Programmering i R - del 2

Størrelse: px
Begynne med side:

Download "Programmering i R - del 2"

Transkript

1 Programmering i R - del februar Simulering fra modell Når vi skal analysere et gitt konkret innsamlet datasett vil vi gjøre dette med utgangspunkt i en statistisk modell. Vi kan si at en slik statistisk modell representerer hva vi på forhånd tror om den prosessen som har generert dataene vi studerer. Modellen består av et sett antakelser vi velger å tro på som spesifiserer hvordan dataene er fordelt gitt verdien av visse ukjente størrelser som inngår i modellformuleringen modellens parametere. Vi ønsker å trekke slutninger om disse parameterne. I mange tilfeller kan vi finne egenskaper ved interessante størrelser slik som estimatorer, testobservatorer og andre funksjoner av dataene analytisk. Dersom vi for eksempel antar at vi har uavhengig identisk normalfordelte data, vil størrelsen ( X µ)/(s/ n) være t-fordelt. I en lineær regresjonsmodell antas det at responsvariabelen Y i for den i te observasjonen normalfordelt med forventning a + bx i og varians σ 2. I denne modellen har estimatorene for de ulike parameterne kjente fordelinger. I mange tilfeller kan vi finne interessante egenskaper som forventningsverdi og varians til eksempelvis ulike estimatorer analytisk. Avhengig av hvilke antakelser vi finner det rimelig å bygge inn i en modell vil det imidlertid ikke alltid være slik at vi kan finne egenskaper til interessante størrelser analytisk. Det er i slike tilfeller at stokastisk simulering vil være et nyttig hjelpemiddel. 1.1 Generell algoritme Anta at vi har en modell som spesifiserer fordelingen til et sett observasjoner X 1, X 2,..., X n. I mange tilfeller vil vi være interessert i å se på egenskapene til en eller annen funksjon av observasjonene, la oss si, W = W (X 1, X 2,..., X n ). (1) 1

2 I øving 3 brukte vi estimatoren ˆλ = n/ X i av λ i eksponentialfordelingen som eksempel på en slik funksjon og vi fant at denne ikke var forventningsrett ved å simulere. Generelt vil funksjonen W kunne være en estimator, en testobservator, eller en annen stokastisk variabel som vi ønsker å finne egenskapene til. I estimeringssammenheng trenger vi å bestemme standardfeil og eventuell forventningsfeil til estimatoren gitt ved E(W ) og Var(W ). I forbindelse med hypotese testing vil vi kunne være interessert i sannsynligheter for eksempel av typen P (W a). Når vi skal undersøke reellt konfidensnivå til konfidensintervaller trenger vi å se på to funksjoner av dataene, nedre og øvre intervallgrense, gitt ved funksjonene θ(x 1, X 2,..., X n ) og θ(x 1, X 2,..., X n ). Vi er så interessert i sannsynligheten for at intervallgrensene ligger rundt den ukjente parameteren θ, altså P (θ θ θ). Også utenfor området statistisk inferens vil stokastisk simulering være et nyttig verktøy. Senere i kurset og i videregående kurs vil vi lage stokastiske modeller som spesifiserer fordelingen til frekvensen av for eksempel en ny mutasjon i fremtidige generasjoner, la oss si, p 1, p 2,..., p n, gitt frekvensen i generasjon t = 0. Spørsmål som vil kunne være av interesse er sannsynligheten for at en mutasjonen er tilstede i generasjon n, P (p n > 0). Alt dette er tallstørrelser som vi finne med den nøyaktighet vi måtte ønske ved hjelp av simuleringer. En generell algoritme (tenk kakeoppskrift ) for å gjennomføre dette er som følger: 1. Gjenta følgende for i = 1, 2,..., m. Antall simuleringer velges gjerne lik m = (a) Simuler et utvalg X1, X2,..., Xn fra modellen. Utvalget kalles gjerne et bootstrap-sample. (b) Beregn Wi = W (X1, X2,..., Xn) og eventuelt andre variable av som er av interesse. Dette vil utgjøre i te bootstrap-replikat av variabelen W. 2. Nå kan ulike størrelser estimeres fra bootstrap- replikatene på følgende måte: 2

3 (a) E(W ) kan estimeres ved hjelp av estimatoren W = 1 m Wi. (2) n (b) Var(W ) kan estimeres ved vanlig estimator for varians, SW 2 = 1 m (W i m 1 W ) 2. (3) (c) Sannsynligheter av typen P (W a) kan estimeres ved m A /m hvor m A er antall bootstrap-replikater W i a. I praksis utføres en slik algoritme eller oppskrift lettest ved hjelp av datamaskin ved å lage et program i et passende programmeringsspråk Eksempel - forventningsverdi til estimator I øving 3 så vi at ˆλ = i=1 i=1 n Xi (4) ikke var forventningsrett for parameteren λ i ekponentiell modell. Dette kan også relativt enkelt vises analytisk. Det kan vises at forventningsverdien er gitt ved E(ˆλ) = n λ. (5) n 1 Lager vi oss en ny estimator basert på ˆλ, følger det at denne er forventningsrett fordi ˆλ = n 1 n ˆλ = n 1 Xi, (6) E(ˆλ ) = n 1 n E(ˆλ) = λ. (7) La oss kontrollere dette ved hjelp av simuleringer. Det er alltid hensiktsmessig å programmere den funksjonen vi vil se på som en egen funksjon i R. Estimatoren gitt (6) kan programmeres i R på følgende måte: 1 Algoritmen over kalles gjerne parametrisk bootstrapping. I kursene anvendt statistikk og moderne statistiske metoder vil såkalt ikke-parametrisk bootstrapping bli behandlet. Dette er metoder hvor vi simulerer bootstrap-sample (trinn 1a i algoritmen) på en annen måte uten å gjøre antakelser om hvilken fordeling dataene har. Uttrykket bootstrapping henspeiler på hvordan vi i en slik situasjon så og si letter fra bakken (greier å gjennomføre statistiske slutninger) ved å trekke oss opp etter skolissene. 3

