Øving 9. Oppgave 1. E t0 = 2. Her er
|
|
- Torben Aas
- 9 år siden
- Visninger:
Transkript
1 FY00/TFY460 Bølgefysi. Institutt for fysi, NTNU. Høsten 03. Veiledning: Mandag. og 8 og fredag 6. otober. Innleveringsfrist: tirsdag 9. otober l :00. Øving 9 Tema: Dipol-Ståling, reflesjon og transmisjon av e.m. bølge (normalt innfall). Geometris optis 3 lover. Grenseflatebetingelser for feltene D, E, B og H.Polarisasjon. Oppgave a) Planet z = 0 danner grenseflaten mellom to lineære medier (z < 0) og (z > 0), med permittiviteter og permeabiliteter henholdsvis ε, µ og ε, µ. Anta at en plan harmonis eletromagnetis bølge ommer inn fra venstre, dvs den forplanter seg i positiv z-retning. Amplituden til eletris felt i innommende bølge er E i0. Vis at bølgen som refleteres i z = 0 har amplitude E r0 = β + β E i0 og at bølgen som transmitteres i z = 0 har amplitude Her er E t0 = + β E i0 β µ v µ v med v j = c/n j = bølgens (fase-)hastighet i medium j. n j er brytningsindesen i medium j. (Dette tilsvarer figuren i oppgave, med alle vinler li null.) b) Innommende bølge har intensitet I i. Denne fordeler seg på den refleterte (I r ) og den transmitterte (I t ) bølgen. Finn reflesjonsoeffisienten og transmisjonsoeffisienten R I r I i T I t I i uttryt ved brytningsindesene n og n i det vi antar at begge medier er umagnetise, dvs µ = µ = µ 0. Bestem tallverdier for R og T for grenseflaten mellom luft ( vauum) og glass med relativ permittivitet.5.
2 Oppgave Geometris optis tre lover Planet z = 0 danner grenseflaten mellom to lineære medier (z < 0) og (z > 0), med brytningsindeser henholdsvis n og n. Anta at en plan harmonis eletromagnetis bølge ommer inn fra venstre sli at forplantningsretningen, gitt ved bølgetallsvetoren i, danner en vinel θ i med z-asen. Innommende bølge blir delvis refletert, med bølgetallsvetor r, og delvis transmittert (evt refratert), med bølgetallsvetor t, som vist i figuren. z= 0 r θ r θ i θ t t z i Eletris feltvetor for de tre bølgene er E i = E i0 cos( i r ωt) E r = E r0 cos( r r ωt) E t = E t0 cos( t r ωt) Bølgetallsvetoren i an uttryes i artesise oordinater, og tilsvarende for r og t. i = ixˆx + iy ŷ + iz ẑ a) Bru av grensebetingelsene for E og B i planet z = 0 (betingelser som sal gjelde overalt i dette planet, dvs for alle x og y og til alle tider t) vil resultere i ligninger på formen A cos( i r ωt) + B cos( r r ωt) = C cos( t r ωt)
3 der oeffisientene A, B og C ie avhenger av r og t. (Disse sal ie bestemmes her.) Bru dette til å argumentere for at i r = r r = t r for alle mulige posisjoner r = (x, y, 0) i grenseflaten z = 0. Argumenter videre for at vi da må ha og ix = rx = tx iy = ry = ty Men da har vi 3 vetorer med av omponentene identise, hvilet må bety at de 3 vetorene alle ligger i ett og samme plan. Vi ser dessuten at dette planet står vinelrett på grenseflaten, hvilet må bety at flatenormalen til grenseflaten også ligger i samme plan som de 3 bølgetallsvetorene. Dette er geometris optis. lov: Bølgetallsvetorene til innommende, refletert og transmittert bølge danner et plan, det såalte innfallsplanet, som også inluderer flatenormalen til grenseflaten. b) La oss nå velge x- og y-asene sli at i ligger i xz-planet. Vis at da er i sin θ i = r sin θ r = t sin θ t og dermed og θ i = θ r n sin θ i = n sin θ t Dette er henholdsvis. lov (reflesjonsloven): Innfallsvinelen og reflesjonsvinelen er lie store: θ i = θ r. Og 3. lov (brytningsloven, eller Snells lov): sin θ t sin θ i = n n 3
