10 Metoder for ordinære differensiallikninger TMA4125 våren 2019

Størrelse: px
Begynne med side:

Download "10 Metoder for ordinære differensiallikninger TMA4125 våren 2019"

Transkript

1 Metoder for ordinære differensiallikninger TMA45 våren 9 Vi skal lage numeriske metoder for å finne tilnærmede løsninger for initialverdiproblemet y = fx, y) yx ) = y. Dette er et kjempefelt. Vi ar bare tid til å skrape så vidt i overflaten, men vi skal prøve å belyse et par momenter. Runge-Kutta-metoder En numerisk metode for ordinære differensiallikninger starter med følgende to observasjoner: Vi vet va den analytiske løsningen er i x. Dette vet vi på grunn av initialkravet yx ) = y. Vi vet vilket stigningstall den analytiske løsningen ar i x, for evaluerer vi differensialikningen i x, får vi y x ) = fx, y ). La oss lage oss et punkt x litt ut fra x, med avstand = x x. Siden vi ar funksjonsverdien og stigningstallet til y i x, kan vi bruke lineær tilnærming, og gjette på yx ): yx ) yx ) + y x ) = yx ) + fx, y ). Nå definerer vi y = yx )+fx, y ) yx ). Dette er den tilnærmede verdien til y i x. Vi tar den for god fisk, lager oss et nytt punkt x = x +, og beregner y = y + fx, y ), som er en tilnærming y yx ). Nå fortsetter vi i samme stilen, gitrer opp intervallet vi skal løse likningen på med gitterfinet, slik at punktene er gitt ved = i. Tilnærmingen til y ) kaller vi y i, og metoden kalles Eulers eksplisitte metode: y i+ = y i + f, y i ), Metoden kalles eksplisitt, siden likningen kommer ferdig løst for y i+. Vi skriver nå opp et par andre varianter. Alle er basert på å bytte ut stigningen f, y i ) med et eller annet estimat. Setter vi inn f+, y i+ ) istedet for f, y i ), får vi Eulers implisitte metode: y i+ = y i + f+, y i+ ), og bytter vi ut med f, y i ) + f+, y i+ )), får vi trapesmetoden: y i+ = y i + f, y i ) + f+, y i+ )). Disse to metodene kalles implisitte fordi likningene ikke er ferdig løst for y i+. Noen ganger er det lett å finne y i+, andre ganger ikke. Hvis vi bytter ut f+, y i+ ) i trapesmetoden med en tilnærming basert på et eksplisitt eulersteg, får vi den eksplisitte Heuns metode: og vis vi klinker til og bytter ut tilnærmingen til stigningstallet med følgende avanserte opplegg, får vi nok en eksplisitt variant, nemlig Runge-Kuttas klassiske fjerdeordens metode, populært kalt RK4: k = f, y i ) k = f +, y i + ) k k = f +, y i + ) k k 4 = f +, y i + k ) y i+ = y i + 6 k + k + k + k 4 ). Dette er alle metodene vi skal analysere, og alle er eksempler på Runge-Kutta-metoder. Nå lurer du sikkert på vorfor man ar så mange forskjellige metoder, og det korte svaret er som ellers i anvendt matematikk: noen metoder eksisterer fordi de er lette å finne opp og forstå, mens andre metoder finnes fordi de er skikkelig bra. Eksempel.. Vi løser initialverdiproblemet y = y y) = med Eulers eksplisitte metode på intervallet [, ]. Siden fx, y) = y, blir metoden med y i+ = y i y i = )y i y =. Løsning for =.5 gir figuren under. De blå diamantene er y, y, y, y 4 og y 5, mens den røde kurven er den analytiske løsningen y = e x. Vi beregner y) = /e , som kan sammenliknes med y 5 = 6465: y 5 y) = y i = y i + f, y i ) y i+ = y i + f, y i ) + f+, y i )),

2 Eksempel.. Vi løser samme problem som i sted med Eulers implisitte metode. Metoden blir y i+ = y i y i+, som vi løser for y i+, og får y i+ = y i + ). Figur under for =. Vi får y 5 = 96, og Eksempel. Heuns metode: yi = y i y i y i+ = y i y i + yi ) og y 5 y) = Bedre enn Euler, men ikke elt trapesmetoden. y 5 y) = Eksempel. Til slutt RK4: Eksempel. Trapesmetoden: y i+ = y i y i + y i+ ). k = y i k = y i + ) k k = y i + ) k Vi løser for y i+, og får k 4 = y i + k ) Denne treffer noe bedre: y i+ = + y i. y 5 y) = y i+ = y i + 6 k + k + k + k 4 ). Denne treffer ganske bra: y 5 y) = e 5. Noe må den a igjen for å være så komplisert.....

3 Utledningsmetoder I forrige avsnitt utledet vi Eulers eksplisitte metode. For å sette disse metodene i kontekst med tidligere pensum i kurset, og for å indikere vordan man kan lage flere metoder, skal vi utlede noen av dem med kjente metoder for numerisk integrasjon og derivasjon. En uledningsteknikk er å gitre opp med = +, integrere differensiallikningen y+ ) y ) = = xi+ x i xi+ y x) dx fx, yx)) dx, bruke y i+ y i y+ ) y ) på venstre side, og tilnærme integralet xi+ fx, yx)) dx, med en kvadraturregel. Gjør man den særdeles enkle tilnærmingen xi+ fx, yx)) dx. xi+ f, y i ) dx = f, y i ), får man eksplisitt Euler, og velger man den tilsvarende enkle tilnærmingen xi+ fx, yx)) dx f+, y i+ ), får man Eulers implisitte metode. Trapesregelen xi+ fx, yx)) dx f, y i ) + f+, y i+ )) gir trapesmetoden y i+ = y ) + f, y i ) + f+, y i+ )). Tilnærmer man trapesregelen med formelen xi+ fx, yx)) dx fxi, y i ) + f+, y i+) ) der yi+ = y i + f, y i ) er et eksplisitt eulersteg, får man Heuns metode. Bruker man tilnærmingen xi+ xi + + fx, yx)) dx f, y ) i + y i+ får man midtpunktmetoden. RK4 er avledet fra Simpsons metode. Tilnærmer man xi+ fx, yx)) dx, med Simpson, får man en implisitt metode som ikke er pensum, og bytter man ut de implisitte verdiene leddene i denne metoden med forskjellige estimater basert på eksplisitt Euler, får man RK4, litt som Heuns metode er avledet fra trapesmetoden. Metodene vi ar utledet til nå, kalles enstegsmetoder, for kun y i+ og y i figurerer i likningene. Grunnen til at alle metodene er på denne formen, er at det kun er brukt en type endelig differansetilnærming på venstre side av y x) = fx, yx)), nemlig den første ordens differansen y + ) y i+ y i. Nå er det ingenting i veien for å bruke en øyere ordens tilnærming, for eksempel sentraldifferansen y ) y i+ y i. Setter man denne inn for y, får man leap-frogmetoden y i+ = y i + f, y i ). Her inngår både y i+, y i og y i, og leap-frog er et eksempel på en flerstegsmetode. Flerstegsmetoder er ikke pensum i dette kurset. Feilanalyse I dette avsnittet skal vi ta en titt på vorfor metodene treffer så foreskjellig. Vi skal indikere vordan analysen får for eksplisitt Euler, og så skrive opp resultatet for de andre metodene. Lineariseringen som gir det første eulersteget er yx ) = yx + ) yx ) + fx, yx )) = yx ) + y x ). Vi antar at y er en analytisk funksjon, og taylorutvikler: yx ) = yx + ) = yx ) + y x ) + y x ) + Sammenlikner vi denne med y = yx ) + y x ), ser vi at feilen i det første eulersteget er gitt ved yx ) y = y x ) + y x ) + 6 altså taylorrekkealen til y. Hvis vi antar at er liten, slik at er mye større enn, og leddet y x ) dominerer alen på taylorrekken, er det ikke urimelig å evde at eksplisitt Euler ar lokal feil av størrelsesorden. Feilen etter ett steg er altså av størrelsesorden. Men va er feilen etter n steg? I eksemplene i forrige avsnitt, kjørte vi løserne på intervallet [, ]. La oss si at vi kjører på intervallet [x, x + a]. Vi velger slik at x n = x + n = x + a og n = a.