4 lambdahatmerket <- function(x) { n <- length(x) return((n-1)/sum(x)) Merk kallet til length som gjør at funksjonen lambdahatmerket håndterer utvalg av vilkårlig størrelse (representert av vektoren x som er innargument.) Funksjonen svarer til funksjonen W gitt ved (1) i det generelle oppsettet. Vi programmerer så en funksjon som utfører algoritmen over. Det er hensiktsmessig å la antall simuleringer m være et argument med defaultverdi 1000 slik at vi eventuelt kan utføre et større antall simuleringer senere om vi måtte ønske dette uten å endre funksjonsdefinisjonen. Når vi skal simulere fra modellen vår må vi også anta en eller annen verdi for parameteren λ. Denne (samt utvalgsstørrelsen n) bør derfor også være argument i funksjonen som skal utføre simuleringsalgoritmen: lambdasim <- function(lambda,n=10,m=1000) { lambdaboot <- rep(na,m) for (i in 1:m) { X <- rexp(n=n,rate=lambda) lambdaboot[i] <- lambdahatmerket(x) return(lambdaboot) La oss gå gjennom de ulike delene av funksjonsdefinisjonen over. Hoveddelen av funksjonen består av en for-løkke hvor løkkevariabelen i tar verdiene 1, 2,..., 1000 ved de gjentatte utførelsene av løkke-kroppen (uttrykkene mellom krøllparantesene). I første linje av løkke-kroppen simuleres et tilfeldig utvalg (et bootstrapsample) fra modellen ved hjelp av et kall til funksjonen rexp. Resultatet lagres i den lokale variabelen X. Dette svarer til trinn 1a) i den generelle algoritmen i avsnitt 1.1. I andre linje av løkke-kroppen beregnes det i te bootstrapreplikatet av variabelen vi ser på ved hjelp av et kall til vår egen funksjon lambdahatmerket. Dette svarer til trinn 1b i algoritmen. Merk at det er det simulerte bootstrapsamplet som går inn som argument i kallet til lambdahatmerket. Vi tar vare på resultatet i det i te elementet av den lokale variabelen (vektoren) lambdaboot. Det siste funksjonen gjør etter at for-løkken er gjennomløpt er at hele vektoren lambdaboot returneres som funksjonsverdi. 4

5 Merk også at hele vektoren lambdaboot opprettes som en tom vektor av lengde m i første linje ved at verdien av uttrykket rep(na,m) tilordnes til lambdaboot. Dette er hensiktsmessig å gjøre dersom vi kjenner lengden til lambdaboot på forhånd slik som her vi unngår at R må allokere minneplass til stadige utvidelser av vektoren lambdaboot ved gjennomkjøring av løkken slik tilfelle ville vært om vi hadde initiert lambdaboot til å ha bare ett element i linje 1. Resultatet er at kall til lambdasim utføres på langt kortere tid. 2 Går vi tilbake til vårt opprinnelige problem kan vi nå finne forventningsverdien til estimatoren ˆλ ved å gjøre ett kall til lambdasim og så beregne gjennomsnittsverdien til de returnerte bootstrapreplikatene: > mean(lambdasim(lambda=1)) [1] > mean(lambdasim(lambda=2)) [1] > mean(lambdasim(lambda=3)) [1] > mean(lambdasim(lambda=1,m=10000)) [1] > mean(lambdasim(lambda=2,m=10000)) [1] > mean(lambdasim(lambda=3,m=10000)) [1] > mean(lambdasim(lambda=3,m=10000,n=2)) [1] > mean(lambdasim(lambda=2,m=10000,n=2)) [1] > mean(lambdasim(lambda=1,m=10000,n=2)) [1] Vi ser at forventningsverdien estimert ved (2) nå blir så og si lik den sanne parameterverdien for λ = 1, 2, 3 også for små utvalgsstørrelser n. At dette virkelig er tilfelle kan selvsagt testes med mer formelle hypotesetestingsmetoder. 2 Ta eventuelt tiden ved å skrive f.eks. system.time(mean(lambdasim(lambda=1))). Endre så første linje til lambdaboot <- NA og ta tiden på nytt. 5

6 1.3 Eksempel - beregning av dekningsgrad til konfidensintervall Dersom X 1, X 2,..., X n er uavhengige normalfordelte data med ukjent forventning og varians µ og σ 2 er ( X t n 1,α/2 S/ n, X + t n 1,α/2 S/ n) (8) et (1 α) konfidensintervall for parameteren µ. Dette betyr at endepunktene i intervallet (som er funksjoner av dataene og dermed stokastiske variable) skal ligger rundt µ med sannsynlighet (1 α) (konfidensnivået). At dette faktiske er tilfelle kan kontrolleres ved hjelp av simuleringer. Vi følger den samme generelle oppskrift som i avsnitt 1.1. Først programmer vi en funksjon som beregner endepunktene i intervallet som funksjon av dataene. Dette svarer til to funksjoner på samme form som (1). Kvantilen i t-fordelingen, t n 1,α/2, finner vi ved et kall til qt. Merk at kvantiler i R alltid er definert på grunnlag av nedre hale i fordelingene i motsetning til i mange lærebøker hvor øvre hale ofte brukes som utgangspunkt. konfintmu <- function(x,alpha=.05) { n <- length(x) t <- qt(df=n-1,p=alpha/2,lower.tail=false) xbar <- mean(x) s <- sd(x) return(list(nedre=xbar-t*s/sqrt(n),ovre=xbar+t*s/sqrt(n))) Navn på listekomponenter spesifiseres foran likhetstegnene; komponentene verdi blir like verdien av uttrykkene etter likhetstegnene. Tester vi intervallet på ett simulert datasett får vi: > x <- rnorm(n=30,mean=10,sd=2) > konfintmu(x) $nedre [1] $nedre [1] En funksjon som beregner dekningsgraden kan se slik ut: dekningsgrad <- function(mu,sigma2,n,alpha=.05,nsim=10000) { 6