4 Oppgave 3 En oscillerende eletris dipol, resulterer i et eletris felt, p(t) = ẑp 0 cos ωt, og et magnetfelt, E(r, t) = µ 0p 0 ω sin θ 4πr cos[ω(t r/c)] ˆθ, B(r, t) = µ 0p 0 ω sin θ cos[ω(t r/c)] 4πcr ˆφ. Begge disse er tilnærmede uttry som gjelder så lenge vi er langt unna dipolen, samt at bølgelengden er stor i forhold til dipolens utstrening. Videre er θ vinelen mellom z-asen og r, mens ˆθ og ˆφ er enhetsvetorer som peer i retning av øende verdi av henholdsvis θ og φ. (Med andre ord, r, θ og φ er standard uleoordinater, se f.es. Rottmann. Finn et uttry for Poyntings vetor S(r, t) og vis at strålingsintensiteten I (r) = S(r, t) blir I(r) = µ 0p 0ω 4 sin θ ˆr 3π cr Her angir som vanlig et tidsmiddel over en eller flere perioder. Vis til slutt at total (midlere) utstrålt energi pr tidsenhet (dvs effet) blir P = µ 0p 0ω 4 πc Tips: Integrer S over en uleflate med radius r. Oppgave 4 (Dette er no tildels jent stoff fra FY003/TFY455 Eletrisitet og magnetisme. Du må selv vurdere behovet for å repetere det her.) Bru Maxwells ligninger, D da = q f E dl = d B da dt B da = 0 H dl = I f + d D da dt til å utlede grenseflatebetingelsene D = 0, E = 0, B = 0 og H = 0 for en grenseflate uten fri ladning og strøm. Velg luede urver og flater som antydet i figuren nedenfor og la h 0. 4
5 luet urve h luet flate h L A Oppgave 5 Hvis været tillater: Se opp på den blå himmelen gjennom et polarisasjonsfilter. (Polarisasjonsfiltre deles ut på forelesning torsdag 7.0, tre styer til hver, noen er tilgjengelig hos øvingslærere) Besriv og forlar det du ser. Bildene nedenfor er tatt lie etter solnedgang fredag 4. otober 008, på pareringsplassen P-35 sør for Gløshaugen, i ulie retninger, og gjennom et polarisasjonsfilter orientert henholdsvis vertialt og horisontalt, dvs sli at lys med E polarisert henholdsvis vertialt og horisontalt i forhold til synslinjen slipper gjennom. De to bildene lengst til venstre er tatt sørover, dvs mer eller mindre normalt på sollysets forplantningsretning. De to bildene i midten er tatt østover, dvs mer eller mindre i samme retning som sollysets forplantningsretning. De to bildene lengst til høyre er tatt vestover, dvs mot solnedgangen. Besriv og forlar det du ser. Se på en PC-sjerm gjennom et polarisasjonsfilter. I hvilen retning er lyset fra sjermen polarisert? (Dette vil variere fra sjerm til sjerm.) Hold nå polarisasjonsfilteret sli at det slipper minimalt av lyset fra sjermen gjennom. Hold deretter et annet polarisasjonsfilter ba det første og drei det rundt. Besriv og forlar det du ser. Se mot en hvilen som helst (upolarisert) lysilde gjennom to ryssede polarisasjonsfiltre (dvs med polarisasjonsretninger normalt på hverandre). Sti deretter et tredje polarisasjonsfilter inn på srå mellom de to første. Besriv og forlar det du ser. Vis at man får størst intensitet på det transmitterte lyset når det midterste polarisasjonsfilteret har en polarisasjonsase som danner en vinel 45 grader i forhold til de to andre. (Tips: Malus lov.) 5
Øving 11. Oppgave 1. E t0 = 2. Her er
FY00/TFY460 Bølgefysi. Institutt for fysi, NTNU. Høsten 0. Veiledning: Mandag 5. og tirsdag 6. november. Innleveringsfrist: Mandag. november l :00. Øving Tema: Dipol-Ståling, reflesjon og transmisjon av
DetaljerLøsningsforslag til øving
1 FY1002/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 2012. Løsningsforslag til øving 11-2012 Oppgave 1 a) Forplantning i z-retning betyr at E og B begge ligger i xy-planet. La oss for eksempel
DetaljerLøsningsforslag til øving 9
FY1002/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 2010. Løsningsforslag til øving 9 Oppgave 1 a) Forplantning i z-retning betyr at E og B begge ligger i xy-planet. La oss for eksempel velge
DetaljerLøsningsforslag til øving 8
FY12/TFY416 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 21. Løsningsforslag til øving 8 Oppgave 1 Helt generelt vil vi ha, for en elektromagnetisk bølge som forplanter seg i retning ˆk og som er polarisert
