i rekkefølge

43 Eulers metode (K ) Likning: y (x) = f (x, y(x)), initialbetingelse: y(0) = y 0 I punkt x n = nh tilnærmer vi den deriverte med ensidig differens y y(x = lim n+ x) y(x n) x 0 x y n+1 y n h, og setter inn i likning for x = x n y n+1 y n h = f (x n, y n ) y n+1 = y n + hf (x n, y n ). Neste y er nåværende y pluss h ganger nåværende endringsrate I rekkefølge beregnes y 1, y 2, y 3... Eksempel på endelig differense metode (deriverte i likning byttes ut med differenser)

44 Demonstrasjonseksempel i figur Likningsett: y = ay, y(0) = y 0 Formelløsning: y(x) = y 0 e ax For hver y 0 får vi en unik løsning Utregningssekvens initialbet. y 0 er gitt y 1 = y 0 + hay 0 y 1 beregnes y 2 = y 1 + hay 1 y 2 beregnes... y i+1 = y i + hay i y i+1 beregnes... (Merk: ay i stigningsrate ved x i = ih.) Metoden er veldig enkel!

45 Eulers metode; geometrisk tolkning y y(x) y 3 y 0 y 1 y 2 h x x 0 x 1 x 2 x 3 Tynne blå linjer er løsninger av y = ay med andre startverdier. Numerisk løsning: skritter fram langs tangenter til løsningskurver. I illustrert tilfelle (y = ay) øker feil systematisk.

46 Midtpunktmetoder I Eulers metode bruker vi asymmetrisk differens for derivert Denne er unøyaktig. Midtpunktformel y(x n + h) y(x n ) h y (x n ) = f (x n, y n ). y(x n + h) y(x n ) h y (x n + 1 h) =? 2 er mer nøyaktig. Men, hvilket uttrykk skal inn på høyresiden?

47 Forsøk 1; ekte midtpunktmetode* Vi midler y n og y n+1 i utregning av endringsrate y (x n h) f (x n h, 1 2 (y n + y n+1 )) Derved y n+1 y n = f (x n + 1 h 2 h, 1 2 (y n + y n+1 )). Utregningssekvens initialbet. y 0 er gitt y 1 y 0 = hf ( 1 2 h, 1 2 (y 0 + y 1 )) Likning løses for y 1 y 2 y 1 = hf ( 3h 2, 1 2 (y 1 + y 2 )) Likning løses for y 2... Likninger for y 1, y 2,... løses lett bare dersom f er enkel, feks. lineær Generelt må likningene løses numerisk; tungvint!

48 Forsøk 2: Eulers midtpunktmetode (K ) Prosedyre for å regne ut y n+1 fra y n 1 Bruker Eulers metode 1 2 h fram: ŷ n = y n hf (x n, y n ) Vi kan si: ŷ n y(x n h) 2 Kvasi-midtpunktformel: y n+1 = y n + hf (x n h, ŷ n) Poeng: Vi løser ingen likninger. ŷ n, deretter y n+1 beregnes ved eksplisitte uttrykk. Bedre enn Eulers metode. Brukes ofte i forbindelse med partielle differensiallikninger (den ukjente er en funksjon av flere variable), men sjelden for ordinære differensiallikninger.

49 Eulers midpunktmetode; grafisk framstilling y y(x) y 1 y 0 ŷ 0 h x x 0 x 1 Eksempel: første steg. Eulers metode 1 2 h fram til ŷ 0 Stigning i løsningskurve gjennom ( 1 2 h, ŷ 0) brukes for å finne y 1. (Rødt + tilsvarer y 1 funnet ved Eulers metode)

50 Eulers metode for demonstrasjonseksempel (K ) Ser igjen på f (x, y) = ay dvs. likning og løsning y = ay, y(0) = y 0 y 0 e ax. Eulers metode gir y n+1 = y n + hf (x n, y n ) = (1 + ah)y n. y n bestemmes altså fra differenslikningen y n+1 = (1 + ah)y n. Klassifisering: Første orden, lineær, homogen; Løses lett i formel Generelt for endelig differens metoder: numerisk løsning av differensiallikninger innebærer å simulere differenslikninger

51 Eulers metode med forskjellige h y y(x) x y = 0.6y, y(0) = 1 simulert for x [0, 3] med 2, 4 og 20 punkter.

52 Andre metoder Slektninger av Eulers midtpunkt.metode Runge-Kutta metoder; mye brukt Adam Bashforth Moulton Siden vi nettopp har hatt Taylorutvikling... Eksempel y = e xy, Derivasjoner y = (e xy ) = e xy (xy) = e xy (y + xy ) y = (y ) = e xy (y + xy ) 2 + e xy (2y + xy )... Har vi y ved en x kan deriverte av økende orden regnes ut etter tur Taylorrekkeutvikling gir y n+1 = y(x n + h) = y(x n ) + hy (x n ) h2 y (x n ) +...