7 ntreff <- 0 for (i in 1:nsim) { X <- rnorm(n=n,mean=mu,sd=sqrt(sigma2)) ki <- konfintmu(x,alpha) if (ki$nedre<=mu & mu<=ki$ovre) { ntreff <- ntreff + 1 return(ntreff/nsim) Denne funksjonen følger essensielt samme oppsett som den generelle algoritmen i avsnitt 1.1. I første linje i løkke-kroppen simuleres et tilfeldig utvalg (et bootstrap-sample) fra den antatte modellen, og i neste linje beregnes konfidensintervallet og vi tar vare på dette i listen ki. Vi søker sannsynligheten for at intervallgrensene ligger rundt µ. Derfor tester vi dette med en if-setning; hvis det logiske uttrykket er oppfylt økes tellevariabelen ntreff med 1 i neste linje. Når for-løkken er gjennomløpt vil uttrykket ntreff/nsim gi oss et estimat av sannsynligheten vi er ute etter intervallets reelle dekningsgrad. Vi må huske å initiere tellevariabelen i første linje før vi har begynt å telle skal denne ha verdi 0. Vi ser at dekningsgraden i dette tilfelle blir lik det nominelle nivået uansett hvilke verdier modellparameterne har. Dette er forventet i og med at intervallet bygger ikke på noen tilnærminger i motsetning til intervallet for p i øving 4 og 5: > dekningsgrad(mu=10,sigma2=2^2,n=10,alpha=.05) [1] > dekningsgrad(mu=10,sigma2=2^2,n=10,alpha=.1) [1] > dekningsgrad(mu=10,sigma2=2^2,n=2,alpha=.05) [1] > dekningsgrad(mu=10,sigma2=2^2,n=100,alpha=.05) [1] Newton s metode 2.1 While-setningen Vi har tidligere sett på bruk av før-løkker. Slike løkker er hensiktsmessig å bruke når vi skal gjenta visse beregninger (løkke-kroppen) et antall ganger 7

8 og når antallet er kjent på forhånd. I en del tilfeller vil vi imidlertid ønske å stoppe løkken når en visse betingelse er oppfylt. Et eksempel er løsning av ikke-lineære ligninger ved hjelp av Newton s metode. La oss først se på den generelle virkemåten til en while-løkke. En while-løkke er bygget opp på følgende måte while (logisk uttrykk) { sammensatt uttrykk Før hver utførelse av løkke-kroppen (et eller flere uttrykk mellom krøllparantesene) vil det logiske uttrykket i parenteser beregnes. Hvis dette har verdi FALSE vil løkken avbrytes, hvis ikke utføres løkke-kroppen. La oss se på følgende eksempel. i <- 1 while (i<100) { i <- i*2 print(i) Her initieres først verdien av variabelen i til 1. Ved første gangs beregning av det logiske uttrykket i<100 har dette dermed verdi TRUE og løkke-kroppen utføres slik at i får verdien 2 som så skrives til skjerm ved med funksjonen print. Så gjentas det hele (det logiske uttrykket beregnes på nytt og løkkekroppen utføres) helt til i blir ikke lenger er mindre 100. Dette inntreffer når i har fått verdien 128 etter sjuende gangs utførelse av løkke-kroppen. Da avbrytes løkken: [1] 2 [1] 4 [1] 8 [1] 16 [1] 32 [1] 64 [1] 128 > i [1] Newton s metode Algoritmen er beskrevet i detalj i Neuhauser (2004) kap Metoden er egnet til å finne røtter til ligninger på formen f(x) = 0 forutsatt at vi kjenner den deriverte av funksjonen f. Algoritmen er som følger: 8

9 1. Velg en passende x 0 i nærheten av løsningen. 2. Beregn for n = 1, 2,... inntil x n x n 1 < ɛ. x n+1 = x n f(x n) f (x n ), (9) Størrelsen ɛ bestemmer den numeriske nøyaktigheten på løsningen og velges lik f.eks hvis vi ønsker en løsning med 8 desimalers nøyaktighet. Andre stoppkriterier kan brukes avhengig av hva slags problem vi studerer. 2.3 Eksempel Anta at vi ønsker å finne roten av et positivt tall a, altså løsningen av ligningen x 2 = a x 2 a = 0 (10) som er på formen f(x) = 0 om vi lar f(x) = x 2 a. Deriverer vi f får vi og iterasjonsligningen blir dermed f (x) = 2x, (11) x n+1 = x n x2 n a 2x n x n+1 = x n x n 2 + a. 2x n (12) En funksjon som beregner roten av a ved bruk av metoden over kan se slik ut: minrot <- function(a,x0=a/2,tol=1e-8) { x <- x0 forrigex <- x0-1 while (abs(x-forrigex)>tol) { forrigex <- x x <- x - x/2 + a/(2*x) return(x) 9

10 Vi trenger i praksis ikke å ta vare på alle x n ene; det er nok å bruke to lokale variabler x og forrigex. Variabelen forrigex brukes til å ta vare på forrige verdi av x før vi beregner neste verdi av x, slik at vi kan sammenligne x n+1 og x n i det logiske uttrykket i første linje av while-løkken. Merk at verdiene til av begge disse variablene må tilordnes passende og forskjellige start verdier (linje 1 og 2) slik at while-løkken ikke stopper umiddelbart. I dette tilfelle har ligningen f(x) = 0 flere røtter, disse kan finnes ved å gi x 0 passende start verdier i nærheten av den roten vi søker: > minrot(2) [1] > minrot(2,x0=-2) [1] Newton s metode vil ikke alltid konverger mot noen løsning, se Neuhauser (2004) for eksempler. En rekke varianter av Newtons metode og andre algoritmer eksisterer for å løse tilsvarende problem. R s innebygde funksjon uniroot bruker en annen og langsommere algoritme og søker seg fram til røtter til en funksjon f forutsatt at f(x) har forskjellig fortegn på endepunktene av intervallet x = a og x = b: > f <- function(x,a) x^2-a > uniroot(f,lower=0,upper=4,a=2) $root [1] $f.root [1] e-05 $iter [1] 8 $estim.prec [1] e-05 > uniroot(f,lower=-4,upper=0,a=2) $root [1] $f.root [1] e-05 10