DetaljerFormelsamling. ξ(r, t) = ξ 0 sin(k r ωt + φ) 2 ξ(x, t) = 1 2 ξ(x, t) t 2. 2 ξ. x ξ. z 2. y ξ. v = ω k. v g = dω dk
Formelsamling Side 7 av 15 Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighet og symbolenes betydning antas å være kjent. Harmonisk plan bølge: Bølgeligning:
DetaljerFormelsamling Bølgefysikk Desember 2006
Vedlegg 1 av 9 Formelsamling Bølgefysikk Desember 2006 Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighet og symbolenes betydning antas å være kjent. Harmonisk
DetaljerFormelsamling. ξ(r, t) = ξ 0 sin(k r ωt + φ) 2 ξ(x, t) = 1 2 ξ(x, t) t 2. 2 ξ. x ξ. z 2. y ξ. v = ω k. v g = dω dk
Formelsamling Side 7 av 16 Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighet og symbolenes betydning antas å være kjent. Harmonisk plan bølge: Bølgeligning:
DetaljerFlervalgsoppgaver i bølgefysikk
Institutt for fysikk, NTNU FY1002/TFY4160 Bølgefysikk Høst 2010 Flervalgsoppgaver i bølgefysikk Tillatte hjelpemidler: C K. Rottmann: Matematisk formelsamling. (Eller tilsvarende.) O. Øgrim og B. E. Lian:
DetaljerKONTINUASJONSEKSAMEN TFY4160 BØLGEFYSIKK Torsdag 9. august 2007 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 15 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 KONTINUASJONSEKSAMEN TFY4160 BØLGEFYSIKK
DetaljerØving 3. Oppgave 1 (oppvarming med noen enkle oppgaver fra tidligere midtsemesterprøver)
Institutt for fysikk, NTNU TFY455/FY003: Elektrisitet og magnetisme Vår 2008 Veiledning: Fredag 25. og mandag 28. januar Innleveringsfrist: Fredag. februar kl 2.00 Øving 3 Oppgave (oppvarming med noen
DetaljerElektromagnetiske bølger
Elektromagnetiske bølger. Bølgeligningen I læreboka er det vist hvordan bølgeligningen kan utledes fra Maxwells ligninger på integralform. Vi skal her vise at bølgeligningen kan utledes fra Maxwells ligninger
DetaljerØving 15. H j B j M j
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007 Veiledning: Uke 17 Innleveringsfrist: Mandag 30. april Øving 15 Oppgave 1 H j j M j H 0 0 M 0 I En sylinderformet jernstav
DetaljerEKSAMEN FY1002 og TFY4160 BØLGEFYSIKK Onsdag 20. desember 2006 kl Norsk utgave
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 15 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1002 og TFY4160 BØLGEFYSIKK Onsdag
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Mandag 3. desember 2007 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 7 59 6 6 / 45 45 55 LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Mandag.
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME Mandag 4. desember 2006 kl
NOGES TEKNISK- NATUVITENSKAPEIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 ØSNINGSFOSAG TI EKSAMEN I FY1003 EEKTISITET OG MAGNETISME
DetaljerMidtsemesterprøve Bølgefysikk Fredag 19. november 2010 kl
Institutt for fysikk, NTNU FY1002/TFY4160 ølgefysikk Høst 2010 Midtsemesterprøve ølgefysikk Fredag 19. november 2010 kl 1215 1345. Merk av svarene dine på side 15. Lever inn kun arket med svartabellen
DetaljerLøsningsforslag til øving 4
1 FY100/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 01. Løsningsforslag til øving 4 Oppgave 1 a) D = D 0 [ cos (kx ωt) + sin (kx ωt) ] 1/ = D 0 for alle x og t. Med andre ord, vi har overalt
DetaljerLøsningsforslag til eksamen i TFY4170 Fysikk august 2004
NTNU Side 1av7 Institutt for fysikk Fakultet for naturvitenskap og teknologi Dette løsningsforslaget er på 7 sider. Løsningsforslag til eksamen i TFY4170 Fysikk 1. august 004 Oppgave 1. Interferens a)
DetaljerEksamensoppgave i FY1002 og TFY4160 BØLGEFYSIKK
Institutt for Fysikk Eksamensoppgave i FY1 og TFY416 BØLGEFYSIKK Faglig kontakt under eksamen: Prof. em. J. Høye, Prof. M. Kildemo (kun per telefon) Tlf.: 968691 (Prof. em. J. Høye) Tlf.: 9387744 (Prof.