53 NYTT TEMA Sett av differensiallikninger

54 Koblede differensiallikninger med flere ukjente To likninger av første orden der ukjente er y(t) og z(t). M likninger av første orden der ukjente er y (1) (t)...y (M) (t). y = F(t, y, z), z = G(t, y, z), dy (1) dt = F (1) (t, y (1)...,y (M) ), dy (2) dt = F (2) (t, y (1)...,y (M) ),... dy (M) dt = F (M) (t, y (1)...,y (M) ),

55 Vektorform y = (y (1), y (2)...) Eksempel Hastighet v(t, r) Partikkelbaner y = F(t, y) r = v(t, r) Løses med initialbetingelse r(0) = r 0

56 Omskrivning; to førsteordens 1 andreordens* Eksempel; lineært sett, konst. koeff. y = ay + bz, z = cy + dz, Den øverste gir (b 0) z = (y ay)/b. Innsatt i den nederste z = cy + dz ( y ) ay ( y ) ay = cy + d b b y ay = (bc ad)y + dy y = (a + d)y + (bc ad)y

57 Differensiallikning av andre orden y = F(t, y, y ), y(0) = b 0, y (0) = b 1 (1) Vi har formler for løsning når likningen er lineær med konstante koeffisienter, dvs. F = f (t) py qy, der p og q er konstante. Kalkulus, kap. 10.5,6 Ellers: Numerisk løsning (stort sett)

58 Omskrivning til 2 likninger av orden 1 Definerer z = y da er z = y og Vi får da 2 førsteordenslikninger y = F(t, y, y ) z = F(x, y, z) y = z z = F(t, y, z) med y(0) = b 0, z(0) = y (0) = b 1. Generelt kan en likning av orden n gjøres om til n likninger av orden 1 Dette er standard framgangsmåte ved numerisk løsning med initialverdier; både Eulermetoder og Runge-Kutta kan lett generaliseres til sett av førsteordenslikninger

59 Numerisk løsning av sett av likninger Eulers metode for en ukjent y (t) = f (t, y(t)), diskretisering t n = nh, y(t n ) y n y n+1 = y n + hf (t n, y n ) Eulers metode for likningssett y (t) = f (t, y(t)), diskretisering t n = nh, y(t n ) y n y n+1 = y n + h f (t n, y n ) Mange metoder for førestordenslikninger generaliserer umiddelbart til sett av likninger. Likninger av høyere orden gjøres om til sett av førsteordens

60 Autonome likninger (t inngår ikke eksplisitt) Eksempler; partikkelbaner i stasjonær strøm Strømlinjer x (t) = u(x, y), y (t) = v(x, y), Reduksjon av autonome likninger: Velger, feks., x som fri variabel dy dx = y v(x, y) x = u(x, y) Førsteordenslikning for y(x). Kan skrives u(x, y)dy = v(x, y)dx Kan bare integreres opp for visse u, v. Feks. vil u = u(y), v = v(x) gi separabel likning

Differensiallikninger definisjoner, eksempler og litt om løsning

Differensiallikninger definisjoner, eksempler og litt om løsning Differensiallikninger definisjoner, eksempler og litt om løsning MAT-INF1100 Differensiallikninger i MAT-INF1100 Definsjon, litt om generelle egenskaper Noen få anvendte eksempler Teknikker for løsning

Detaljer

Definisjoner og løsning i formel

Definisjoner og løsning i formel Differensiallikninger Definisjoner og løsning i formel Forelesning uke 45, 2006 MAT-INF1100 Difflik. p. 1 Differensiallikninger Struktur i presentasjonen Lysarkene gjennomgår hovedpunkter fra Kalkulus

Detaljer

Numerisk løsning av differensiallikninger Eulers metode,eulers m

Numerisk løsning av differensiallikninger Eulers metode,eulers m Numerisk løsning av differensiallikninger Eulers metode, Eulers midtpunktmetode, Runge Kuttas metode, Taylorrekkeutvikling* og Likninger av andre orden MAT-INF1100 Diskretsering Utgangspunkt: differensiallikning

Detaljer

og variasjon av parameterene Oppsummering.

og variasjon av parameterene Oppsummering. Inhomogene differensiallikninger av andre orden Ubestemte koeffisienters metode og variasjon av parameterene Oppsummering. MAT-INF1100 October 30, 2007 NYTT TEMA Innhomogene likninger: Oppdeling i partikulær

Detaljer

Definisjoner og løsning i formel

Definisjoner og løsning i formel Dilik. p.1/24 Dierensiallikninger Deinisjoner og løsning i ormel Forelesning uke 45, 2005 MA-INF1100 Dilik. p.2/24 Dierensiallikninger Struktur i presentasjonen Lysarkene gjennomgår hovedpunkter ra alkulus

Detaljer

Differensialligninger

Differensialligninger Oslo, 30. januar, 2009 (http://folk.uio.no/lindstro/diffoslonyprint.pdf) Vanlige ligninger og differensialligninger En vanlig (algebraisk) ligning uttrykker en sammenheng mellom det ukjente tallet x og

Detaljer

3.1 Første ordens lineære difflikninger. y + f(x)y = g(x) (3.1)

3.1 Første ordens lineære difflikninger. y + f(x)y = g(x) (3.1) Kapittel 3 Differensiallikninger 3.1 Første ordens lineære difflikninger Definisjon 3.1 En første ordens lineær difflikning er en likning på formen y + f(x)y = g(x) (3.1) der f og g er kjente funksjoner.