11 $iter [1] 8 $estim.prec [1] e-05 3 Generelle programmeringstips Del opp problemet i mindre naturlig avgrensede deler. Lag funksjoner som løser avgrensede deler av problemet og lag disse så generelle at de kan gjenbrukes i resten av løsningen. Identifiser hva som skal være inn og utdata til funksjonen (argumenter og funksjonsverdi). Skriv ned skjelettet av funksjonsdefinisjonen når du har gjort dette og gi funksjonens argumenter passende navn. Hvilke beregninger må gjennomføres med utgangspunkt i funksjonens inndata for å komme fram til det funksjonen skal returnere som utdata? Tilordne verdien av mellomberegninger til lokale variable. Hvis beregningen krever bruk av for- eller while-løkke kan det lønne seg å ta utgangspunkt i løkken. Skriv ned skjelettet av løkken. Hvilke beregninger må gjennomføres inne i løkke-kroppen? Hvordan skal vi ta vare på verdien av uttrykk beregnet inne i løkke-kroppen? Initier om nødvendig verdien av lokale på først i funksjonen. Kommenter egen kode! Hver linje kan kommenteres ved å avslutte hver linje med kommentartegnet # etterfulgt av kommentarer. Gi variable navn som forteller hva variablene inneholder. 11

Notat 3 - ST februar 2005

Notat 3 - ST februar 2005 Notat 3 - ST1301 1. februar 2005 1 Simulering fra modell Når vi skal analysere et gitt konkret innsamlet datasett vil vi gjøre dette med utgangspunkt i en statistisk modell. Vi kan si at en slik statistisk

Detaljer

Notat 4 - ST februar 2005

Notat 4 - ST februar 2005 Notat 4 - ST1301 8. februar 2005 1 While- og repeat-løkker Vi har tidligere sett på bruk av før-løkker. Slike løkker er hensiktsmessig å bruke når vi skal gjenta visse beregninger (løkke-kroppen) et antall

Detaljer

Notat 6 - ST februar 2005

Notat 6 - ST februar 2005 Notat 6 - ST1301 22. februar 2005 1 Instruksjoner som data I begynnelsen av kurset definerte vi data som informasjon uttrykkt i et programmeringsspråk. Slike data kan være av ulik type, f.eks. enkle skalarer

Detaljer

Bioberegninger - notat 4: Mer om sannsynlighetsmaksimering

Bioberegninger - notat 4: Mer om sannsynlighetsmaksimering Bioberegninger - notat 4: Mer om sannsynlighetsmaksimering 8. mars 2004 1 Kort om Newton s metode i flere dimensjoner Newton s metode kan generaliseres til å løse sett av n ligninger med n ukjente. Skal

Detaljer

Inferens. STK Repetisjon av relevant stoff fra STK1100. Eksempler. Punktestimering - "Fornuftig verdi"

Inferens. STK Repetisjon av relevant stoff fra STK1100. Eksempler. Punktestimering - Fornuftig verdi Inferens STK1110 - Repetisjon av relevant stoff fra STK1100 Geir Storvik 12. august 2015 Data x 1,..., x n evt også y 1,..., y n Ukjente parametre θ kan være flere Vi ønsker å si noe om θ basert på data.

Detaljer

Bootstrapping og simulering Tilleggslitteratur for STK1100

Bootstrapping og simulering Tilleggslitteratur for STK1100 Bootstrapping og simulering Tilleggslitteratur for STK1100 Geir Storvik April 2014 (oppdatert April 2016) 1 Introduksjon Simulering av tilfeldige variable (stokastisk simulering) er et nyttig verktøy innenfor

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer

Detaljer

TMA4245 Statistikk. Innlevering 3. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

TMA4245 Statistikk. Innlevering 3. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Vår 2017 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Innlevering 3 Dette er den første av to innleveringer i blokk 2 Denne øvingen skal oppsummere pensum

Detaljer

Notat 2, ST januar 2005

Notat 2, ST januar 2005 Notat 2, ST1301 25. januar 2005 1 Sammensatte uttrykk Vi har sett at funksjoner ikke trenger å bestå av annet enn ett enkeltuttrykk som angir hva funksjonen skal returnere uttrykkt ved de variable funksjonen

Detaljer

Ferdig før tiden 4 7 Ferdig til avtalt tid 12 7 Forsinket 1 måned 2 6 Forsinket 2 måneder 4 4 Forsinket 3 måneder 6 2 Forsinket 4 måneder 0 2

Ferdig før tiden 4 7 Ferdig til avtalt tid 12 7 Forsinket 1 måned 2 6 Forsinket 2 måneder 4 4 Forsinket 3 måneder 6 2 Forsinket 4 måneder 0 2 Besvar alle oppgavene. Hver deloppgave har lik vekt. Oppgave I En kommune skal bygge ny idrettshall og vurderer to entreprenører, A og B. Begge gir samme pristilbud, men kommunen er bekymret for forsinkelser.

Detaljer

STK Oppsummering

STK Oppsummering STK1100 - Oppsummering Geir Storvik 6. Mai 2014 STK1100 Tre temaer Deskriptiv/beskrivende statistikk Sannsynlighetsteori Statistisk inferens Sannsynlighetsregning Hva Matematisk verktøy for å studere tilfeldigheter

Detaljer

Punktestimator. STK Bootstrapping og simulering - Kap 7 og eget notat. Bootstrapping - eksempel Hovedide: Siden λ er ukjent, bruk ˆλ:

Punktestimator. STK Bootstrapping og simulering - Kap 7 og eget notat. Bootstrapping - eksempel Hovedide: Siden λ er ukjent, bruk ˆλ: Punktestimator STK00 - Bootstrapping og simulering - Kap 7 og eget notat Geir Storvik 8. april 206 Trekke ut informasjon om parametre fra data x,..., x n Parameter av interesse: θ Punktestimator: Observator,

Detaljer

Bioberegninger, ST1301 Onsdag 1. juni 2005 Løsningsforslag

Bioberegninger, ST1301 Onsdag 1. juni 2005 Løsningsforslag Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Bioberegninger, ST1301 Onsdag 1. juni 2005 Løsningsforslag Oppgave 1 a) Verdien av uttrykkene blir som følger: >