DetaljerEKSAMEN FY1003 ELEKTRISITET OG MAGNETISME Mandag 4. desember 2006 kl
NOGES TEKNSK- NATUVTENSKAPELGE UNVESTET NSTTUTT FO FYSKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTSTET OG MAGNETSME Mandag 4. desember
DetaljerEKSAMEN TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 31. mai 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 EKSAMEN TFY4155 ELEKTROMAGNETISME FY1003
DetaljerMandag 04.09.06. Institutt for fysikk, NTNU TFY4160/FY1002: Bølgefysikk Høsten 2006, uke 36
Institutt for fsikk, NTNU TFY4160/FY1002: Bølgefsikk Høsten 2006, uke 36 Mandag 04.09.06 Del II: BØLGER Innledning Bølger er forplantning av svingninger. Når en bølge forplanter seg i et materielt medium,
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I FY1002 BØLGEFYSIKK Mandag 10. desember 2007 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I FY1002 BØLGEFYSIKK
DetaljerLøsningsforslag til øving 10
FY11/TFY4145 Meanis fysi. Institutt for fysi, NTNU. Høsten 211. Løsningsforslag til øving 1 Vi utleder aller først ligningen som fastlegger vinelen φ r, dvs overgangen fra ren rulling til sluring. N2 for
DetaljerKONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Fredag 11. august 2006 kl
NOGES TEKNSK- NATUVTENSKAPELGE UNVESTET NSTTUTT FO FYSKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 KONTNUASJONSEKSAMEN TFY4155 ELEKTOMAGNETSME Fredag 11.
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 30. mai 2006 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME
DetaljerEKSAMEN FY1002 BØLGEFYSIKK Mandag 10. desember 2007 kl Norsk utgave
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 15 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1002 BØLGEFYSIKK Mandag 10. desember
DetaljerNORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET, INSTITUTT FOR FYSIKK. Utarbeidet av: Jon Andreas Støvneng
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET, INSTITUTT FOR FYSIKK Utarbeidet av: Jon Andreas Støvneng (jon.stovneng@ntnu.no) LØSNINGSFORSLAG (8 SIDER) TIL EKSAMEN I FY100 og TFY4160 BØLGEFYSIKK Fredag
DetaljerFysikkolympiaden Norsk finale 2012
Nors Fysilærerforening Fysiolympiaden Nors finale 3. uttaingsrunde Fredag 3. mars l. 9. til. Hjelpemidler: Tabell/formelsamling, lommeregner og utdelt formelar Oppgavesettet består av 7 oppgaver på 3 sider
DetaljerLøsningsforslag til øving 4
Institutt for fysikk, NTNU TFY455/FY003 Elektrisitet og magnetisme Vår 2007 Veiledning uke 5 Løsningsforslag til øving 4 Oppgave a) Vi benytter oss av tipsene gitt i oppgaveteksten og tar utgangspunkt
DetaljerTFY4160 og FY1002 Bølgefysikk
1 NTNU Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Prof. Morten Kildemo Telefon: 7359311/9387744 TFY4160 og FY100 Bølgefysikk Eksamen, 3. desember,
DetaljerØving 4. a) Verifiser at en transversal bølge som forplanter seg langs x-aksen med utsving D med komponentene
FY100/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 010. Veiledning: Tirsdag 1. og onsdag. september. Innleveringsfrist: Mandag 7. september kl 1:00. Øving 4 Oppgave 1 a) Verifiser at en transversal
DetaljerUNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FY 5 - Svingninger og bølger Eksamensdag: 5. januar 4 Tid for eksamen: Kl. 9-5 Tillatte hjelpemidler: Øgrim og Lian: Størrelser
DetaljerEKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I Mandag 5. desember 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME
DetaljerEKSAMEN FY1002 og TFY4160 BØLGEFYSIKK Torsdag 3. desember 2009 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 16 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1002 og TFY4160 BØLGEFYSIKK Torsdag
DetaljerNORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK EKSAMEN I EMNE TFY4120 FYSIKK
Studentnummer: Studieretning: Bokmål Side 1 av 1 NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Institutt for fysikk, Gløshaugen Professor Jon Otto Fossum,
DetaljerEKSAMEN FY1002 og TFY4160 BØLGEFYSIKK. Onsdag 12. desember 2012 kl
NTNU Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Prof. Morten Kildemo Telefon: 7359311/9387744 EKSAMEN FY1 og TFY416 BØLGEFYSIKK Onsdag 1. desember
DetaljerEKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I Mandag 17. desember 2007 kl K. Rottmann: Matematisk formelsamling (eller tilsvarende).