4 Hvis vi nå gjør n steg med eksplisitt Euler, samler vi i vert steg opp en lokal feil omtrent lik Feilen etter n steg blir y ). n i= y ), og vis vi antar at y M på [x, x + a], er det rimelig å evde at n i= y ) Mn = M a = Ma. Vi sier derfor at eulers metode ar global feil av størrelsesorden. Teorem. Lokal og global feil for metodene: Metode Lokal feil Global feil Eksplisitt Euler Implisitt Euler Trapesmetoden Heuns metode RK4 5 4 Vi skal ikke bevise dette teoremet, men nevner at bevisteknikken er den samme for alle metodene: taylorutvikle om x for å finne lokal feil, og så se på va som skjer etter n steg. Dette teoremet forklarer langt på vei va som skjedde i eksemplene i forrige avsnitt. Nå tar vi et par eksempler der vi lar. Eksempel. Vi kjører samme eksempel som i forrige avsnitt, men nå bruker vi Eulers eksplisitte metode for =., =. og så videre. Resultatene er oppsummert i følgende tabell: y n y).97448e e e e e 6 Dette eksemplet demonstrerer tydelig at feilen etter n steg er proporsjonal med. På folkemunne sier man gjerne at man får en ekstra korrekt desimal ver gang man tideler. Eulers implisitte metode oppfører seg omtrent likt, så den opper vi over. Eksempel. Trapesmetoden for =., =. og så videre: y n y) e e e e e Her er feilen etter n steg proporsjonal med. På folkemunne sier man gjerne at man får to desimaler ver gang man tideler. Heuns metode produserer omtrent den samme tabellen. Eksempel. RK4: y n y).4568e e e e e 5 Hva skjedde er? Feilen etter n steg proporsjonal med 4, altså fire desimaler for ver tideling av, men bare for de første tre tidelingene. Når = ar vi nådd såkalt maskinpresisjon. Matlab regner bare med 6 desimaler, og dette setter en stopper for konvergensen. Eksempel.. RK4, men nå ar matlab fått beskjed om å regne med desimaler: y n y) e e.6878e e e Tabellene til nå ar tatt en brøkdel av et sekund å produsere. Til sammenlikning tok denne er rundt ti minutter, pluss noen timer knoting for å finne ut av vordan matlab skal regne riktig med desimaler. Presisjon koster! Stabilitet Har metodene noen andre egenskaper? Eulers eksplisitte og implisitte metoder ser til forveksling like ut, og ar akkurat samme orden. Men de oppfører seg ganske forskjellig. Eksempel.. Vi kjører eksplisitt Euler på samme problem som over, men på intervallet [, ], og =. Det er trukket rette linjer mellom eulerstegene, så det skal bli litt enklere å se va som skjer Eksempel.. Vi kjører igjen på intervallet [, ], men nå med =.5. Den numeriske løsningen ser ut til å virre frem og tilbake en del før den sikter seg inn på rett spor. 4

5 ar studert, y i+ = y i y i = )y i = ) y i = ) i+ y = ) i+, med andre ord en geometrisk følge. Siden gymnaset ar du visst at denne følgen divergerer dersom Eksempel. Intervallet [, ], men nå med =.. Hva den numeriske løsningen tenker på, er ikke godt å si, men noe fornuftig er det ivertfall ikke og denne uliketen blir innfridd akkurat i det bikker. Kjører vi samme resonnementet på Euler implisitt, får vi y i+ = + ) i+. I vårt tilfelle er >, så det må være klart at < <, + ) i+ og følgelig konvergerer følgen mot for alle valg av. Analysen vi ar gjort, kalles stabilitetsanalyse, og y = y er et såkalt testproblem. Vi får ikke eksakt informasjon om vordan Eulers metode kommer til å oppføre seg for alle mulige differensiallikninger, men vi kan få en magefølelse allikevel. Vi skal ikke gå inn på en lengre diskusjon om stabilitetsanalyse, som er et forskningsfelt i seg selv, men nevne at stabilitetsproblemer er som regel betydelige for eksplisitte metoder, og ikke-eksisterende for implisitte metoder. Eksempel. Vi prøver Heuns metode på [, ], med =. Som du ser, går det ganske dårlig. Eksempel. Vi kan slå fast at eksplisitt Euler ikke fungerte, og det ser ut som om det går galt fordi er for stor. Vi prøver Euler implisitt på samme intervall, men med =. Det går riktig bra Forklaringen på va som skjedde er, er ganske enkel. Eulers eksplisitte metode er, for eksemplet vi Eksempel. Vi prøver RK4 på [, ], med =.. Det går ikke noe bedre. 5