Detaljer

Notat 2, ST Sammensatte uttrykk. 27. januar 2006

Notat 2, ST Sammensatte uttrykk. 27. januar 2006 Notat 2, ST1301 27. januar 2006 1 Sammensatte uttrykk Vi har sett at funksjoner ikke trenger å bestå av annet enn ett enkeltuttrykk som angir hva funksjonen skal returnere uttrykkt ved de variable funksjonen

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806

Detaljer

STK Oppsummering

STK Oppsummering STK1110 - Oppsummering Geir Storvik 11. November 2015 STK1110 To hovedtemaer Introduksjon til inferensmetoder Punktestimering Konfidensintervall Hypotesetesting Inferens innen spesifikke modeller/problemer

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 Statistisk inferens: 8.1: Tilfeldig utvalg 9.1-9.3: Estimering Mette Langaas Foreleses uke 40, 2010 2 Utfordring Ved en bedrift produseres en elektrisk komponent. Komponenten må

Detaljer

Utfordring. TMA4240 Statistikk H2010. Mette Langaas. Foreleses uke 40, 2010

Utfordring. TMA4240 Statistikk H2010. Mette Langaas. Foreleses uke 40, 2010 TMA4240 Statistikk H2010 Statistisk inferens: 8.1: Tilfeldig utvalg 9.1-9.3: Estimering Mette Langaas Foreleses uke 40, 2010 2 Utfordring Ved en bedrift produseres en elektrisk komponent. Komponenten må

Detaljer

Bootstrapping og simulering

Bootstrapping og simulering Bootstrapping og simulering Tilleggslitteratur for STK1100 Geir Storvik April 2014 1 Introduksjon Simulering av tilfeldige variable (stokastisk simulering) er et nyttig verktøy innenfor statistikk, men

Detaljer

Eksamensoppgave i ST0103 Brukerkurs i statistikk

Eksamensoppgave i ST0103 Brukerkurs i statistikk Institutt for matematiske fag Eksamensoppgave i ST0103 Brukerkurs i statistikk Faglig kontakt under eksamen: Jarle Tufto Tlf: 99 70 55 19 Eksamensdato: 3. desember 2016 Eksamenstid (fra til): 09:00-13:00

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Sara Martino a, Torstein Fjeldstad b Tlf: a 994 03 330, b 962 09 710 Eksamensdato: 28. november 2018 Eksamenstid

Detaljer

Første sett med obligatoriske oppgaver i STK1110 høsten 2015

Første sett med obligatoriske oppgaver i STK1110 høsten 2015 Første sett med obligatoriske oppgaver i STK1110 høsten 2015 Dette er det første obligatoriske oppgavesettet i STK1110 høsten 2015. Oppgavesettet består av fire oppgaver. Du må bruke Matematisk institutts

Detaljer

Løsningsforslag øving 8, ST1301

Løsningsforslag øving 8, ST1301 Løsningsforslag øving 8, ST3 Oppgave Hva gjør følgende funksjon? Hvilken fordeling har variabelen n som returneres som funksjonsverdi? Forklar hvorfor. Forutsett at to enkle positive tall blir oppgitt

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig

Detaljer

Fasit for tilleggsoppgaver

Fasit for tilleggsoppgaver Fasit for tilleggsoppgaver Uke 5 Oppgave: Gitt en rekke med observasjoner x i (i = 1,, 3,, n), definerer vi variansen til x i som gjennomsnittlig kvadratavvik fra gjennomsnittet, m.a.o. Var(x i ) = (x

Detaljer

Oppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom << >>. Oppgave 1

Oppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom << >>. Oppgave 1 ECON 0 EKSMEN 007 VÅR SENSORVEILEDNING Oppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom >. Oppgave. La begivenhetene BC,, være slik at og

Detaljer

Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering

Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering TMA4245 Statistikk Kapittel 8.1-8.5. Kapittel 9.1-9.3+9.15 Turid.Follestad@math.ntnu.no p.1/21 Har sett

Detaljer

TMA4240 Statistikk Høst 2018

TMA4240 Statistikk Høst 2018 TMA4240 Statistikk Høst 2018 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Innlevering 5 Dette er andre av tre innleveringer i blokk 2. Denne øvingen skal oppsummere pensum

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig

Detaljer

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Å analysere en utvalgsobservator for å trekke slutninger

Detaljer

Dekkes av kap , 9.10, 9.12 og forelesingsnotatene.

Dekkes av kap , 9.10, 9.12 og forelesingsnotatene. Estimering 2 -Konfidensintervall Dekkes av kap. 9.4-9.5, 9.10, 9.12 og forelesingsnotatene. En (punkt-)estimator ˆΘ gir oss et anslag på en ukjent parameterverdi, men gir oss ikke noen direkte informasjon

Detaljer

Oppgaven består av 10 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom <<. >>. Oppgave 1

Oppgaven består av 10 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom <<. >>. Oppgave 1 ECON 0 EKSAMEN 004 VÅR SENSORVEILEDNING Oppgaven består av 0 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom

Detaljer

Programmering i R. 6. mars 2004

Programmering i R. 6. mars 2004 Programmering i R 6. mars 2004 1 Funksjoner 1.1 Hensikt Vi har allerede sette på hvordan vi i et uttrykk kan inkludere kall til funksjoner som er innebygd i R slik som funksjonene sum, plot o.s.v. Generelt

Detaljer

Forelesning 6: Punktestimering, usikkerhet i estimering. Jo Thori Lind

Forelesning 6: Punktestimering, usikkerhet i estimering. Jo Thori Lind Forelesning 6: Punktestimering, usikkerhet i estimering Jo Thori Lind j.t.lind@econ.uio.no Oversikt 1. Trekke utvalg 2. Estimatorer og observatorer som stokastiske variable 3. Egenskapene til en estimator

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 11 Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale begreper

Detaljer

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Analysere en observator for å finne ut noe om korresponderende

Detaljer

Øving 12, ST1301 A: B:

Øving 12, ST1301 A: B: Øving 12, ST1301 Oppgave 1 En to-utvalgs t-test forutsetter at observasjonene i hvert utvalg X 1 ; X 2 ; : : : ; X n og Y 1 ; Y 2 ; : : : ; Y m er uavhengige normalfordelte variable. Hvis testen oppfører