NOGES TEKNSK- NATUVTENSKAPELGE UNVESTET NSTTUTT FO FYSKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTSTET OG MAGNETSME Mandag 17. desember
DetaljerLøsningsforslag til øving 3
Institutt for fysikk, NTNU TFY455/FY003 Elektromagnetisme Vår 2009 Løsningsforslag til øving 3 Oppgave a) C V = E dl = 0 dersom dl E b) B På samme måte som et legeme med null starthastighet faller i gravitasjonsfeltet
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME Fredag 11. august 2006 kl
NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFOSLAG TIL EKSAMEN I TFY4155 ELEKTOMAGNETISME
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 31. mai 2005 kl
NORGES TEKNISK- NATURVITENSKAPEIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 ØSNINGSFORSAG TI EKSAMEN I TFY4155 EEKTROMAGNETISME
DetaljerEKSAMENSOPPGAVE. Tillatte hjelpemidler: Kalkulator med tomt dataminne Rottmann: Matematisk Formelsamling A.T. Surenovna: Norsk russisk ordbok
EKSAMENSOPPGAVE Eksamen i: FYS-1002 Dato: Fredag 12.juni 2015 Tid: Kl 09:00 13:00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Kalkulator med tomt dataminne Rottmann: Matematisk Formelsamling A.T. Surenovna:
DetaljerEKSAMEN TFY4160 BØLGEFYSIKK Mandag 3. desember 2007 kl Norsk utgave
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 15 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN TFY4160 BØLGEFYSIKK Mandag 3. desember
DetaljerEKSAMEN FY1002 og TFY4160 BØLGEFYSIKK Fredag 5. desember 2008 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 16 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1002 og TFY4160 BØLGEFYSIKK Fredag
DetaljerLøsningsforslag til øving 5
FY1002/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 2009. Løsningsforslag til øving 5 Oppgave 1 a) var C er korrekt. Fasehastigheten er gitt ved v ω k og vi ser fra figuren at dette forholdet
DetaljerEKSAMEN FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Tirsdag 27. mai 2008 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME
DetaljerFY1006/TFY Øving 4 1 ØVING 4
FY1006/TFY4215 - Øving 4 1 Oppgave 13 ØVING 4 Vibrerende to-partiel-system Som disutert side 110 i boa, er det et vitig poeng både i lassis meani og i vantemeani at et to-partiel-problem essensielt an
DetaljerEKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I TFY4155 ELEKTROMAGNETISME Fredag 8. juni 2007 kl
NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTISITET OG MAGNETISME I TFY4155
DetaljerNORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME
NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME Eksamensdag: 10. desember 2004 Tid for eksamen: Kl. 09:00-12:30 (3,5 timer) Tillatte hjelpemidler:
DetaljerI C Q R. Øving 11. Institutt for fysikk, NTNU TFY4155/FY1003: Elektromagnetisme
nstitutt for fsikk, NTNU TFY4155/FY1003: Elektromagnetisme Vår 2009 Øving 11 Veiledning: Mandag 23. mars og fredag 27. mars nnleveringsfrist: Fredag 27. mars Oppgave 1 nnledning (dvs vi rekapitulerer fra
DetaljerEKSAMEN I FAG SIF 4012 ELEKTROMAGNETISME (SIF 4012 FYSIKK 2) Onsdag 11. desember kl Bokmål
Side av 6 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 4 43 39 3 EKSAMEN I FAG SIF 42 ELEKTROMAGNETISME
DetaljerKONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME
DetaljerLøsningsforslag til øving 1
1 FY100/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 01. Løsningsforslag til øving 1 Oppgave 1 a) Vi antar at Hookes lov, F = kx, gjelder for fjæra. Newtons andre lov gir da eller kx = m d x
DetaljerMandag qq 4πε 0 r 2 ˆr F = Elektrisk felt fra punktladning q (følger av definisjonen kraft pr ladningsenhet ): F dl
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke 6 Mandag 05.02.07 Oppsummering til nå, og møte med Maxwell-ligning nr 1 Coulombs lov (empirisk lov for kraft mellom to
DetaljerMaxwell s ligninger og elektromagnetiske bølger
Maxwell s ligninger og elektromagnetiske bølger I forelesningene og i læreboken er Coulombs lov for the elektriske felt E formulert på følgende form: v da E = Q/ε 0 (1) Integralet til venstre går over