6 Jeg ar for RK4 beoldt parentesene for å prøve å beolde den visuelle liketene med de generelle likningene som definerer metoden. Men det er strengt tatt ikke nødvendig. I dette eksemplet kan y i+ beregnes analytisk for de implisitte metodene, men merk at dette fort kan bli en smule åpløst om likningene ikke er kvadratiske i y i+, slik som er. Standardteknikken er da å slå til med en numerisk likningsløser. Vanligvis er fikspunkmetoden et greit valg. Iterasjonen y i+ = y i + y i+ + y i+ + + Mer om implisitte metoder Så vorfor bør vi ikke alltid bruke implisitte metoder? Det er et komplisert spørsmål å svare på, men vi skal gjøre et forsøk i dette avsnittet. Vi begynner med et eksempel, der vi setter opp de forskjellige numeriske metodene. Eksempel. Vi skriver opp de forskjellige metodene for y = y xy + x. Eksplisitt Euler: Imsplisitt Euler: Trapesmetoden y i+ = y i + Heuns metode y i+ = y i + y i y i + y i+ = y i + y i+ + y i+ + + yi yi + y i+ + y ) i yi+ = y i + y i yi + y i+ = y i + yi yi + y i+ +y ) i+ ) RK4 k = y i yi + yi + k = k ) ) xi + yi + k ) + ) + yi + k = k ) ) xi + yi + k ) + ) + k 4 = y i + k ) + )y i + k ) + + ) y i+ = y i + 6 k + k + k + k 4 ). allerede er på formen y i+ = gy i+ ), og dersom er liten, blir gjerne g liten, og da usker du fra tidligere at fikspunktmetoden konvergerer ganske kjapt. Eksempel. Vi løser med y = y xy + x y) = 5 y i+ = y i + y i+ + y i Under er løsningskurve beregnet med =. på intervallet [, ]. Fikspunktmetoden trengte med startgjetning y i et sted mellom og iterasjoner for å nå maskinpresisjon i vert steg. Med lavere vil antall iterasjoner gå ned Eksemplet over illustrerer et viktig moment. Koster det mange flyttallsoperasjoner å kjøre en metode til en gitt presisjon? Det jelper ikke å a en metode som beregner alt til maskinpresisjon om metoden tar ett år å kjøre. Implisitte metoder er ofte robuste og stabile, men de koster også mer å bruke. Systemer av differensiallikninger Alle metodene gjennomgått til nå, fungerer like fint på systemer av differensiallikninger. Husk fra M at øyere ordens differensiallikninger kan skrives om til førsteordens systemer av differensiallikninger, så vi trenger ikke lage egne metoder for dem. 6

7 Eksempel. Differensiallikningen for en pendel er y + sin y =. Vi skriver denne om til et system ved å sette z = y, slik at systemet blir y = z z = sin y Vi skriver nå opp metodene. Eksplisitt Euler: Imsplisitt Euler: Trapesmetoden: y i+ = y i + z i z i+ = z i sin y i y i+ = y i + z i+ z i+ = z i sin y i+ y i+ = y i + z i + z i+ ) z i+ = z i sin y i + sin y i+ ) Skjønner du disse er, klarer du nok Heun og RK4 også. Alle k-ene blir vektorer med to komponenter.) Merk at man på de implisitte metodene må kjøre en eller annen flerdimensjonal likningsløser for å finne y i+, z i+ ) i vert steg. Eksempel.. Lotka-Volterra-systemet y = y z) y) =.5 z = zy ) z) =.5 beskriver to dyrepopulasjoner, der den ene driver med predasjon på den andre. Dersom det er mange mus y) i fjellet, får rev og mår z) rikelig med mat til ungene sine, men er det få mus, vokser ikke så mange unger opp. Vi løser dette systemet med eksplisitt Euler, og får figuren under. Bevaring av viktige størrelser Nå skal vi ta for oss nok en instans av steg tre: ar metodene noen andre egenskaper som er verdt å snakke om? Det kan være lurt å a følgende eksempel i bakodet. La oss si at du ønsker å gjøre beregninger på planetenes gang i solsystemet. Du lærte på gymnaset at i solsystemet er energien for alle praktiske formål bevart, ivertfall på kort sikt. Planetenes bevegelser følger Newtons gravitasjonslov, som for solsystemet vårt blir et differensiallikningssystem med tre likninger per planet. En numerisk metode for å simulere planetenes gang rundt solen, bør sørge for å bevare energien til ver planet, ellers kan planetene kjøre i numeriske spiraler ut i verdensrommet. Eksempel.. I forrige eksempel løste vi Lotka- Volterra med eksplisit euler, og =. gav en pen figur. Hvis prøver med =., får vi figuren under. Systemet starter i.5,.5), så vi ser at Euler lager en utadgående spiral Eksempel.. Nå kjører vi implisitt euler med =., og får får følgende figur. Siden systemet starter i.5,.5), ser vi at dette er en innadgående spiral

8 Eksempel.. Trapesmetoden klarer visst å beolde det pene periodiske svingemønsteret, selv med =...8 Eksempel.5. Som absolutt siste eksempel jeg lover), tar vi eksplisitt Euler med =., men for x [, ]. Dette er litt for å demonstrere at det går galt selv med små det spiller ingen rolle vor liten er er, det går åt skogen uansett). Og litt fordi figuren var så vakker å skue. I eksempel. var ikke intervallet langt nok til at spiraliseringen kom til uttrykk i figuren. Men den er der Hvorvidt figurene i de tre eksemplene over ble spiraler eller lukkede kurver, ar ingenting med differensialikningene å gjøre; det er kun forskjeller i de numeriske metodene som slår ut er. Løsningene skal definitivt være lukkede baner, og vi slår oss til ro med at trapesmetoden klarer noe som ikke eksplisitt og implisitt euler klarer. Vi merker oss også at numeriske metoder for differensialliknigner er mer enn bare presisjon og desimaler. Dette er for øvrig også et forskningsfelt som kalles geometrisk integrasjon - studiet om artige fenomener i numerisk løsning av differensiallikninger. Eksempel.4. Vi tar et siste eksempel. Symplektisk Euler er definert ved følgende skjema y i+ = y i + y i z i ) z i+ = z i + z i y i+ ), og produserer en tilsvarende pen figur. Symplektisk euler bevarer nemlig noe som kalles den symplektiske strukturen

6 Numeriske likningsløsere TMA4125 våren 2019

6 Numeriske likningsløsere TMA4125 våren 2019 6 Numeriske likningsløsere TMA415 våren 019 Andregradslikningen kan vi løse med formelen a + b + c 0 b ± b 4ac a Men i mange anvendelser dukker det opp likninger ikke kan løses analytisk Et klassisk eksempel

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger. Eksamensdag: Fredag 7. januar 2005. Tid for eksamen: 14:30 17:30. Oppgavesettet er på

Detaljer

x n+1 = x n f(x n) f (x n ) = x n x2 n 3

x n+1 = x n f(x n) f (x n ) = x n x2 n 3 TMA4 Høst 26 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag 4.2.8 Vi setter f(x) = x 2 3. Da blir f (x) = 2x, og iterasjonen blir f (x n ) = x n x2 n 3 2x n () Siden vi har