Detaljer

ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper

ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper Bo Lindqvist Institutt for matematiske fag 2 Kapittel 8: Sammenligning av grupper Situasjon: Vi ønsker

Detaljer

Løsning eksamen desember 2016

Løsning eksamen desember 2016 Løsning eksamen desember 016 Oppgave 1 a) En drone har to uavhengige motorer. Vi innfører hendelsene A: motor 1 svikter B: motor svikter Dronen er avhengig av at begge virker, slik at sannsynligheten for

Detaljer

i x i

i x i TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 11, blokk II Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 9, blokk II Oppgave 1 X er kontinuerlig fordelt med sannsynlighetstetthet f(x) = 2xe

Detaljer

Oppgave 1. . Vi baserer oss på at p 47 1 og p 2 er tilnærmet normalfordelte (brukbar tilnærming). Vi har tilnærmet at (n 1 = n 2 = 47)

Oppgave 1. . Vi baserer oss på at p 47 1 og p 2 er tilnærmet normalfordelte (brukbar tilnærming). Vi har tilnærmet at (n 1 = n 2 = 47) MOT310 tatistiske metoder 1 Løsningsforslag til eksamen vår 006, s. 1 Oppgave 1 a) En tilfeldig utvalgt besvarelse får F av sensor 1 med sannsynlighet p 1 ; resultatene for ulike besvarelser er uavhengige.

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 0, blokk II Løsningsskisse Oppgave Surhetsgrad i ferskvann Eksamen august 00, oppgave av 3 a) En god estimator

Detaljer

Bootstrapping og stokatisk simulering Tilleggslitteratur for STK1100

Bootstrapping og stokatisk simulering Tilleggslitteratur for STK1100 Bootstrapping og stokatisk simulering Tilleggslitteratur for STK1100 Geir Storvik April 014 1 Introduksjon Simulering av tilfeldige variable (stokastisk simulering) er et nyttig verktøy innenfor statistikk

Detaljer

TMA4240 Statistikk Eksamen desember 2015

TMA4240 Statistikk Eksamen desember 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4240 Statistikk Eksamen desember 15 Oppgave 1 La den kontinuerlige stokastiske variabelen X ha fordelingsfunksjon (sannsynlighetstetthet

Detaljer

ECON2130 Kommentarer til oblig

ECON2130 Kommentarer til oblig ECON2130 Kommentarer til oblig Her har jeg skrevet ganske utfyllende kommentarer til en del oppgaver som mange slet med. Har noen steder gått en del utover det som det strengt tatt ble spurt om i oppgaven,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1. Eksamensdag: Tirsdag 11. desember 2012. Tid for eksamen: 14.30 18.30. Oppgavesettet

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 Ei bedrift produserer elektriske komponentar. Komponentane kan ha to typar

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen: ECON2130 Statistikk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 29.05.2019 Sensur kunngjøres: 19.06.2019 Tid for eksamen: kl. 09:00 12:00 Oppgavesettet er på 5 sider Tillatte hjelpemidler:

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER HØGSKOLEN I STAVANGER Avdeling for TEKNISK NATURVITEN- EKSAMEN I: TE199 SANNSYNLIGHETSREGNING MED STATISTIKK SKAPELIGE FAG VARIGHET: 4 TIMER DATO: 5. JUNI 2003 TILLATTE HJELPEMIDLER: KALKULATOR OPPGAVESETTET

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST 101 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Mandag 30. november 1992. Tid for eksamen: 09.00 15.00.

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 10: Inferens om to populasjoner Situasjon: Det er to populasjoner som vi ønsker å sammenligne. Vi trekker da et utvalg

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1100 Statistiske metoder og dataanalyse 1 - Løsningsforslag Eksamensdag: Mandag 30. november 2015. Tid for eksamen: 14.30

Detaljer

j=1 (Y ij Ȳ ) 2 kan skrives som SST = i=1 (J i 1) frihetsgrader.

j=1 (Y ij Ȳ ) 2 kan skrives som SST = i=1 (J i 1) frihetsgrader. FORMELSAMLING TIL STK2120 (Versjon av 30. mai 2012) 1 Enveis variansanalyse Anta at Y ij = µ + α i + ɛ ij ; j = 1, 2,..., J i ; i = 1, 2,..., I ; der ɛ ij -ene er uavhengige og N(0, σ 2 )-fordelte. Da

Detaljer

Andre sett med obligatoriske oppgaver i STK1110 høsten 2010

Andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Dette er det andre settet med obligatoriske oppgaver i STK1110 høsten 2010. Oppgavesettet består av fire oppgaver. Det er valgfritt om du vil

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 11, blokk II I denne øvingen skal vi fokusere på hypotesetesting. Vi ønsker å gi dere

Detaljer

(a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x].

(a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x]. FORMELSAMLING TIL STK2100 (Versjon Mai 2017) 1 Tapsfunksjoner (a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x]. (b)

Detaljer

for x 0 F X (x) = 0 ellers Figur 1: Parallellsystem med to komponenter Figur 2: Seriesystem med n komponenter

for x 0 F X (x) = 0 ellers Figur 1: Parallellsystem med to komponenter Figur 2: Seriesystem med n komponenter TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Innlevering 3, blokk II Dette er den første av to innleveringer i blokk 2. Denne øvingen skal oppsummere

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis

Detaljer

Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010

Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Oppgave 1 a Forventet antall dødsulykker i år i er E(X i λ i. Dermed er θ i λ i E(X i forventet antall dødsulykker per 100

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i STK2120 Statistiske metoder og dataanalyse 2 Eksamensdag: Mandag 6. juni 2011. Tid for eksamen: 14.30 18.30. Oppgavesettet er

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 12 Denne øvingen består av oppgaver om enkel lineær regresjon. De handler blant

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 Statistisk inferens: 9.6: Prediksjonsintervall 9.8: To utvalg, differanse µ 1 µ 2 Mette Langaas Foreleses mandag 18.oktober, 2010 2 Prediksjonsintervall for fremtidig observasjon,

Detaljer

STK1100 våren 2019 Mere om konfidensintevaller

STK1100 våren 2019 Mere om konfidensintevaller STK1100 våren 2019 Mere om konfidensintevaller Svarer til avsnitt 8.2 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Konfidensintervall for µ i store utvalg Anta at de stokastiske

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 9 Løsningsskisse Oppgave 1 a) Vi lar her Y være antall fugler som kolliderer med vindmølla i løpet av den gitte

Detaljer

Verdens statistikk-dag.