Detaljer

MA1410: Analyse - Notat om differensiallikninger

MA1410: Analyse - Notat om differensiallikninger Høgskolen i Agder Avdeling for realfag MA40: Analyse - Notat om differensiallikninger Dato: Høsten 2000 Merknader: Dette notatet kommer i tillegg til 4.2 og 6. i læreboka. Ma 40: Analyse skal inneholde

Detaljer

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x LØSNINGSFORSLAG EKSAMEN, MAT 00, HØSTEN 06 DEL.. Hvilken av funksjonene gir en anti-derivert for f(x) = (x + )? Løsning. Vi setter u = x +, som gir du = dx, (x + ) dx = u du = u = (x + ) = x + a) x+ b)

Detaljer

Differensjalligninger av førsteorden

Differensjalligninger av førsteorden Differensjalligninger av førsteorden Department of Mathematical Sciences, NTNU, Norway November 2, 2014 Forelesning (29.10.2014): kap 7.9 og 18.3 Førsteordens ordinæredifferensjalligninger Initialverdiproblem

Detaljer

Kapittel 2. Antiderivering. 2.1 Derivasjon

Kapittel 2. Antiderivering. 2.1 Derivasjon Kapittel 2 Antiderivering I dette og neste kapittel skal vi bli kjent med noen typer difflikninger og lære hvordan disse kan løses. Til dette trenger vi derivering og antiderivering. 2.1 Derivasjon I Kapittel

Detaljer

MAT Vår Oblig 2. Innleveringsfrist: Fredag 23.april kl. 1430

MAT Vår Oblig 2. Innleveringsfrist: Fredag 23.april kl. 1430 MAT 00 Vår 00 Oblig Innleveringsfrist: Fredag 3.april kl. 430 Oppgaven leveres stiftet med forsideark på ekspedisjonskontoret til Matematisk institutt i 7. etg. i Niels Henrik Abels hus innen fristen.

Detaljer

Difflikninger med løsningsforslag.

Difflikninger med løsningsforslag. Repetisjon i Matematikk : Difflikninger med løsningsforslag. Høgskolen i Gjøvik Avdeling TØL Eksamensrepetisjon REA4 Matematikk Difflikninger med løsningsforslag. Difflikninger med løsningsforslag. Dette

Detaljer

Partieltderiverte og gradient

Partieltderiverte og gradient Partieltderiverte og gradient Kap 2 Matematisk Institutt, UiO MEK1100, FELTTEORI OG VEKTORANALYSE våren 2009 Framstilling Kommentarer, relasjon til andre kurs Struktur Mye er repitisjon fra MAT1100, litt

Detaljer

differensiallikninger-oppsummering

differensiallikninger-oppsummering Kapittel 12 differensiallikninger-oppsummering I vår verden endres størrelsene og verdiene som populasjon, vekt, lengde, posisjon, hastighet, temperatur ved tiden eller ved en annen uavhengig variabel.

Detaljer

Test, 4 Differensiallikninger

Test, 4 Differensiallikninger Test, 4 Differensiallikninger Innhold 4.1 Førsteordens differensiallikninger... 1 4. Modellering... 7 4.3 Andreordens homogene differensiallikninger... 13 Oppgaver og løsninger Grete Larsen/NDLA 4.1 Førsteordens

Detaljer

TMA4110 Matematikk 3 Høst 2010

TMA4110 Matematikk 3 Høst 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4110 Matematikk 3 Høst 010 Løsningsforslag Øving 4 Fra Kreyszig (9. utgave) avsnitt.7 3 Vi skal løse ligningen (1) y 16y

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 11 Modellering og beregninger. Eksamensdag: Fredag 7. desember 27. Tid for eksamen: 9: 12:. Oppgavesettet er på 8 sider.

Detaljer

Separable differensiallikninger.

Separable differensiallikninger. Ukeoppgaver, uke 46, i Matematikk 0, Separable differensiallikninger. Høgskolen i Gjøvik Avdeling for ingeniørfag Matematikk 0 Ukeoppgaver uke 46 I løpet av uken blir løsningsforslag lagt ut på emnesiden

Detaljer

Løsningsforslag til utvalgte oppgaver i kapittel 10

Løsningsforslag til utvalgte oppgaver i kapittel 10 Løsningsforslag til utvalgte oppgaver i kapittel 0 I kapittel 0 får du trening i å løse ulike typer differensialligninger, og her får du bruk for integrasjonsteknikkene du lærte i forrige kapittel. Men

Detaljer

Sammendrag R2. www.kalkulus.no. 31. mai 2009

Sammendrag R2. www.kalkulus.no. 31. mai 2009 Sammendrag R2 www.kalkulus.no 31. mai 2009 1 1 Trigonometri Definisjon av sinus og cosinus Sirkelen med sentrum i origo og radius 1 kalles enhetssirkelen. La v være en vinkel i grunnstilling, og la P være

Detaljer

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3 Prøve i Matematikk BYFE DAFE Dato: 27. mai 26 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Løsningsforslag Oppgave Gitt matrisene [ 2 A 4 B [ 2 og C [ 2

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger. Eksamensdag: Fredag 7. januar 2005. Tid for eksamen: 14:30 17:30. Oppgavesettet er på

Detaljer

Emne 11 Differensiallikninger

Emne 11 Differensiallikninger Emne 11 Differensiallikninger Differensiallikninger er en dynamisk beskrivelse av et system eller en prosess, basert på de balanselikningene vi har satt opp for prosessen. (Matematisk modellering). Vi

Detaljer

Oppsummering MA1101. Kristian Seip. 23. november 2017

Oppsummering MA1101. Kristian Seip. 23. november 2017 Oppsummering MA1101 Kristian Seip 23. november 2017 Forelesningen 23. november Denne forelesningen beskriver de store linjer og sammenhengen mellom de ulike deltemaene i MA1101 noen tips for eksamensperioden

Detaljer

Fasit, Separable differensiallikninger.