DetaljerInstitutt for fysikk. Eksamen i TFY4106 FYSIKK Torsdag 6. august :00 13:00
NTNU Side 1 av 5 Institutt for fysikk Faglig kontakt under eksamen: Professor Johan S. Høye/Professor Asle Sudbø Telefon: 91839082/40485727 Eksamen i TFY4106 FYSIKK Torsdag 6. august 2009 09:00 13:00 Tillatte
DetaljerØving 2. a) I forelesningene har vi sett at det mekaniske svingesystemet i figur A ovenfor, med F(t) = F 0 cosωt, oppfyller bevegelsesligningen
FY1002/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 2012. Veiledning: Mandag-Tirsdag 3-4. september. Innleveringsfrist: Mandag 10. september kl 12:00. Øving 2 A k b m F B V ~ q C q L R I a)
DetaljerOnsdag og fredag
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2009, uke 13 Onsdag 25.03.09 og fredag 27.03.09 Amperes lov [FGT 30.1, 30.3; YF 28.6, 28.7; AF 26.2; H 23.6; G 5.3] B dl = µ 0
DetaljerEKSAMEN FY1002 og TFY4160 BØLGEFYSIKK Fredag 3. desember 2010 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 16 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1002 og TFY4160 BØLGEFYSIKK Fredag
DetaljerFramdriftsplan (endelig versjon pr ) FY1002/TFY4160 Bølgefysikk Høstsemesteret Litteraturhenvisninger:
Framdriftsplan (endelig versjon pr 17.11.2009) FY1002/TFY4160 Bølgefysikk Høstsemesteret 2009 Litteraturhenvisninger: FGT = Fishbane, Gasiorowicz og Thornton (3rd ed) TM = Tipler og Mosca (5th ed) LL =
DetaljerTFY4160 Bølgefysikk/FY1002 Generell Fysikk II 1. Løsning Øving 2. m d2 x. k = mω0 2 = m. k = dt 2 + bdx + kx = 0 (7)
TFY4160 Bølgefysikk/FY100 Generell Fysikk II 1 Løsning Øving Løsning oppgave 1 Ligning 1) i oppgaveteksten er i dette tilfellet: Vi setter inn: i lign. 1) og får: m d x + kx = 0 1) dt x = A cosω 0 t +
DetaljerLøsningsforslag til øving 14
Institutt for fysikk, NTNU TFY4155/FY13 Elektromagnetisme Vår 29 Løsningsforslag til øving 14 Oppgave 1 Den påtrykte strømmen I genererer et H-felt H ni på langs overalt inne i spolen (pga Amperes lov
DetaljerOnsdag isolator => I=0
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2008, uke 13 Onsdag 26.03.08 RC-kretser [FGT 27.5; YF 26.4; TM 25.6; AF Note 25.1; LHL 22.4; DJG Problem 7.2] Rommet mellom de
DetaljerBølgeledere. Figur 1: Eksempler på bølgeledere. (a) parallell to-leder (b) koaksial (c) hul rektangulær (d) hul sirkulær (e) hul, generell form
Bølgeledere Vi skal se hvordan elektromagnetiske bølger forplanter seg gjennom såkalte bølgeledere. Eksempel på bølgeledere vi kjenner fra tidligere som transportrerer elektromagnetiske bølger er fiberoptiske
DetaljerTo sider med formler blir delt ut i eksamenslokalet. Denne formelsamlingen finnes også på første side i oppgavesettet.
Forside Midtveiseksamen i FYS 1120 Elektromagnetisme Torsdag 12. oktober kl. 09:00-12:00 (3 timer) Alle 18 oppgaver skal besvares. Lik vekt på alle oppgavene. Ikke minuspoeng for galt svar. Maksimum poengsum
DetaljerLøsningsforslag til øving 6
1 FY100/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 01. Løsningsforslag til øving 6 Oppgave 1 a) Litt repetisjon: Generelt er hastigheten til mekaniske bølger gitt ved mediets elastiske modul
DetaljerOverflatebølger på stasjonær strøm
Overflatebølger på stasjonær strøm Stasjonær strøm La den stasjonære strømmen være gitt ved hastighetsfelt = (,V,W) = Φ og overflatehevning ζ. De horisontale omponentene an vi srive som en 2D vetor H =
DetaljerMandag 7. mai. Elektromagnetisk induksjon (fortsatt) [FGT ; YF ; TM ; AF ; LHL 24.1; DJG 7.
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke19 Mandag 7. mai Elektromagnetisk induksjon (fortsatt) [FGT 30.1-30.6; YF 29.1-29.5; TM 28.2-28.3; AF 27.1-27.3; LHL 24.1;
DetaljerOppgaver i kapittel 1 - Løsningsskisser og kommentarer Lærebok:
Oppgaver i apittel - Løsningssisser og ommentarer Lærebo:.6 Vitig oppgave, viser hvordan ree-summer an tilnærmes med integraler. Atuelt hvis vi har formelen for n te ledd, men ie har noen summeformel.