Verdens statistikk-dag. Verdens statistikk-dag http://unstats.un.org/unsd/wsd/ Signifikanstester Ønsker å teste hypotese om populasjon Bruker data til å teste hypotese Typisk prosedyre Beregn sannsynlighet for utfall av observator

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 Statistisk inferens: 9.14: Sannsynlighetsmaksimeringsestimatoren 8.5: Fordeling til gjennomsnittet 9.4: Konfidensintervall for µ (σ kjent) Mette Langaas Foreleses mandag 11.oktober,

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b6 Oppgave 1 Oppgave 11.5 fra læreboka. Oppgave 2 Oppgave 11.21 fra læreboka. Oppgave

Detaljer

Forelesning 7: Store talls lov, sentralgrenseteoremet. Jo Thori Lind

Forelesning 7: Store talls lov, sentralgrenseteoremet. Jo Thori Lind Forelesning 7: Store talls lov, sentralgrenseteoremet Jo Thori Lind j.t.lind@econ.uio.no Oversikt 1. Estimering av variansen 2. Asymptotisk teori 3. Store talls lov 4. Sentralgrenseteoremet 1.Estimering

Detaljer

Statistikk og dataanalyse

Statistikk og dataanalyse Njål Foldnes, Steffen Grønneberg og Gudmund Horn Hermansen Statistikk og dataanalyse En moderne innføring Kapitteloversikt del 1 INTRODUKSJON TIL STATISTIKK Kapittel 1 Populasjon og utvalg 19 Kapittel

Detaljer

Høgskolen i Telemark. Institutt for økonomi og informatikk FORMELSAMLING Statistikk I. Til bruk ved eksamen. Per Chr. Hagen

Høgskolen i Telemark. Institutt for økonomi og informatikk FORMELSAMLING Statistikk I. Til bruk ved eksamen. Per Chr. Hagen Høgskolen i Telemark Institutt for økonomi og informatikk FORMELSAMLING 6005 Statistikk I Til bruk ved eksamen Per Chr. Hagen . Sannsynlighetsregning. Regneregler Komplementsetningen: Addisjonssetningen:

Detaljer

Siden vi her har brukt første momentet i fordelingen (EX = EX 1 ) til å konstruere estimatoren kalles denne metoden for momentmetoden.

Siden vi her har brukt første momentet i fordelingen (EX = EX 1 ) til å konstruere estimatoren kalles denne metoden for momentmetoden. Estimeringsmetoder Momentmetoden La X, X 2,..., X n være uavhengige variable som er rektangulært fordelte på intervallet [0, θ]. Vi vet da at forventningsverdiene til hver observasjon og forventningen

Detaljer

EKSAMENSOPPGAVE STA «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark/ 4 sider med egne notater. Godkjent kalkulator. Rute.

EKSAMENSOPPGAVE STA «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark/ 4 sider med egne notater. Godkjent kalkulator. Rute. Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-1001. Dato: Tirsdag 26. september 2017. Klokkeslett: 09 13. Sted: Åsgårdvegen 9. Tillatte hjelpemidler: «Tabeller og formler i statistikk»

Detaljer

Statistisk inferens: 9.14: Sannsynlighetsmaksimeringsestimatoren 8.5: Fordeling til gjennomsnittet 9.4: Konfidensintervall for µ (σ kjent)

Statistisk inferens: 9.14: Sannsynlighetsmaksimeringsestimatoren 8.5: Fordeling til gjennomsnittet 9.4: Konfidensintervall for µ (σ kjent) TMA440 Statistikk H010 Statistisk inferens: 9.14: Sannsynlighetsmaksimeringsestimatoren 8.5: Fordeling til gjennomsnittet 9.4: Konfidensintervall for µ (σ kjent) Mette Langaas Foreleses mandag 11.oktober,

Detaljer

Eksamensoppgave i ST1201/ST6201 Statistiske metoder

Eksamensoppgave i ST1201/ST6201 Statistiske metoder Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 04. desember 2015 Eksamenstid (fra til): 09:00

Detaljer

Kort overblikk over kurset sålangt

Kort overblikk over kurset sålangt Kort overblikk over kurset sålangt Kapittel 1: Deskriptiv statististikk for en variabel Kapittel 2: Deskriptiv statistikk for samvariasjon mellom to variable (regresjon) Kapittel 3: Metoder for å innhente

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren

ÅMA110 Sannsynlighetsregning med statistikk, våren ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Oppsummering Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 24. april Bjørn H. Auestad Oppsummering våren

Detaljer

Eksamensoppgåve i ST0103 Brukarkurs i statistikk

Eksamensoppgåve i ST0103 Brukarkurs i statistikk Institutt for matematiske fag Eksamensoppgåve i ST0103 Brukarkurs i statistikk Fagleg kontakt under eksamen: Jarle Tufto Tlf: 99 70 55 19 Eksamensdato: 3. desember 2016 Eksamenstid (frå til): 09:00-13:00

Detaljer

Observatorar og utvalsfordeling. Torstein Fjeldstad Institutt for matematiske fag, NTNU

Observatorar og utvalsfordeling. Torstein Fjeldstad Institutt for matematiske fag, NTNU Observatorar og utvalsfordeling Torstein Fjeldstad Institutt for matematiske fag, NTNU 08.10.2018 I dag Til no i emnet Observatorar Utvalsfordelingar Sentralgrenseteoremet 2 Til no i emnet definisjon av

Detaljer

TMA4240 Statistikk 2014

TMA4240 Statistikk 2014 TMA4240 Statistikk 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 12, blokk II Oppgave 1 På ein av vegane inn til Trondheim er UP interessert i å måle effekten