Fasit, Separable differensiallikninger. Ukeoppgaver, uke 46, i Matematikk 0, Separable differensiallikninger. 3 Fasit, Separable differensiallikninger. a ) Denne er ferdig på formenf(y)y = g(x) medf(y) =3y 2 og g(x) =2x: 3y 2 dy dx =2x 3y2 dy

Detaljer

TMA4100 Matematikk1 Høst 2009

TMA4100 Matematikk1 Høst 2009 TMA400 Matematikk Høst 2009 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 2 8926 Vi serieutvikler eksponentialfunksjonen e u om u 0 og får e u + u +

Detaljer

Oppsummering TMA4100. Kristian Seip. 16./17. november 2015

Oppsummering TMA4100. Kristian Seip. 16./17. november 2015 Oppsummering TMA4100 Kristian Seip 16./17. november 2015 Forelesningene 17./18. november Denne forelesningen beskriver de store linjer og sammenhengen mellom de ulike deltemaene i TMA4100 noen tips for

Detaljer

Optimal kontrollteori

Optimal kontrollteori Optimal kontrollteori 1. og 2. ordens differensialligninger Klassisk variasjonsregning Optimal kontrollteori er en utvidelse av klassisk variasjonsregning, som ble utviklet av Euler og Lagrange. Et vanlig

Detaljer

Løsningsforslag: Eksamen i MAT111 - Grunnkurs i Matematikk I

Løsningsforslag: Eksamen i MAT111 - Grunnkurs i Matematikk I Universitetet i Bergen Matematisk institutt Bergen, 8. desember 006. Bokmål Løsningsforslag: Eksamen i MAT - Grunnkurs i Matematikk I Mandag desember 8, 006, kl. 09-4. Oppgave Gitt funksjonen f(x) = ln(

Detaljer

Eksempelsett R2, 2008

Eksempelsett R2, 2008 Eksempelsett R, 008 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave a) Deriver funksjonen f x x cosx f x cosx x s x f x cosx 6x sinx

Detaljer

Løsningsforslag. Prøve i Matematikk 1000 BYFE DAFE 1000 Dato: 29. mai 2017 Hjelpemiddel: Kalkulator og formelark. Oppgave 1 Gitt matrisene.

Løsningsforslag. Prøve i Matematikk 1000 BYFE DAFE 1000 Dato: 29. mai 2017 Hjelpemiddel: Kalkulator og formelark. Oppgave 1 Gitt matrisene. Prøve i Matematikk BYFE DAFE Dato: 29. mai 27 Hjelpemiddel: Kalkulator og formelark Løsningsforslag Oppgave Gitt matrisene A = 2 2 B = [ 2 3 4 ] og C = Regn ut, om mulig, summene A + B, A + B T og A +

Detaljer

EKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1

EKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1 EKSAMEN BOKMÅL DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember 15 9:-13: FAGKODE: FAGNAVN: IR151 Matematikk 1 HJELPEMIDLER: Del 1: kl 9.-11. Ingen Del : kl 11.-13. Lommeregner Lærebok etter fritt valg Matematisk

Detaljer

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer Eksamen 8. desember 16 Eksamenstid 4 timer IR151 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del uten bruk av hjelpemidler. Du kan bare bruke

Detaljer

Generelle teoremer og definisjoner MA1102 Grunnkurs i analyse II - NTNU

Generelle teoremer og definisjoner MA1102 Grunnkurs i analyse II - NTNU Generelle teoremer og definisjoner MA110 Grunnkurs i analyse II - NTNU Lærebok: Kalkulus, Universitetsforlaget, 006, 3. utgave av Tom Lindstrøm Jonas Tjemsland 9. april 015 3 Komplekse tall 3.1 Regneregler

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger del 1 Eksamensdag: Tirsdag 7. desember 2004 Tid for eksamen: 14:30 17:30 Oppgavesettet

Detaljer

Løsningsskisser til oppgaver i Kapittel Integrerende faktor

Løsningsskisser til oppgaver i Kapittel Integrerende faktor Løsningsskisser til oppgaver i Kapittel 6.4 - Integrerende faktor Teori: Differensialligninger på formen y fx y gx (lineære i y av første orden) er ikke separable hvis ikke fx og gx er tallkonstanter.

Detaljer

Tillegg om strømfunksjon og potensialstrøm

Tillegg om strømfunksjon og potensialstrøm Kapittel 9 Tillegg om strømfunksjon og potensialstrøm 9.1 Divergensfri strøm 9.1.1 Strømfunksjonen I kompendiet, kap. 4.6 og kap. 9, er det påstått at dersom et todimensjonalt strømfelt v(x y) = v x (x

Detaljer

TMA4123/TMA4125 Matematikk 4M/4N Vår 2013

TMA4123/TMA4125 Matematikk 4M/4N Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4123/TMA4125 Matematikk 4M/4N Vår 2013 Løsningsforslag Øving 4 1 a) Bølgeligningen er definert ved u tt c 2 u xx = 0. Sjekk

Detaljer

Oppsummering TMA4100. Kristian Seip. 26./28. november 2013

Oppsummering TMA4100. Kristian Seip. 26./28. november 2013 Oppsummering TMA4100 Kristian Seip 26./28. november 2013 Forelesningene 26./28. november Disse forelesningene er et forsøk på å se de store linjer og sammenhengen mellom de ulike deltemaene i TMA4100 delvis

Detaljer

IR Matematikk 1. Utsatt Eksamen 8. juni 2012 Eksamenstid 4 timer

IR Matematikk 1. Utsatt Eksamen 8. juni 2012 Eksamenstid 4 timer Utsatt Eksamen 8. juni 212 Eksamenstid 4 timer IR1185 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del 2 uten bruk av hjelpemidler. Du kan bare

Detaljer

Matematikk 1. Oversiktsforelesning. Lars Sydnes November 25, Institutt for matematiske fag