Detaljer

Oppsummering TMA4100. Kristian Seip. 26./28. november 2013

Oppsummering TMA4100. Kristian Seip. 26./28. november 2013 Oppsummering TMA4100 Kristian Seip 26./28. november 2013 Forelesningene 26./28. november Disse forelesningene er et forsøk på å se de store linjer og sammenhengen mellom de ulike deltemaene i TMA4100 delvis

Detaljer

Oppsummering TMA4100. Kristian Seip. 16./17. november 2015

Oppsummering TMA4100. Kristian Seip. 16./17. november 2015 Oppsummering TMA4100 Kristian Seip 16./17. november 2015 Forelesningene 17./18. november Denne forelesningen beskriver de store linjer og sammenhengen mellom de ulike deltemaene i TMA4100 noen tips for

Detaljer

Numerisk løsning av ODL

Numerisk løsning av ODL Numerisk løsning av ODL Arne Morten Kvarving Department of Mathematical Sciences Norwegian University of Science and Technology 5. November 2007 Problem og framgangsmåte Vi vil finne en tilnærming til

Detaljer

Oppsummering TMA4100. Kristian Seip. 17./18. november 2014

Oppsummering TMA4100. Kristian Seip. 17./18. november 2014 Oppsummering TMA4100 Kristian Seip 17./18. november 2014 Forelesningene 17./18. november Disse forelesningene er et forsøk på å se de store linjer og sammenhengen mellom de ulike deltemaene i TMA4100 delvis

Detaljer

Løsningsforslag. og B =

Løsningsforslag. og B = Prøve i Matte Dato: vår 5 ENDRE Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver ar lik vekt. Oppgave a Gitt matrisene A regn ut A + B, AB. Løsningsforslag 4 og B 7 5 Vi

Detaljer

Viktig informasjon. Taylorrekker

Viktig informasjon. Taylorrekker Viktig informasjon Fredag 15 desember 2017 Kl09:00-13:00 (4 timer) Tillatte hjelpemiddel: Formelsamling (deles ut på eksamen), Gyldig kalkulator I dette oppgavesettet har du mulighet til å svare med digital

Detaljer

Potensrekker Forelesning i Matematikk 1 TMA4100

Potensrekker Forelesning i Matematikk 1 TMA4100 Potensrekker Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 15. november 2011 Kapittel 8.9. Konvergens av Taylorrekker 3 i 3 i Løs likningen x 2 + 1 = 0 3 i Løs likningen

Detaljer

Differensiallikninger Forelesning i Matematikk 1 TMA4100

Differensiallikninger Forelesning i Matematikk 1 TMA4100 Differensiallikninger Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 18. november 2011 Kapittel 15.1. Retningsfelt og Picards teorem 3 Retningsvektorfelt for y = y

Detaljer

Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Alle svar skal grunngis. Alle deloppgaver har lik vekt. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom

Detaljer

1 Mandag 1. februar 2010

1 Mandag 1. februar 2010 Mandag. februar 200 I dag skal vi fortsette med rekkeutviklinger som vi begynte med forrige uke. Vi skal se på litt mer generell rekker og vurdere når de konvergerer, bl.a. gi et enkelt kriterium. Dette

Detaljer

Oblig 1 - vår 2015 MAT1012

Oblig 1 - vår 2015 MAT1012 Oblig 1 - vår 15 MAT11 MARI RØYSHEIM University of Oslo, Department of Physics 17. februar 15 Med forbehold om trykkfeil og andre feil! Oppgave 1 a) Vi skal finne det bestemte integralet, og bruker substitusjon.

Detaljer

Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Alle svar skal grunngis. Alle deloppgaver har lik vekt. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom

Detaljer

Viktig informasjon. Taylorrekker

Viktig informasjon. Taylorrekker Viktig informasjon MAT-IN1105 - Programmering, modellering og beregninger Fredag 15 desember 2017 Kl09:00-13:00 (4 timer) Tillatte hjelpemiddel: Formelsamling (deles ut på eksamen), Gyldig kalkulator I

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 00 Modellering og beregninger. Eksamensdag: Torsdag 6. desember 202. Tid for eksamen: 9:00 3:00. Oppgavesettet er på 8

Detaljer

Numerisk løsning av differensiallikninger Eulers metode,eulers m

Numerisk løsning av differensiallikninger Eulers metode,eulers m Numerisk løsning av differensiallikninger Eulers metode, Eulers midtpunktmetode, Runge Kuttas metode, Taylorrekkeutvikling* og Likninger av andre orden MAT-INF1100 Diskretsering Utgangspunkt: differensiallikning

Detaljer

8 Interpolasjon TMA4125 våren 2019

8 Interpolasjon TMA4125 våren 2019 8 Interpolasjon TMA4 våren 9 Fra M husker du at dersom x i er n + forskjellige punkter på x-aksen med korresponderende y-verdier y i, finnes det et entydig polynom av maksimal grad n som interpolerer punktene

Detaljer

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3 Prøve i Matematikk BYFE DAFE Dato: 27. mai 26 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Løsningsforslag Oppgave Gitt matrisene [ 2 A 4 B [ 2 og C [ 2

Detaljer

Prøve i Matte 1000 BYFE DAFE 1000 Dato: 03. mars 2016 Hjelpemiddel: Kalkulator og formelark. Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Prøve i Matte 1000 BYFE DAFE 1000 Dato: 03. mars 2016 Hjelpemiddel: Kalkulator og formelark. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Prøve i Matte 1 BYFE DAFE 1 Dato: 3. mars 216 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. LØSNINGSFORSLAG Oppgave 1 Gitt matrisene A = [ 8 3 6 2 ] [ og

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 9. Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 9. Løsningsforslag Matematikk 000 Øvingsoppgaver i numerikk leksjon 9 Løsningsforslag Oppgave Integral som en sum av rektangler a) 3 f(x) dx = 3 x 3 dx = [ ] 3 3 + x3+ = [ x 4 ] 3 4 = 34 = 20. 4 b) 0.5 f() + 0.5 f(.5) +

Detaljer

a) Ved numerisk metode er det løst en differensiallikning av et objekt som faller mot jorden. Da, kan vi vi finne en tilnærming av akselerasjonen.

a) Ved numerisk metode er det løst en differensiallikning av et objekt som faller mot jorden. Da, kan vi vi finne en tilnærming av akselerasjonen. Oppgave 1 a) Ved numerisk metode er det løst en differensiallikning av et objekt som faller mot jorden. Da verdier av er kjent gjennom resultater i form av,, kan vi vi finne en tilnærming av akselerasjonen.