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>. 1 ECON213: EKSAMEN 217 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i

Detaljer

TMA4240 Statistikk Høst 2007

TMA4240 Statistikk Høst 2007 TMA4240 Statistikk Høst 2007 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b4 Løsningsskisse Oppgave 1 Eksamen juni 1999, oppgave 3 av 3 a) µ populasjonsgjennomsnitt,

Detaljer

Eksamensoppgåve i TMA4240 Statistikk

Eksamensoppgåve i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgåve i TMA4240 Statistikk Fagleg kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806

Detaljer

Eksamensoppgave i TMA4245 Statistikk

Eksamensoppgave i TMA4245 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4245 Statistikk Faglig kontakt under eksamen: Ingelin Steinsland a, Øyvind Bakke b Tlf: a 73 59 02 39, 926 63 096, b 73 59 81 26, 990 41 673 Eksamensdato:

Detaljer

EKSAMENSOPPGAVE. «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark/ 4 sider med egne notater. Godkjent kalkulator.

EKSAMENSOPPGAVE. «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark/ 4 sider med egne notater. Godkjent kalkulator. Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-1001. Dato: Mandag 9. mai 017. Klokkeslett: 09 13. Sted: Åsgårdvegen 9. Tillatte hjelpemidler: «Tabeller og formler i statistikk»

Detaljer

TMA4245 Statistikk Eksamen august 2014

TMA4245 Statistikk Eksamen august 2014 TMA4245 Statistikk Eksamen august 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Oppgave 1 En bedrift produserer en type medisin i pulverform Medisinen selges på flasker

Detaljer

Eksamensoppgave i Løsningsskisse TMA4240 Statistikk

Eksamensoppgave i Løsningsskisse TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i Løsningsskisse TMA440 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland a, Sara Martino b Tlf: a 48 18 96, b 99 40 33 30 Eksamensdato: 30. november

Detaljer

Econ 2130 uke 16 (HG)

Econ 2130 uke 16 (HG) Econ 213 uke 16 (HG) Hypotesetesting I Løvås: 6.4.1 6, 6.5.1-2 1 Testing av µ i uid modellen (situasjon I Z-test ). Grunnbegreper. Eksempel. En lege står overfor følgende problemstilling. Standardbehandling

Detaljer

år i 1 2 3 4 5 6 7 8 9 alder x i 37 38 39 40 41 42 43 44 45 tid y i 45.54 41.38 42.50 38.80 41.26 37.20 38.19 38.05 37.45 i=1 (x i x) 2 = 60, 9

år i 1 2 3 4 5 6 7 8 9 alder x i 37 38 39 40 41 42 43 44 45 tid y i 45.54 41.38 42.50 38.80 41.26 37.20 38.19 38.05 37.45 i=1 (x i x) 2 = 60, 9 TMA424 Statistikk Vår 214 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 11, blokk II Oppgave 1 Matlabkoden linearreg.m, tilgjengelig fra emnets hjemmeside, utfører

Detaljer

Løsningsforslag øving 12, ST1301

Løsningsforslag øving 12, ST1301 Løsningsforslag øving 12, ST1301 Oppgave 1 En to-utvalgs t-test forutsetter at observasjonene i hvert utvalg X 1 ; X 2 ; : : : ; X n og Y 1 ; Y 2 ; : : : ; Y m er uavhengige normalfordelte variable. Hvis

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon Statistisk inferens har som mål å tolke/analysere

Detaljer

Løsningsforslag oblig 1 STK1110 høsten 2014

Løsningsforslag oblig 1 STK1110 høsten 2014 Løsningsforslag oblig STK høsten 4 Oppgave I forbindelse med en studie av antioksidanter og antocyanider, ble innholdet av antocyan i 5 beger med blåbær målt. De målte verdiene var (i mg per gram): 55

Detaljer

Ekstraoppgaver for STK2120

Ekstraoppgaver for STK2120 Ekstraoppgaver for STK2120 Geir Storvik Vår 2011 Ekstraoppgave 1 Anta X 1 og X 2 er uavhengige med X 1 N(1.0, 1.0) og X 2 N(2.0, 1.5). La X = (X 1, X 2 ) T. Definer c = ( ) 2.0 3.0, A = ( ) 1.0 0.5 0.0

Detaljer

Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2.

Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2. Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 17 november 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk Tapir

Detaljer

Eksamensoppgåve i ST1201/ST6201 Statistiske metoder

Eksamensoppgåve i ST1201/ST6201 Statistiske metoder Institutt for matematiske fag Eksamensoppgåve i ST1201/ST6201 Statistiske metoder Fagleg kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 04. desember 2015 Eksamenstid (frå til): 09:00

Detaljer

5.8 Iterative estimater på egenverdier

5.8 Iterative estimater på egenverdier 5.8 Iterative estimater på egenverdier Det finnes ingen eksplisitt formel for beregning av egenverdiene til en kvadratisk matrise. Iterative metoder som finner (ofte) en (meget god) approksimasjon til

Detaljer

Merk at vi for enkelthets skyld antar at alle som befinner seg i Roma sentrum enten er italienere eller utenlandske turister.

Merk at vi for enkelthets skyld antar at alle som befinner seg i Roma sentrum enten er italienere eller utenlandske turister. ECON230: EKSAMEN 20 VÅR - UTSATT PRØVE 2 TALLSVAR. Oppgave Da Anne var på besøk i Roma, fikk hun raskt problemer med språket. Anne snakker engelsk, men ikke italiensk, og kun av 5 italienere behersker

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4 ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 27. mars Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1 Eksamensdag: Mandag 30. november 2015. Tid for eksamen: 14.30 18.00. Oppgavesettet

Detaljer

Eksamensoppgave i TMA4295 Statistisk inferens

Eksamensoppgave i TMA4295 Statistisk inferens Institutt for matematiske fag Eksamensoppgave i TMA4295 Statistisk inferens Faglig kontakt under eksamen: Vaclav Slimacek Tlf: 942 96 313 Eksamensdato: Tirsdag 2. desember 2014 Eksamenstid (fra til): 09:00-13:00

Detaljer