Matematikk 1. Oversiktsforelesning. Lars Sydnes November 25, Institutt for matematiske fag Matematikk 1 Oversiktsforelesning Lars Sydnes sydnes@math.ntnu.no Institutt for matematiske fag November 25, 2009 LS (IMF) tma4100rep November 25, 2009 1 / 21 Matematikk 1 Hovedperson Relle funksjoner

Detaljer

NTNU. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 12. Avsnitt Ved Taylors formel (med a = 0) har vi at. 24 For x < 0 har vi at

NTNU. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 12. Avsnitt Ved Taylors formel (med a = 0) har vi at. 24 For x < 0 har vi at NTNU Institutt for matematiske fag TMA400 Matematikk høsten 200 Løsningsforslag - Øving 2 Avsnitt 8.9 23 Ved Taylors formel (med a = 0) har vi at der R 2 (x) = f (n+) (c) (n+)! e x = + x + x2 2 + R 2(x),

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger Eksamensdag: Torsdag 10 januar 2008 Tid for eksamen: 9:00 12:00 Oppgavesettet er på 6

Detaljer

Løsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 5

Løsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 5 Løsning av utvalgte øvingsoppgaver til Sigma R kapittel 5 5.5 Ce kx y = kce kx Vi setter inn i y + ky og ser om vi får 0: 5.5 ax + a y = ax Vi setter inn i y 5.54 kce kx + k Ce kx = 0 x x + y: ax x(ax

Detaljer

Eksamen R2 høst 2011, løsning

Eksamen R2 høst 2011, løsning Eksamen R høst 0, løsning Oppgave (4 poeng) a) Deriver funksjonene f e ) Bruker produktregelen for derivasjon, uv uv uv f e e e e ) g sin Bruker kjerneregelen på uttrykket cos der u og g u sinu Vi har

Detaljer

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8 Innlevering BYFE DAFE Matematikk HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 5. april 6 kl Antall oppgaver: 8 Funksjonen ft) er vist i guren over. Funksjonen F x) er denert som for x. F x)

Detaljer

MAT 1001, Høsten 2009 Oblig 2, Løsningsforslag

MAT 1001, Høsten 2009 Oblig 2, Løsningsforslag MAT 1001, Høsten 009 Oblig, sforslag a) En harmonisk svingning er gitt som en sum av tre delsvingninger H(x) = cos ( π x) + cos (π (x 1)) + cos (π (x )) Skriv H(x) på formen A cos (ω(x x 0 )). siden H(x)

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 00 Modellering og beregninger. Eksamensdag: Torsdag 6. desember 202. Tid for eksamen: 9:00 3:00. Oppgavesettet er på 8

Detaljer

e x = 1 + x + x2 2 + R 2(x), = e 3! ( 1) n x n = n! n=0 y n+1 = y 0 + f(t, y n (t)) dt 1 dt = 1 + x (1 + t) dt = 1 + x x2

e x = 1 + x + x2 2 + R 2(x), = e 3! ( 1) n x n = n! n=0 y n+1 = y 0 + f(t, y n (t)) dt 1 dt = 1 + x (1 + t) dt = 1 + x x2 NTNU Institutt for matematiske fag TMA400 Matematikk høsten 20 Løsningsforslag - Øving 2 Avsnitt 8.9 23 Ved Taylors formel (med a = 0) har vi at der R 2 (x) = f (n+) (c) (n+)! e x = + x + x2 2 + R 2(x),

Detaljer

UDIRs eksempeloppgave høsten 2008

UDIRs eksempeloppgave høsten 2008 UDIRs eksempeloppgave høsten 008 Løsningsskisser Del Oppgave f x cos3x x sin3x 3 cos3x 6x sin3x fx 3u, u e 4x (Produktregel og kjerneregel på cos3x.) u e 4x 4 (Kjerneregel enda en gang...) d) f x 6uu 6u4e

Detaljer

TMA4100: Repetisjon før midtsemesterprøven

TMA4100: Repetisjon før midtsemesterprøven TMA4100: Repetisjon før midtsemesterprøven 10.10.09 Lars Sydnes sydnes@math.ntnu.no Institutt for matematiske fag October 1, 2009 L.S. (NTNU) TMA4100: Oversikt October 1, 2009 1 / 20 Kapittel 1: Funksjoner.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger Eksamensdag: 12. desember 2003 Tid for eksamen: 9:00 12:00 Oppgavesettet er på 7 sider.

Detaljer

MAT jan jan jan MAT Våren 2010

MAT jan jan jan MAT Våren 2010 MAT 1012 Våren 2010 Mandag 18. januar 2010 Forelesning I denne første forelesningen skal vi friske opp litt rundt funksjoner i en variabel, se på hvordan de vokser/avtar, studere kritiske punkter og beskrive

Detaljer

Høgskolen i Oslo og Akershus. 1 (x 2 + 1) 1/2 + x 1 2 (x2 + 1) 1/2 (x 2 + 1) = x 2x 2 x = = 3 ln x sin x

Høgskolen i Oslo og Akershus. 1 (x 2 + 1) 1/2 + x 1 2 (x2 + 1) 1/2 (x 2 + 1) = x 2x 2 x = = 3 ln x sin x Løysingsforslag til eksamen i matematikk, mai 4 Oppgåve a) i) ii) f(x) x x + x(x + ) / ( f (x) x (x + ) / + x (x + ) /) g(x) ln x sin x x (x + ) / + x (x + ) / (x + ) x + + x x x + x + + x x + x + x +