Detaljer

Litt om numerisk integrasjon og derivasjon og løsningsforslag til noen ekstraoppgaver MAT-INF 1100 uke 48 (22/11-26/11)

Litt om numerisk integrasjon og derivasjon og løsningsforslag til noen ekstraoppgaver MAT-INF 1100 uke 48 (22/11-26/11) Litt om numerisk integrasjon og derivasjon og løsningsforslag til noen ekstraoppgaver MAT-INF 1100 uke 48 (22/11-26/11) Knut Mørken 22. november 2004 Vi har tidligere i kurset sett litt på numerisk derivasjon

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Forelesning 9 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 9 Derivasjon I dagens forelesning skal vi se på følgende: 1 Tilnærminger til små endringer. 2 Vekstfart.

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 11 Eulers metode. Løsningsforslag

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 11 Eulers metode. Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 11 Eulers metode Løsningsforslag Oppgave 1 Samanlikning med analytisk løsning y = 3 2 x y, y(0) = 1. a) Kandidat til løsning: y = e x3/2. Vi deriverer

Detaljer

Matematikk 1000. Eksamensaktuelle numerikk-oppgåver

Matematikk 1000. Eksamensaktuelle numerikk-oppgåver Matematikk 1000 Eksamensaktuelle numerikk-oppgåver Som kj er numeriske metodar ein sentral del av dette kurset. Dette vil også sette preg på eksamen. Men vi kjem ikkje til å bruke datamaskin på sjølve

Detaljer

5.8 Iterative estimater på egenverdier

5.8 Iterative estimater på egenverdier 5.8 Iterative estimater på egenverdier Det finnes ingen eksplisitt formel for beregning av egenverdiene til en kvadratisk matrise. Iterative metoder som finner (ofte) en (meget god) approksimasjon til

Detaljer

Løsningsforslag eksamen i TMA4100 Matematikk desember Side 1 av 7

Løsningsforslag eksamen i TMA4100 Matematikk desember Side 1 av 7 Løsningsforslag eksamen i TMA4 Matematikk 2. desember 23. Side av 7 Oppgave Løs initialverdiproblemet y (2/x)y, y() 2. Løsning: y (2/x)y er en førsteordens lineær differensialligning. Vi finner en løsning

Detaljer

Komplekse tall. Kapittel 2. Den imaginære enheten. Operasjoner på komplekse tall

Komplekse tall. Kapittel 2. Den imaginære enheten. Operasjoner på komplekse tall Kapittel Komplekse tall Oppfinnelsen av nye tallsystemer henger gjerne sammen med polynomligninger x + 4 0 har ingen positiv løsning, selv om koeffisientene er positive tall Vi må altså inn med negative

Detaljer

MAT jan jan feb MAT Våren 2010

MAT jan jan feb MAT Våren 2010 MAT 1012 Våren 2010 Mandag 25. januar 2010 Forelesning Vi fortsetter med å se på det bestemte integralet, bl.a. på hvordan vi kan bruke numeriske beregninger til å bestemme verdien når vi ikke nødvendigvis

Detaljer

1. (a) Finn egenverdiene og egenvektorene til matrisen A =

1. (a) Finn egenverdiene og egenvektorene til matrisen A = 1. (a) Finn egenverdiene og egenvektorene til matrisen A = ( ) 2 3. 1 4 Svar: λ = 5 med egenvektorer [x, y] T = y[1, 1] T og λ = 1 med egenvektorer [x, y] T = y[ 3, 1] T, begge strengt tatt med y 0. (b)

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4 Matematikk Høst 4 Løsningsforslag Øving 5.7.4 Vi observerer at både y = cos πx 4 og y = x er like funksjoner. Det vil si

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Tenkeonsdag i MAT-INF 1100 Modellering og beregninger. Dag: Onsdag 28. november 2012. Tid for moroa: 16:00 19:00. Oppgavesettet er på 9

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 11L Programmering, modellering, og beregninger. Eksamensdag: Fredag 5. Desember 214. Tid for eksamen: 9: 13:. Oppgavesettet

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 7 Numerisk derivasjon

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 7 Numerisk derivasjon Matematikk 1000 Øvingsoppgaver i numerikk leksjon 7 Numerisk derivasjon Vi skal se at der er ere måte å regne ut deriverte på i tillegg til de derivasjonsreglene vi kjenner fra før Men ikke alle måtene

Detaljer

Eksamensoppgave i TMA4125 Matematikk 4N

Eksamensoppgave i TMA4125 Matematikk 4N Institutt for matematiske fag Eksamensoppgave i TMA4125 Matematikk 4N Faglig kontakt under eksamen: Morten Andreas Nome Tlf: 90849783 Eksamensdato: 6. juni 2019 Eksamenstid (fra til): 09:00-13:00 Hjelpemiddelkode/Tillatte

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 1100L Programmering, modellering, og beregninger. Eksamensdag: Fredag 2. Desember 2016. Tid for eksamen: 9:00 13:00.

Detaljer

Derivasjonen som grenseverdi

Derivasjonen som grenseverdi Gitt graf. Start/stopp. Fra sekant til tangent. Veien til formelen for den deriverte til funksjon f i et punkt Animasjonens jem: ttp://ome.ia.no/~cornelib/animasjon/ matematikk/mate-online-at/ablgrenz/

Detaljer

Mål og innhold i Matte 1

Mål og innhold i Matte 1 Mål og innhold i Institutt for matematiske fag 1. november 2013 Målet med denne oversikten er at vi skal se hvor vi er i pensum, og at du skal kunne finne hva du kan/ikke kan. Jeg vil i tillegg vise hva

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Litt oppsummering undervegs Løsningsforslag

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Litt oppsummering undervegs Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon Litt oppsummering undervegs Løsningsforslag Oppgave 1 Et skjæringspunkt f(x) = x e x g(x) = 1 arctan x. a) Vi kan lage plottet slik i kommando-vinduet:

Detaljer

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger Institutt for matematiske fag Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger Faglig kontakt under eksamen: Anton Evgrafov Tlf: 4503 0163 Eksamensdato: 30. mai 2017 Eksamenstid (fra

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 1100L Programmering, modellering, og beregninger. Prøveeksamen 1 Eksamensdag: Onsdag 14. November 2014. Tid for eksamen:

Detaljer

Lineære likningssystemer og matriser

Lineære likningssystemer og matriser Kapittel 3 Lineære likningssystemer og matriser I dette kapittelet skal vi sette sammen Kapittel 1 og 2. 3.1 Den utvidede matrisen til et likningssystem Vi starter med et lineært likningssystem med m likninger

Detaljer

Matematikk 1000, 2012/2013. Eksamensaktuelle numerikk-oppgåver

Matematikk 1000, 2012/2013. Eksamensaktuelle numerikk-oppgåver Matematikk 1, 1/13 Eksamensaktuelle numerikk-oppgåver Oppgåve 1 Skript-jeopardy a) Vi ser at skriptet inneheld ei for-løkke der variabelen n tar verdiane 1,,..., 1. For kvar gong blir n 3 lagt til variabelen