DetaljerLøsningsforslag til eksamen i SIF4022 Fysikk 2 Tirsdag 3. desember 2002
NTNU Side 1 av 6 Institutt for fysikk Fakultet for naturvitenskap og teknologi Løsningsforslag til eksamen i SIF40 Fysikk Tirsdag 3. desember 00 Dette løsningsforslaget er på 6 sider. Oppgave 1. a) Amplituden
DetaljerLøsningsforslag til eksamen i TFY4170 Fysikk 2 Fysikk 2 Lørdag 8. august 2005
NTNU Side 1 av 5 Institutt for fysikk Fakultet for naturvitenskap og teknologi Løsningsforslag til eksamen i TFY4170 Fysikk Fysikk Lørdag 8. august 005 Merk: Hver del-oppgave teller like mye. Dette løsningsforslaget
DetaljerEKSAMEN I EMNE TDT4195 BILDETEKNIKK LØRDAG 26. MAI 2007 KL LØSNINGSFORSLAG - GRAFIKK
Side av 7 NTNU Norges tenis-naturvitensapelige universitet Faultet for informasjonstenologi, matemati og eletroteni Institutt for datateni og informasjonsvitensap EKSAMEN I EMNE TDT495 BILDETEKNIKK LØRDAG
DetaljerR Differensialligninger
R - 6.0.05 - Differensialligninger Løsningssisser Oppgave Løs differensialligningene y x y b) y y x c) y 8y 7y 0 Separabel: y y x y dy xdx y x C y x 4 C y C x 4 Da ligningen er ulineær, bør vi også se
DetaljerLØSNINGSFORSLAG TIL EKSAMEN FY1013 ELEKTRISITET OG MAGNETISME II Fredag 9. desember 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 LØSNINGSFORSLAG TIL EKSAMEN FY1013 ELEKTRISITET OG MAGNETISME II Fredag
DetaljerMandag Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke12
nstitutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke12 Mandag 19.03.07 Likestrømkretser [FGT 27; YF 26; TM 25; AF 24.7; LHL 22] Eksempel: lommelykt + a d b c + m Likespenningskilde
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Tirsdag 27. mai 2008 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I FY003 ELEKTRISITET
DetaljerInstitutt for fysikk Fakultet for naturvitenskap og teknologi. Løsningsforslag til eksamen i TFY4170 Fysikk 2 Onsdag 6.
NTNU Side 1 av 5 Institutt for fysikk Fakultet for naturvitenskap og teknologi Merk: Hver deloppgave teller like mye. Dette løsningsforslaget er på 5 sider. Løsningsforslag til eksamen i TFY417 Fysikk
DetaljerMidtsemesterprøve fredag 11. mars kl
Institutt for fysikk, NTNU FY1003 Elektrisitet og magnetisme TFY4155 Elektromagnetisme Vår 2005 Midtsemesterprøve fredag 11. mars kl 1030 1330. Løsningsforslag 1) B. Newtons 3. lov: Kraft = motkraft. (Andel
DetaljerUNIVERSITETET I TROMSØ. EKSAMENSOPPGAVE i FYS-1002
UNIVERSITETET I T R O M S Ø UNIVERSITETET I TROMSØ Intitutt for fysikk og teknologi EKSAMENSOPPGAVE i FYS-1002 Eksamen i: Fys-1002 Elektromagnetisme Eksamensdato: 10. juni, 2013 Tid: 09:00 13:00 Sted:
DetaljerLøsningsforslag til eksamen i TFY4170 Fysikk 2 Tirsdag 9. desember 2003
NTNU Side 1av7 Institutt for fysikk Fakultet for naturvitenskap og teknologi Dette løsningsforslaget er på 7 sider. Løsningsforslag til eksamen i TFY4170 Fysikk Tirsdag 9. desember 003 Oppgave 1. a) Amplituden
DetaljerKONTINUASJONSEKSAMEN I EMNE TDT4230 VISUALISERING TIRSDAG 7. AUGUST 2007 KL LØSNINGSFORSLAG
Side av 7 NTNU Norges tenis-naturvitensapelige universitet Faultet for fysi, inforati og ateati Institutt for datateni og inforasjonsvitensap KONTINUASJONSEKSAMEN I EMNE TT23 VISUALISERING TIRSAG 7. AUGUST
DetaljerNORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi
NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi Løsningsforslag til eksamen i FYS35, ELEKTROMAGNETISME, høst 004. (med forbehold om feil) Oppgave a) Dersom vi hadde hatt magnetiske
DetaljerR2 - Kapittel 2 - Algebra. I a) Hvilken av disse tallfølgene er aritmetiske, geometriske eller ingen av delene?
R2 - Kapittel 2 - Algebra I Hvilen av disse tallfølgene er aritmetise, geometrise eller ingen av delene?.,,,,... 2 4 2. 2,6,8,54,.... 2,6,0,4,... 4.,, 2, 4,... 2 9 5., 5, 7, 9,... 4 9 6 Sriv opp uttryet
DetaljerLøsningsforslag til øving 4
Institutt for fysikk, NTNU FY3 Elektrisitet og magnetisme II Høst 25 Løsningsforslag til øving 4 Veiledning mandag 9. og onsdag 2. september Likeretter a) Strømmen som leveres av spenningskilden må gå
DetaljerEKSAMEN TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 30. mai 2006 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN TFY4155 ELEKTROMAGNETISME FY1003
DetaljerMandag 21.08.06. Mange senere emner i studiet bygger på kunnskap i bølgefysikk. Eksempler: Optikk, Kvantefysikk, Faststoff-fysikk etc. etc.