Detaljer

Løs likningssystemet ved å få totalmatrisen på redusert trappeform

Løs likningssystemet ved å få totalmatrisen på redusert trappeform Emne: IRF 10014 Matematikk 1. Lærer: Øystein Holje og Kent Ryne Grupper: Diverse. Dato: 04.1.015 Tid: 9.00 13.00. Antall oppgavesider:. Antall vedleggsider: 3, formelark. Sensurfrist: Hjelpemidler: Godkjent

Detaljer

Nå integrer vi begge sider og får på venstre side. der C 1 er en vilkårlig konstant. Høyre side blir. Dette gir. og dermed

Nå integrer vi begge sider og får på venstre side. der C 1 er en vilkårlig konstant. Høyre side blir. Dette gir. og dermed Kapittel 6 Vekstmodeller For å forstå prosesser i naturen er matematiske modeller et nyttig verktøy. Matematiske modeller tar utgangspunkt i naturlover og modellerer disse i et matematisk språk. Naturlovene

Detaljer

Areal - difflikninger - arbeid Forelesning i Matematikk 1 TMA4100

Areal - difflikninger - arbeid Forelesning i Matematikk 1 TMA4100 Areal - difflikninger - arbeid Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 7. oktober 2011 Kapittel 6.4. Areal til omdreiningslegemer 3 Overflate-areal av en rotasjonsflate

Detaljer

Løsningsskisser - Kapittel 6 - Differensialligninger

Løsningsskisser - Kapittel 6 - Differensialligninger Løsningsskisser - Kapittel 6 - Differensialligninger Vi bruker det vi har lært i 6.3 om løsning av separable differensialligninger også i noen av oppgavene fra 6.1 og 6.2 for å knytte denne løsningsteknikken

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2013

MA0002 Brukerkurs i matematikk B Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2013 Løsningsforslag Øving 3 8.2.1 Anta at dy = y2 y) dx a) Finn likevektspunktene til

Detaljer

MA1101 Grunnkurs Analyse I Høst 2017

MA1101 Grunnkurs Analyse I Høst 2017 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA Grunnkurs Analyse I Høst 7 9.5. a) Har at + x b arctan b = π + x [arctan x]b (arctan b arctan ) f) La oss først finne en

Detaljer

FYS2140 Kvantefysikk, Løsningsforslag for Oblig 1

FYS2140 Kvantefysikk, Løsningsforslag for Oblig 1 FYS4 Kvantefysikk, Løsningsforslag for Oblig. januar 8 Her er løsningsforslag for Oblig som dreide seg om å friske opp en del grunnleggende matematikk. I tillegg finner dere til slutt et løsningsforslag

Detaljer

Eksamen i emnet MAT111/M100 - Grunnkurs i matematikk I Mandag 15. desember 2003, kl. 09-13(15) LØYSINGSFORSLAG OPPGÅVE 2:

Eksamen i emnet MAT111/M100 - Grunnkurs i matematikk I Mandag 15. desember 2003, kl. 09-13(15) LØYSINGSFORSLAG OPPGÅVE 2: Eksamen i emnet MAT/M00 - Grunnkurs i matematikk I Mandag 5. desember 2003, kl. 09-3(5) LØYSINGSFORSLAG Finn dei deriverte til i) f(x) = x 2 ln x OPPGÅVE : exp(u 2 )du, x, ii) f(x) = x cos(x). i) d x 2

Detaljer

Fagdag 7 - Start kapittel 6 - Differensialligninger. Arbeidsark

Fagdag 7 - Start kapittel 6 - Differensialligninger. Arbeidsark Fagdag 7 - Start kapittel 6 - Differensialligninger Arbeidsark Versjon: 11.04.09 - Var dessverre en del trykkfeil... Plan/innhold: Innledning Terminologi (6.1) Hva en differensialligning, orden, grad og

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag 5..7 EKSAMEN Løsningsforslag Emnekode: ITD5 Dato:. desember 7 Hjelpemidler: - To A-ark med valgfritt innhold på begge sider. - Formelhefte. - Kalkulator som deles ut samtidig med oppgaven. Emnenavn: Matematikk

Detaljer

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101)

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA0/MA60) Fredag 2. desember 202 Tid: 09:00 3:00 Hjelpemidler: Kode

Detaljer

Oppsummering TMA4100. Kristian Seip. 17./18. november 2014

Oppsummering TMA4100. Kristian Seip. 17./18. november 2014 Oppsummering TMA4100 Kristian Seip 17./18. november 2014 Forelesningene 17./18. november Disse forelesningene er et forsøk på å se de store linjer og sammenhengen mellom de ulike deltemaene i TMA4100 delvis

Detaljer

Oppsummering matematikkdel

Oppsummering matematikkdel Oppsummering matematikkdel ECON 2200 Kjell Arne Brekke Økonomisk Institutt May 9, 2011 KAB (Økonomisk Institutt) Oppsummering May 9, 2011 1 / 25 Innledning Rekker bare å nevne noen hovedpunkter Alt er

Detaljer

Oppsummering matematikkdel

Oppsummering matematikkdel Oppsummering matematikkdel ECON 2200 Kjell Arne Brekke Økonomisk Institutt May 6, 2010 KAB (Økonomisk Institutt) Oppsummering May 6, 2010 1 / 23 Innledning Rekker bare å nevne noen hovedpunkter Alt er

Detaljer

Løsningsforslag til eksamen i fag MA1101/MA6101 Grunnkurs i analyse I Høst 2008

Løsningsforslag til eksamen i fag MA1101/MA6101 Grunnkurs i analyse I Høst 2008 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 9 Løsningsforslag til eksamen i fag MA111/MA611 Grunnkurs i analyse I Høst 2 Oppgave 1 Funksjonen g er definert ved