Detaljer

Mål og innhold i Matte 1

Mål og innhold i Matte 1 Mål og innhold i Institutt for matematiske fag 15. november 2013 på Målet med denne oversikten er at vi skal se hvor vi er i pensum, og at du skal kunne finne hva du kan/ikke kan. Jeg vil i tillegg vise

Detaljer

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer Eksamen 8. desember 16 Eksamenstid 4 timer IR151 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del uten bruk av hjelpemidler. Du kan bare bruke

Detaljer

EKSAMEN I NUMERISK MATEMATIKK (TMA4215)

EKSAMEN I NUMERISK MATEMATIKK (TMA4215) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 5 Faglig kontakt under eksamen: Anne Kværnø 92663824) EKSAMEN I NUMERISK MATEMATIKK TMA425) Tirsdag 4. desember 2007

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 7 Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 7 Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 7 Løsningsforslag Oppgave 1 Halveringsmetoden igjen a) I skriptet vårt fra leksjon 6 skal altså linje 16 erstattes med while abs(b-a)>1e-3. Når vi gjør

Detaljer

TMA4100 Matematikk 1, 4. august 2014 Side 1 av 12. x 2 3x +2. x 2

TMA4100 Matematikk 1, 4. august 2014 Side 1 av 12. x 2 3x +2. x 2 TMA4 Matematikk, 4. august 24 Side av 2 Oppgave Den rasjonale funksjonen p er definert som p(x) x2 3x +2 3x 2 5x +2. Finn de tre grenseverdiene lim xæ p(x), lim xæ p(x) og lim xæœ p(x). Løsning: x 2 3x

Detaljer

IR Matematikk 1. Utsatt Eksamen 8. juni 2012 Eksamenstid 4 timer

IR Matematikk 1. Utsatt Eksamen 8. juni 2012 Eksamenstid 4 timer Utsatt Eksamen 8. juni 212 Eksamenstid 4 timer IR1185 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del 2 uten bruk av hjelpemidler. Du kan bare

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger. Eksamensdag: Mandag 5. desember 2011. Tid for eksamen: 9:00 13:00. Oppgavesettet er på

Detaljer

Newtons metode - Integrasjon Forelesning i Matematikk 1 TMA4100

Newtons metode - Integrasjon Forelesning i Matematikk 1 TMA4100 Newtons metode - Integrasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 20. september 2011 Kapittel 4.7. Newtons metode 3 Eksakt løsning Den eksakte løsningen av

Detaljer

Prosjekt 2 - Introduksjon til Vitenskapelige Beregninger

Prosjekt 2 - Introduksjon til Vitenskapelige Beregninger Prosjekt - Introduksjon til Vitenskapelige Beregninger Studentnr: 755, 759 og 7577 Mars 6 Oppgave Feltlinjene for en kvadrupol med positive punktladninger Q lang x-aksen i x = ±r og negative punktladninger

Detaljer

9 + 4 (kan bli endringer)

9 + 4 (kan bli endringer) Innlevering DAFE ELFE Matematikk HIOA Obligatorisk innlevering 4 Innleveringsfrist Onsdag 29. april 25 Antall oppgaver: 9 + 4 (kan bli endringer) Finn de ubestemte integralene a) 2x 3 4/x dx b) c) 2 5

Detaljer

Eksamen i TMA4122 Matematikk 4M

Eksamen i TMA4122 Matematikk 4M Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 Faglig kontakt under eksamen: Yura Lyubarskii: mobil 9647362 Anne Kværnø: mobil 92663824 Eksamen i TMA422 Matematikk

Detaljer

Ikke lineære likninger

Ikke lineære likninger Ikke lineære likninger Opp til nå har vi studert lineære likninger og lineære likningsystemer. 1/19 Ax = b Ax b = 0. I en dimensjon, lineære likninger kan alltid løses ved hjelp av formler: ax + b = 0

Detaljer

Integrasjon Forelesning i Matematikk 1 TMA4100

Integrasjon Forelesning i Matematikk 1 TMA4100 Integrasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 21. oktober 2011 Kapittel 7.4. Delbrøksoppspalting og Integrasjon av rasjonale funksjoner 3 Integrasjon av

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag Oppgave 1 Tredjegradslikninga a) Vi viser her hvordan det kan gjøres både som funksjonsl og som skript. Vi starter med funksjonla: 1

Detaljer

NTNU Institutt for matematiske fag. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 8. Oppgave 1. Oppgave 2

NTNU Institutt for matematiske fag. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 8. Oppgave 1. Oppgave 2 NTNU Institutt for matematiske fag TMA4 Matematikk høsten Løsningsforslag - Øving 8 Oppgave b. Vi har at f() > og f(π/) π /6

Detaljer

Viktig informasjon. 1.1 Taylorrekker. Hva er Taylor-polynomet av grad om for funksjonen? Velg ett alternativ

Viktig informasjon. 1.1 Taylorrekker. Hva er Taylor-polynomet av grad om for funksjonen? Velg ett alternativ Viktig informasjon MAT-INF1100 - Modellering og beregninger Mandag 10. desember 2018 Kl.09:00-13:00 (4 timer) Tillatte hjelpemiddel: Formelsamling (deles ut på eksamen), Gyldig kalkulator. I dette oppgavesettet

Detaljer

Viktig informasjon. 1.1 Taylorrekker. Hva er Taylor-polynomet av grad om for funksjonen? Velg ett alternativ

Viktig informasjon. 1.1 Taylorrekker. Hva er Taylor-polynomet av grad om for funksjonen? Velg ett alternativ Viktig informasjon MAT-IN1105 - Modellering og beregninger Mandag 10. desember 2018 Kl.09:00-13:00 (4 timer) Tillatte hjelpemiddel: Formelsamling (deles ut på eksamen), Gyldig kalkulator. I dette oppgavesettet

Detaljer

Enkel matematikk for økonomer. Del 1 nødvendig bakgrunn. Parenteser og brøker

Enkel matematikk for økonomer. Del 1 nødvendig bakgrunn. Parenteser og brøker Vedlegg Enkel matematikk for økonomer I dette vedlegget går vi gjennom noen grunnleggende regneregler som brukes i boka. Del går gjennom de helt nødvendige matematikk-kunnskapene. Dette må du jobbe med

Detaljer

Arne B. Sletsjøe. Oppgaver, MAT 1012

Arne B. Sletsjøe. Oppgaver, MAT 1012 Arne B. Sletsjøe Oppgaver, MAT 101 1 En-variabel kalkulus 1.1 I de følgende oppgavene, i) finn alle kritiske punkter til f(x), ii) beskriv monotoniegenskapene til funksjonene ved å se på fortegnet til

Detaljer

Høgskolen i Oslo og Akershus. = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) e 2x + x 2 ( e 2x) 1 sin x (sin x) + 2x = cos x

Høgskolen i Oslo og Akershus. = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) e 2x + x 2 ( e 2x) 1 sin x (sin x) + 2x = cos x Oppgåve a) i) ii) f(x) x e x f (x) ( x ) e x + x ( e x) xe x + x e x (x) xe x + x e x xe x ( + x) g(x) ln(sin x) + x g (x) sin x (sin x) + x cos x sin x + x tan x + x b) i) ( x + ) dx x x dx+ x dx x +

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 1100L Programmering, modellering, og beregninger. Eksamensdag: Fredag 2. Desember 2016. Tid for eksamen: 9:00 13:00.

