Continuity. Subtopics

Like dokumenter
Slope-Intercept Formula

Gir vi de resterende 2 oppgavene til én prosess vil alle sitte å vente på de to potensielt tidskrevende prosessene.

Trigonometric Substitution

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

Dynamic Programming Longest Common Subsequence. Class 27

TMA4245 Statistikk. Øving nummer 12, blokk II Løsningsskisse. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2

UNIVERSITETET I OSLO

Databases 1. Extended Relational Algebra

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

MAKE MAKE Arkitekter AS Maridalsveien Oslo Tlf Org.nr

0.5 (6x 6x2 ) dx = [3x 2 2x 3 ] 0.9. n n. = n. ln x i + (β 1) i=1. n i=1

TMA4240 Statistikk Høst 2015

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)

Endelig ikke-røyker for Kvinner! (Norwegian Edition)

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

KROPPEN LEDER STRØM. Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal.

STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

EKSAMENSOPPGAVE I SØK 1002 INNFØRING I MIKROØKONOMISK ANALYSE

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with.

Graphs similar to strongly regular graphs

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Exercise 1: Phase Splitter DC Operation

GYRO MED SYKKELHJUL. Forsøk å tippe og vri på hjulet. Hva kjenner du? Hvorfor oppfører hjulet seg slik, og hva er egentlig en gyro?

Neural Network. Sensors Sorter

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO

Perpetuum (im)mobile

5 E Lesson: Solving Monohybrid Punnett Squares with Coding

Moving Objects. We need to move our objects in 3D space.

Of all the places in the world, I love to stay at Grandma Genia and

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ.

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Maple Basics. K. Cooper

Den som gjør godt, er av Gud (Multilingual Edition)

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes

Resesjonsrisiko? Trondheim 7. mars 2019

The exam consists of 2 problems. Both must be answered. English

TMA4245 Statistikk Eksamen 20. desember 2012

Livets slutt i sykehjem pasienters og pårørendes forventninger og erfaringer En syntese av kvalitative studier

Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN

Come to praise. We have come to praise your name and give thanks for all things you ve done We lift our voices up to you You are worthy of our song

FIRST LEGO League. Härnösand 2012

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Enkel og effektiv brukertesting. Ida Aalen LOAD september 2017

Forslag til nytt anskaffelsesdirektiv

September 2013 Absorption Report

International Economics

Norsk (English below): Guide til anbefalt måte å printe gjennom plotter (Akropolis)

Stationary Phase Monte Carlo Methods

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

EMPIC MEDICAL. Etterutdanningskurs flyleger 21. april Lars (Lasse) Holm Prosjektleder Telefon: E-post:

Liite 2 A. Sulautuvan Yhtiön nykyinen yhtiöjärjestys

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Spørsmål til Lady Gaga v/silje Kristin Erlandsen

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

Ukebrevet BARNEHAGEN. Velkommen til Damenes Aften - 8.februar kl se vedlegg i forrige ukebrev for mer info om denne dagen!

GEOV219. Hvilket semester er du på? Hva er ditt kjønn? Er du...? Er du...? - Annet postbachelor phd

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl.

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Trådløsnett med. Wireless network. MacOSX 10.5 Leopard. with MacOSX 10.5 Leopard

Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX)

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Gol Statlige Mottak. Modul 7. Ekteskapsloven

PATIENCE TÅLMODIGHET. Is the ability to wait for something. Det trenger vi når vi må vente på noe

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5)

GEF2200 Atmosfærefysikk 2017

EKSAMENSOPPGAVE I BI2034 Samfunnsøkologi EXAMINATION IN: BI Community ecology

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Prosjektet Digital kontaktinformasjon og fullmakter for virksomheter Digital contact information and mandates for entities

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Utsatt eksamen ECON2915

Mannen min heter Ingar. Han er også lege. Han er privatpraktiserende lege og har et kontor på Grünerløkka sammen med en kollega.

Call function of two parameters

Emnedesign for læring: Et systemperspektiv

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F.

Right Triangle Trigonometry

EKSAMENSOPPGAVE I FAG TKP 4105

Samlede Skrifter PDF. ==>Download: Samlede Skrifter PDF ebook

1 Øvelse Dynamic Mercy 1 Exercise Dynamic Mercy

1 Aksiomatisk definisjon av vanlige tallsystemer

Gaute Langeland September 2016

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt)

Økologisk og kulturell dannelse i økonomiutdanningen

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger

Vekeplan 4. Trinn. Måndag Tysdag Onsdag Torsdag Fredag AB CD AB CD AB CD AB CD AB CD. Norsk Matte Symjing Ute Norsk Matte M&H Norsk

SVM and Complementary Slackness

Transkript:

0 Cotiuity Chapter 0: Cotiuity Subtopics.0 Itroductio (Revisio). Cotiuity of a Fuctio at a Poit. Discotiuity of a Fuctio. Types of Discotiuity.4 Algebra of Cotiuous Fuctios.5 Cotiuity i a Iterval.6 Cotiuity i the Domai of the Fuctio.7 Cotiuity of some Stadard Fuctios Type of Problems Eercise Q. Nos. Eamie the Cotiuity of Fuctio at a. Q. give poit Miscellaeous Q. (iii,v) Types of Discotiuity (Removable. Q. Discotiuity/Irremovable Miscellaeous Q. Discotiuity) Fid the Value of Fuctio at give poit if it is Cotiuous. Q.4 Fid Value of k/a/b/α/β if the Fuctio is Cotiuous at a Give Poit Eamie Cotiuity of a Fuctio over give Domai/Fid poits of Discotiuity/Show that give Fuctio is Cotious Fid the Value of k/a/b/α/β if the Fuctio is Cotiuous over a give Domai. Q.,5 Miscellaeous. Q., Q.(ii) Q.(v, vi, viii, i), Q. (i, ii, iii, iv, v, vii, viii, i, ) Miscellaeous Q. (iv), Q.4(i, iii), Q.5. Miscellaeous Q.(i, ii, iii, iv, vii), Q. (vi) Q.(i), Q.4 (ii)