Detaljer

Kapittel 4: Differensiallikninger

Kapittel 4: Differensiallikninger 4.. Innledning og objekter i bevegelse. 57 Kapittel 4: Differensiallikninger 4.. Innledning og objekter i bevegelse. Oppgave 4..: (NY.) a) Vi har slik at venstre side er lik y + xy = xe x + x y(x) = e

Detaljer

OPPGAVE 1 LØSNINGSFORSLAG

OPPGAVE 1 LØSNINGSFORSLAG LØSNINGSFORSLAG UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i MAT - Grunnkurs i matematikk I torsdag 5.desember 20 kl. 09:00-4:00 OPPGAVE a Modulus: w = 2 + 3 2 = 2. Argument

Detaljer

FORELESNINGER I OPTIMAL KONTROLLTEORI (MAT 2310)

FORELESNINGER I OPTIMAL KONTROLLTEORI (MAT 2310) FORELESNINGER I OPTIMAL KONTROLLTEORI (MAT 2310) TERJE SUND Innledning I matematisk optimering søker en å bestemme maksimums- og minimumspukter for funksjoner som avhenger av reelle variable og av andre

Detaljer

EKSAMEN. Ingeniør- og Fleksibel ingeniørutdanning.

EKSAMEN. Ingeniør- og Fleksibel ingeniørutdanning. KANDIDATNUMMER: EKSAMEN EMNENAVN: Matematikk. EMNENUMMER: REA42/REA42F EKSAMENSDATO: Mandag 9. august 2 KLASSE: Ingeniør- og Fleksibel ingeniørutdanning. TID: kl. 9. 3.. FAGANSVARLIG: Hans Petter Hornæs

Detaljer

Differensiallikninger Mellomprosjekt MAT4010

Differensiallikninger Mellomprosjekt MAT4010 Differensiallikninger Mellomprosjekt MAT4010 Tiina K. Kristianslund, Julian F. Rossnes og Torstein Hermansen 6. mai 2014 1 Innhold 1 Innledning 3 2 Differensiallikninger 3 2.1 Førsteordens, lineære differensiallikninger...........

Detaljer

Oppsummering matematikkdel

Oppsummering matematikkdel Oppsummering matematikkdel ECON 2200 Kjell Arne Brekke Økonomisk Institutt May 8, 2009 KAB (Økonomisk Institutt) Oppsummering May 8, 2009 1 / 22 Innledning Rekker bare å nevne noen hovedpunkter Alt er

Detaljer

K Andre Ordens Differensialligninger

K Andre Ordens Differensialligninger K 6.6 - Andre Ordens Differensialligninger Innhold: H-P Ulven, 03.04.09 Terminologi Utvikling av regel for løsning av y ay by 0 (Tilfelle: y Ce r 1x De r x ) Utvikling av regel for løsning av y ay by 0

Detaljer

Kort innføring i polynomdivisjon for MAT 1100

Kort innføring i polynomdivisjon for MAT 1100 Kort innføring i polynomdivisjon for MAT 1100 I dette notatet skal vi se litt på polynomdivisjon. Mange vil kjenne denne teknikken fra før, men etter siste læreplanomlegning er den ikke lenger pensum i

Detaljer

Ubestemt integrasjon.

Ubestemt integrasjon. Ukeoppgaver, uke 4, i Matematikk 0, Ubestemt integrasjon. Høgskolen i Gjøvik Avdeling for ingeniørfag Matematikk 0 Ukeoppgaver uke 4 I løpet av uken blir løsningsforslag lagt ut på emnesiden http://www.hig.no/toel/allmennfag/emnesider/rea04

Detaljer

TMA Matematikk 4D Fredag 19. desember 2003 løsningsforslag

TMA Matematikk 4D Fredag 19. desember 2003 løsningsforslag Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA Matematikk D Fredag 9. desember 23 løsningsforslag a Vi bruker s-forskyvningsregelen Rottmann L{gte at } Gs a med gt t.

Detaljer

d) Vi skal nne alle lsningene til dierensialligningen y 0 + y x = arctan x x pa intervallet (0; ). Den integrerende faktoren blir R x e dx = e ln x =

d) Vi skal nne alle lsningene til dierensialligningen y 0 + y x = arctan x x pa intervallet (0; ). Den integrerende faktoren blir R x e dx = e ln x = Lsningsforslag til utvalgte oppgaver i kapittel 0 I kapittel 0 far du trening i a lse ulike typer dierensialligninger, og her far du bruk for integrasjonsteknikkene du lrte i forrige kapittel. Men vel

Detaljer

Løsningsforslag Eksamen M001 Våren 2002

Løsningsforslag Eksamen M001 Våren 2002 Løsningsforslag Eksamen M Våren Oppgave f(x) = (x )e x Bruker produktregelen i derivasjonen f (x) = e x + (x ) (e x ) For å derivere e x velges kjernen u = x, og vi får (e x ) = e u. f (x) = e x + (x )

Detaljer

Forelesning 1: Integrasjon. Separable differensiallikninger.

Forelesning 1: Integrasjon. Separable differensiallikninger. Forelesning 1: Integrasjon. Separable differensiallikninger. Trond Stølen Gustavsen 12. januar, 2010 Innhold Anbefalt lesning 1 1.1. Kort repetisjon av integrasjon 1 1.2. Hva er en differensiallikning?