Institutt for fysikk, NTNU TFY46/FY2: Bølgefysikk Høsten 26, uke 34 Mandag 2.8.6 Hvorfor bølgefysikk? Man støter på bølgefenoener overalt. Eksepler: overflatebølger på vann akustiske bølger (f.eks. lyd)
DetaljerEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
Norges teknisk naturvitenskapelige universitet Institutt for elektronikk og telekommunikasjon ide 1 av 7 Bokmål/Nynorsk Faglig/fagleg kontakt under eksamen: Guro vendsen (73592773) Hjelpemidler: C - pesifiserte
DetaljerMandag Ledere: Metaller. Atomenes ytterste elektron(er) er fri til å bevege seg gjennom lederen. Eksempler: Cu, Al, Ag etc.
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke 7 Mandag 12.02.07 Materialer og elektriske egenskaper Hovedinndeling av materialer med hensyn på deres elektriske egenskaper:
DetaljerLøsningsforslag til øving 13
Institutt for fysikk, NTNU TFY4155/FY1003 Elektromagnetisme Vår 2009 Løsningsforslag til øving 13 Oppgave 1 a) Sløyfas magnetiske dipolmoment: m = IA ˆn = Ia 2 ˆn Sløyfa består av 4 rette ledere med lengde
DetaljerRefleksjon og transmisjon av elektromagnetiske bølger, polarisasjon, dobbeltbrytning
Kapittel 8 Refleksjon og transmisjon av elektromagnetiske bølger, polarisasjon, dobbeltbrytning [Copyright 2009: A.I.Vistnes.] 8. Innledning* Da vi gikk gjennom Maxwells ligninger, fant vi at én løsning
DetaljerSkinndybde. FYS 2130
Skinndybde. FYS 130 Vi skal se hvordan en elektromagnetisk bølge oppfører seg i et ledende medium. ølgeligningen for E-feltet i vakuum ble utledet i notatet om elektromagnetiske bølger: E E =εµ 0 0 Denne
DetaljerOppsummering om kretser med R, L og C FYS1120
Oppsummering om kretser med R, L og C FYS1120 Likestrømskretser med motstander Strøm og spenning er alltid i fase. Ohms lov: V = RI Effekt er gitt ved: P = VI = RI 2 = V 2 /R Kirchoffs lover: Summen av
DetaljerEksamen TFY 4240: Elektromagnetisk teori
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt unde eksamen: Ola Hundei, tlf. 93411 (mobil: 95143671) Eksamen TFY 4240: Elektomagnetisk teoi 8 desembe 2007 kl. 09.00-13.00
DetaljerDiffraksjonsgitter (diffraction grating)
Diffraksjonsgitter (diffraction grating) Et diffraksjonsgitter består av et stort antall parallelle spalter med konstant avstand d. Det finnes to hovedtyper, transmisjonsgitter og refleksjonsgitter. Et
DetaljerNORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK
Side 1 av 7 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Institutt for fysikk, Realfagbygget Professor Catharina Davies 73593688 BOKMÅL EKSAMEN I EMNE
DetaljerLogiske innenheter (i GKS og PHIGS) kreves ikke i besvarelsen: String Locator Pick Choice Valuator Stroke
Oppgave a) Geometrise (eller grafise) primitiver er de grunnleggende bestandelene av en tegning som an tegnes direte ved enel (uten bru av ombinasjoner) bru av de tegnefunsjonene som en API tilbyr. (Forsjellige
DetaljerLøsningsforslag til øving 8
FY1001/TFY4145/TFY4109. Institutt for fysikk, NTNU. Høsten 015. Løsningsforslag til øving 8 Oppgave 1 a) [ x y = Asinkx ωt) = Asin π λ t )] T 1) med A = 1.0 cm, T = π/ω = 10 ms og λ = π/k = 10 cm. Figur:
DetaljerTFY4106 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 9.
TFY4106 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 9. Oppgave 1 a) var C er korrekt. Fasehastigheten er gitt ved v ω k og vi ser fra figuren at dette forholdet er størst for små verdier
Detaljerd) Poenget er å regne ut terskeltrykket til kappebergarten og omgjøre dette til en tilsvarende høyde av en oljekolonne i vann.
Sisse til løsning Esamen i Reservoarteni 3. juni, 999 Oppgave a) Kapillartry er differansen i try mellom to faser på hver side av den infinitesimale overflaten som siller fasene. Det følger av en minimalisering
Detaljer