Detaljer

Computers in Technology Education

Computers in Technology Education Computers in Technology Education Beregningsorientert matematikk ved Høgskolen i Oslo Skisse til samlet innhold i MAT1 og MAT2 JOHN HAUGAN Både NTNU og UiO har en god del repetisjon av videregående skoles

Detaljer

MA1102 Grunnkurs i analyse II Vår 2014

MA1102 Grunnkurs i analyse II Vår 2014 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag MA Grunnkurs i analyse II Vår 4 Løsningsforslag Øving 9 7.3.b Med f() = tan +, så er f () = cos () på intervallet ( π/, π/).

Detaljer

Eksamensoppgave i TMA4125 BARE TULL - LF

Eksamensoppgave i TMA4125 BARE TULL - LF Institutt for matematiske fag Eksamensoppgave i TMA425 BARE TULL - LF Faglig kontakt under eksamen: Tlf: Eksamensdato: 8.april-5. juni 29 Eksamenstid (fra til): : - 24: Hjelpemiddelkode/Tillatte hjelpemidler:

Detaljer

Eksamensoppgave i TMA4125 EKSEMPELEKSAMEN - LF

Eksamensoppgave i TMA4125 EKSEMPELEKSAMEN - LF Institutt for matematiske fag Eksamensoppgave i TMA4125 EKSEMPELEKSAMEN - LF Faglig kontakt under eksamen: Tlf: Eksamensdato: 8.april-5. juni 219 Eksamenstid (fra til): : - 24: Hjelpemiddelkode/Tillatte

Detaljer

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger Institutt for matematiske fag Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger Faglig kontakt under eksamen: Anton Evgrafov Tlf: 4503 0163 Eksamensdato: 06. juni 2016 Eksamenstid (fra

Detaljer

Vår TMA4105 Matematikk 2. Løsningsforslag Øving 6. 5 Exercise Exercise

Vår TMA4105 Matematikk 2. Løsningsforslag Øving 6. 5 Exercise Exercise TMA405 Matematikk 2 Vår 205 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 6 Alle oppgavenummer referer til 8. utgave av Adams & Essex Calculus: A Complete

Detaljer

Løsningsforslag. Prøve i Matematikk 1000 BYFE DAFE 1000 Dato: 29. mai 2017 Hjelpemiddel: Kalkulator og formelark. Oppgave 1 Gitt matrisene.

Løsningsforslag. Prøve i Matematikk 1000 BYFE DAFE 1000 Dato: 29. mai 2017 Hjelpemiddel: Kalkulator og formelark. Oppgave 1 Gitt matrisene. Prøve i Matematikk BYFE DAFE Dato: 29. mai 27 Hjelpemiddel: Kalkulator og formelark Løsningsforslag Oppgave Gitt matrisene A = 2 2 B = [ 2 3 4 ] og C = Regn ut, om mulig, summene A + B, A + B T og A +

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 6. Løsningsforslag

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 6. Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag Oppgave 1 Funksjoner og tangenter 2.1: 15 a) Vi plotter grafen med et rutenett: > x=-3:.1:3; > y=x.^2; > plot(x,y) > grid on > axis([-2

Detaljer

BYFE/EMFE 1000, 2012/2013. Numerikkoppgaver veke 14

BYFE/EMFE 1000, 2012/2013. Numerikkoppgaver veke 14 BYFE/EMFE 1000, 2012/2013 Numerikkoppgaver veke 14 Løysingsforslag Oppgave 1 Samanlikning med analytisk løysing y = 3 2 x y, y(0) = 1. a) Dierensiallikninga er separabel: dy dx = 3 x y 2 dy = 3 x dx y

Detaljer

Bioberegninger - notat 4: Mer om sannsynlighetsmaksimering

Bioberegninger - notat 4: Mer om sannsynlighetsmaksimering Bioberegninger - notat 4: Mer om sannsynlighetsmaksimering 8. mars 2004 1 Kort om Newton s metode i flere dimensjoner Newton s metode kan generaliseres til å løse sett av n ligninger med n ukjente. Skal

Detaljer

NTNU. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 12. Avsnitt Ved Taylors formel (med a = 0) har vi at. 24 For x < 0 har vi at

NTNU. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 12. Avsnitt Ved Taylors formel (med a = 0) har vi at. 24 For x < 0 har vi at NTNU Institutt for matematiske fag TMA400 Matematikk høsten 200 Løsningsforslag - Øving 2 Avsnitt 8.9 23 Ved Taylors formel (med a = 0) har vi at der R 2 (x) = f (n+) (c) (n+)! e x = + x + x2 2 + R 2(x),

Detaljer

Høgskolen i Oslo og Akershus. 1 (x 2 + 1) 1/2 + x 1 2 (x2 + 1) 1/2 (x 2 + 1) = x 2x 2 x = = 3 ln x sin x

Høgskolen i Oslo og Akershus. 1 (x 2 + 1) 1/2 + x 1 2 (x2 + 1) 1/2 (x 2 + 1) = x 2x 2 x = = 3 ln x sin x Løysingsforslag til eksamen i matematikk, mai 4 Oppgåve a) i) ii) f(x) x x + x(x + ) / ( f (x) x (x + ) / + x (x + ) /) g(x) ln x sin x x (x + ) / + x (x + ) / (x + ) x + + x x x + x + + x x + x + x +

Detaljer

Fasit til eksamen i emnet MAT102 - Brukerkurs i matematikk II Mandag 21.september 2015

Fasit til eksamen i emnet MAT102 - Brukerkurs i matematikk II Mandag 21.september 2015 Fasit til eksamen i emnet MAT02 - Brukerkurs i matematikk II Mandag 2.september 205 Fasit. (a) Løs ligningssystemene. i) 5x + 7y = 4 3x + 2y = ii) 3x + 4y + z = 2 2x + 3y + 3z = 7 Svar: i) x = 85/, y =

Detaljer

Tallfølger er noe av det første vi treffer i matematikken, for eksempel når vi lærer å telle.