Detaljer

Oppgaver og fasit til seksjon

Oppgaver og fasit til seksjon 1 Oppgaver og fasit til seksjon 3.1-3.3 Oppgaver til seksjon 3.1 1. Regn ut a b når a) a = ( 1, 3, 2) b = ( 2, 1, 7) b) a = (4, 3, 1) b = ( 6, 1, 0) 2. Finn arealet til parallellogrammet utspent av a =

Detaljer

KAPITTEL 8 Differensialligninger

KAPITTEL 8 Differensialligninger KAPITTEL 8 Differensialligninger Svært mange fenomener i våre omgivelser kan modelleres matematisk ved hjelp av differensialligninger. De vanligste og mest kjente eksemplene på dette finner vi i de tradisjonelle

Detaljer

1 Mandag 1. februar 2010

1 Mandag 1. februar 2010 Mandag. februar 200 I dag skal vi fortsette med rekkeutviklinger som vi begynte med forrige uke. Vi skal se på litt mer generell rekker og vurdere når de konvergerer, bl.a. gi et enkelt kriterium. Dette

Detaljer

9 + 4 (kan bli endringer)

9 + 4 (kan bli endringer) Innlevering DAFE ELFE Matematikk HIOA Obligatorisk innlevering 4 Innleveringsfrist Onsdag 29. april 25 Antall oppgaver: 9 + 4 (kan bli endringer) Finn de ubestemte integralene a) 2x 3 4/x dx b) c) 2 5

Detaljer

y(x) = C 1 e 3x + C 2 xe 3x.

y(x) = C 1 e 3x + C 2 xe 3x. NTNU Institutt for matematiske fag TMA4115 Matematikk eksamen 4 juni 9 Løsningsforslag 1 Innsatt for z = x + iy kan ligningen skrives x + 1 + i(y ) = x 1 + i(y + ) Ved å benytte at z = a + b for et kompleks

Detaljer

Prøveeksamen i MAT 1100, H-03 Løsningsforslag

Prøveeksamen i MAT 1100, H-03 Løsningsforslag Prøveeksamen i MAT, H- Løsningsforslag. Integralet cos x dx er lik: +sin x Riktig svar: c) arctan(sin x) + C. Begrunnelse: Sett u = sin x, da er du = cos x dx og vi får: cos x + sin x dx = du du = arctan

Detaljer

Oppfriskningskurs i matematikk 2008

Oppfriskningskurs i matematikk 2008 Oppfriskningskurs i matematikk 2008 Marte Pernille Hatlo Institutt for matematiske fag, NTNU 4.-9. august 2008 Velkommen! 2 Temaer Algebra Trigonometri Funksjoner og derivasjon Integrasjon Eksponensial-

Detaljer

Prøve i Matte 1000 BYFE DAFE 1000 Dato: 03. mars 2016 Hjelpemiddel: Kalkulator og formelark. Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Prøve i Matte 1000 BYFE DAFE 1000 Dato: 03. mars 2016 Hjelpemiddel: Kalkulator og formelark. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Prøve i Matte 1 BYFE DAFE 1 Dato: 3. mars 216 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. LØSNINGSFORSLAG Oppgave 1 Gitt matrisene A = [ 8 3 6 2 ] [ og

Detaljer

Eksamen R2 høsten 2014 løsning

Eksamen R2 høsten 2014 løsning Eksamen R høsten 04 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (3 poeng) Deriver funksjonene a) f x cos3x Vi bruker kjerneregelen

Detaljer

4 Differensiallikninger R2 Oppgaver

4 Differensiallikninger R2 Oppgaver 4 Differensiallikninger R2 Oppgaver 4.1 Førsteordens differensiallikninger... 2 4.2 Modellering... 7 4.3 Andreordens differensiallikninger... 13 Aktuelle eksamensoppgaver du finner på NDLA... 16 Øvingsoppgaver

Detaljer

Løsningsforslag. og B =

Løsningsforslag. og B = Prøve i Matte Dato: vår 5 ENDRE Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver ar lik vekt. Oppgave a Gitt matrisene A regn ut A + B, AB. Løsningsforslag 4 og B 7 5 Vi

Detaljer

EKSAMEN I MATEMATIKK 1000

EKSAMEN I MATEMATIKK 1000 EKSAMEN I MATEMATIKK 1000 Oppgave 1 a) Finn den deriverte av disse funksjonene: f(x) = x 3 e 5x og g(x) = ln(tan(x)) + x 3. b) Finn de følgende ubestemte integralene: i) (x 3 + xe x2 ) dx og ii) cos 2

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Forelesning 10 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 10 Derivasjon I dagens forelesning skal vi se på følgende: 1 Antideriverte. 2 Differensiallikninger

Detaljer

TMA4120 Matte 4k Høst 2012

TMA4120 Matte 4k Høst 2012 TMA Matte k Høst Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 5 Løsningsforslag til oppgaver fra Kreyzig utgave :..a Skal vise at u(x, t = v(x + ct

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2016

MA0002 Brukerkurs i matematikk B Vår 2016 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA000 Brukerkurs i matematikk B Vår 016 Separable og førsteordens lineære differensialligninger En differensialligning er separabel

Detaljer

Løsningsforslag, eksamen MA1101/MA

Løsningsforslag, eksamen MA1101/MA Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Løsningsforslag, eksamen MA0/MA60 07.2.09 Oppgave La f() = e 4 2 2 8. a) Finn alle ekstremalpunktene til funksjonen

Detaljer

Oppsummering matematikkdel

Oppsummering matematikkdel Oppsummering matematikkdel ECON 2200 Kjell Arne Brekke Økonomisk Institutt May 5, 2014 KAB (Økonomisk Institutt) Oppsummering May 5, 2014 1 / 25 Innledning Rekker bare å nevne noen hovedpunkter Alt er

Detaljer