Tallfølger er noe av det første vi treffer i matematikken, for eksempel når vi lærer å telle. Kapittel 1 Tallfølger 1, 2, 3, 4, 5, 6, 7, 8,... Det andre temaet i kurset MAT1001 er differenslikninger. I en differenslikning er den ukjente en tallfølge. I dette kapittelet skal vi legge grunnlaget

Detaljer

Biseksjonsmetoden. biseksjonsmetode. Den første og enkleste iterativ metode for ikke lineære likninger er den så kalt

Biseksjonsmetoden. biseksjonsmetode. Den første og enkleste iterativ metode for ikke lineære likninger er den så kalt Biseksjonsmetoden Den første og enkleste iterativ metode for ikke lineære likninger er den så kalt biseksjonsmetode. Gitt en intervall [a, b] hvor f skifter fortegn, vi halverer [a, b] = [a, b + a 2 ]

Detaljer

Løsningsforslag. Innlevering i BYFE 1000 Oppgavesett 4 Innleveringsfrist:??? klokka 14:00 Antall oppgaver: 5, 20 deloppgaver.

Løsningsforslag. Innlevering i BYFE 1000 Oppgavesett 4 Innleveringsfrist:??? klokka 14:00 Antall oppgaver: 5, 20 deloppgaver. Innlevering i BYFE Oppgavesett 4 Innleveringsfrist:??? klokka 4: Antall oppgaver: 5, deloppgaver Løsningsforslag Oppgave a) ln π e x cos e x ) dx Variabelbytte: u e x, du dx ex, dx e du. x Nye grenser:

Detaljer

Feilestimeringer. i MAT-INF1100

Feilestimeringer. i MAT-INF1100 Feilestimeringer i MAT-INF11 Ett v de viktigste punktene i MAT-INF11, og smtidig det som nsees som det vnskeligste i pensum, er feilestimter. Vi bruker mye tid på å beregne tilnærmede verdier for funksjoner,

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN Bokmål UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Løsningsforslag til Eksamen i emnet MAT - Grunnkurs i matematikk I Torsdag 22. mai 28, kl. 9-4. Dette er kun et løsningsforslag.

Detaljer

Eksamen i emnet MAT111/M100 - Grunnkurs i matematikk I Mandag 15. desember 2003, kl. 09-13(15) LØYSINGSFORSLAG OPPGÅVE 2:

Eksamen i emnet MAT111/M100 - Grunnkurs i matematikk I Mandag 15. desember 2003, kl. 09-13(15) LØYSINGSFORSLAG OPPGÅVE 2: Eksamen i emnet MAT/M00 - Grunnkurs i matematikk I Mandag 5. desember 2003, kl. 09-3(5) LØYSINGSFORSLAG Finn dei deriverte til i) f(x) = x 2 ln x OPPGÅVE : exp(u 2 )du, x, ii) f(x) = x cos(x). i) d x 2

Detaljer

MAT feb feb feb MAT Våren 2010

MAT feb feb feb MAT Våren 2010 Våren 2010 Mandag 15. februar 2010 Forelesning Vi begynner med et eksempel på bruk av partiell derivasjon for å gjøre såkalt lineær regresjon, eller minste kvadraters metode. Dette er en anvendelse av

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 11 Modellering og beregninger. Eksamensdag: Mandag 6. desember 21. Tid for eksamen: 9: 13:. Oppgavesettet er på 5 sider.

Detaljer

Eksamensoppgave i MA1102/6102 Grunnkurs i analyse II

Eksamensoppgave i MA1102/6102 Grunnkurs i analyse II Institutt for matematiske fag Eksamensoppgave i MA1102/6102 Grunnkurs i analyse II Faglig kontakt under eksamen: Magnus Landstad Tlf: Eksamensdato: 6. juni 2017 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte

Detaljer

Potensrekker Forelesning i Matematikk 1 TMA4100

Potensrekker Forelesning i Matematikk 1 TMA4100 Potensrekker Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 1. november 2011 Kapittel 8.7. Potensrekker (fra konvergens av) 3 Konvergens av potensrekker Eksempel For

Detaljer

4 Matriser TMA4110 høsten 2018

4 Matriser TMA4110 høsten 2018 Matriser TMA høsten 8 Nå har vi fått erfaring med å bruke matriser i et par forskjellige sammenhenger Vi har lært å løse et lineært likningssystem ved å sette opp totalmatrisen til systemet og gausseliminere

Detaljer

dg = ( g P0 u)ds = ( ) = 0

dg = ( g P0 u)ds = ( ) = 0 NTNU Institutt for matematiske fag TMA4105 Matematikk 2, øving 8, vår 2011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,

Detaljer

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Obligatorisk innlevering 3 i emnet MAT111, høsten 2016

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Obligatorisk innlevering 3 i emnet MAT111, høsten 2016 UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Obligatorisk innlevering 3 i emnet MAT, høsten 206 Innleveringsfrist: Mandag 2. november 206, kl. 4, i Infosenterskranken i inngangsetasjen

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag 5..7 EKSAMEN Løsningsforslag Emnekode: ITD5 Dato:. desember 7 Hjelpemidler: - To A-ark med valgfritt innhold på begge sider. - Formelhefte. - Kalkulator som deles ut samtidig med oppgaven. Emnenavn: Matematikk

Detaljer

EKSAMEN I NUMERISK MATEMATIKK(TMA4215) Lørdag 20. desember 2003 Tid: 09:00 14:00, Sensur:

EKSAMEN I NUMERISK MATEMATIKK(TMA4215) Lørdag 20. desember 2003 Tid: 09:00 14:00, Sensur: Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 Faglig kontakt under eksamen: Navn: Brynjulf Owren (9264) EKSAMEN I NUMERISK MATEMATIKK(TMA425) Lørdag 2. desember

Detaljer

EKSAMEN I MATEMATIKK 1000

EKSAMEN I MATEMATIKK 1000 EKSAMEN I MATEMATIKK 1000 Oppgave 1 a) Finn den deriverte av disse funksjonene: f(x) = x 3 e 5x og g(x) = ln(tan(x)) + x 3. b) Finn de følgende ubestemte integralene: i) (x 3 + xe x2 ) dx og ii) cos 2

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 11 Modellering og beregninger Eksamensdag: Mandag 1 Desember 218 Tid for eksamen: 9: 13: Oppgavesettet er på 5 sider

Detaljer

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8 Innlevering BYFE DAFE Matematikk HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 5. april 6 kl Antall oppgaver: 8 Funksjonen ft) er vist i guren over. Funksjonen F x) er denert som for x. F x)

Detaljer

Løsningsforslag. og B =

Løsningsforslag. og B = Prøve i Matte EMFE DAFE ELFE BYFE Dato: august 25 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave a) Gitt matrisene A = 2 3 2 4 2 Løsningsforslag og

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 11 Modellering og beregninger. Eksamensdag: Fredag 7. desember 27. Tid for eksamen: 9: 12:. Oppgavesettet er på 8 sider.

Detaljer