Std. XII : Perfect Maths - II Itroductio (Revisio) I this chapter, we will discuss cotiuity of a fuctio which is closely related to the cocept of its. There are some fuctios for which graph is cotiuous while there are others for which this is ot the case. Limit of a fuctio: A fuctio f() is said to have a it l as teds to a if for every > 0, we ca fid a positive umber δ such that, f ( ) l < wheever 0 < a < δ, If a f () f (), a the the commo value is Algebra of its: a f (). If f() ad g() are ay two fuctios, i. [f() g()] f() g() iii. v. vii. i. a [f() g()] a a a [k.f()] k f ( ) a a a a a f() f ( ) [f()] g() f ( ) a a a g() f(), where k is a costat. Limits of Algebraic fuctios: i. a iii. a a g( ) a k k, where k is a costat. v. If P() is a polyomial, the Limits of Trigoometric fuctios: i. si 0 0 si iii. si 0 0 si v. si 0 80 vii. si k 0 si ta i. P() P(a) a ii. iv. vi. viii. ii. iv. vi. ii. iv. vi. [f() g()] a f ( ) a g( ) [f()] a a a a f() a f ( ) g( ), where f ( ) a log[f()] log f ( ) a a a a a 0 0 k viii.. r r a a a ta ta a 0 0 cos 0 si si( a) a a ta ta cos a 0 g() a ta ( a) a g() 0 a

Chapter 0: Cotiuity Limits of Epoetial fuctios: i. iii. a log a, (a > 0) ii. 0 ( ) e 0 iv. e 0 0 m a m log a log a m Limits of Logarithmic fuctios: i. iii. log ( ) 0 log ( ) 0 ii. Cotiuity of a fuctio at a poit Left Had Limit: log ( a ) 0 log a e, a > 0, a a f() deotes the it of f() whe approaches to a through values less tha a. L.H.L. a f() Right Had Limit: <a a f() f(a h), (h > 0).[Left had it] h 0 a f() deotes the it of f() whe approaches to a through values greater tha a. R.H.L. a f() a a > a a f () h 0 f() ad a f() are ot always equal. f() eists, if ad oly if a f(a h), (h > 0)...[Right had it] f() a f() i.e., L.H.L. R.H.L. Graphically, this ca be show as give i the adjoiig figure. Fuctio f is said to be cotiuous at a, if: i. f(a) eists ii. iii. iv. a f() eists a f() eists a f() a f() f(a) O Y y f() a f(a) X Discotiuity of a Fuctio f is said to be discotiuous at a, if it is ot cotiuous at a. The discotiuity may be due to ay of the followig reasos: i. ii. iii. c c c f() or c f() ad c f() ad c f() or both may ot eist. f() both eist but are ot equal. f() eist ad are equal but both may ot be equal to f(c).

Std. XII : Perfect Maths - II Cosider the fuctio defied by f() for for < Here, f() is defied at every poit i [, ]. Graph of this fuctio is as show adjacetly. Left had it at ad value of f() at are both equal to. But right had it at equals, which does ot coicides with the commo value of the left had it ad f(). Agai, we ca ot draw the cotiuous (without break) graph at. Hece, we say that the fuctio f() is ot cotiuous at. Here, we say that f() is discotiuous at ad is the poit of discotiuity. Types of Discotiuity: i. Removable discotiuity: A real valued fuctio f is said to have a removable discotiuity at c i its domai, if 4 f() f(c) c i.e., if f() c f() f(c) c Eg. Cosider the followig fuctio, 6 f(), 4 4 5, 4 Here f (4) 5 6 ( 4)( 4) f() 4 4 4 4 4 4 f is discotiuous at 4. ii. ( ) 4 4 4 8 f(4) f() eists but c Now, let us fid why f() is discotiuous at 4. I the above fuctio f() eist, but is ot equal to f(4) sice f(4) 5. 4 This value of f (4) is just arbitrarily defied. Suppose, we redefie f() as follows: 6 f(), 4 4 8, 4 The f() becomes cotiuous at 4. The discotiuity of f has bee removed by redefiig the fuctio suitably. Note that we have ot appreciably chaged the fuctio but redefied it by chagig its value at oe poit oly. Such a discotiuity is called a removable discotiuity. This type of discotiuity ca be removed by redefiig fuctio f() at c such that f(c) f(). c Irremovable discotiuity: A real valued fuctio f is said to have a irremovable discotiuity at c i its domai, if f() f() c c i.e., if f() does ot eist. c Such fuctio caot be redefied to make it cotiuous. X Y 0 Y 4 X

Chapter 0: Cotiuity Eercise.. Eamie the cotiuity of the followig fuctios at give poits 5 e e i. f() si, for 0, for 0 log00 log(0.0 ) ii. f(), for 0 00, for 0 iii. f(), for, for log log7 iv. f(), 7 for 7 7, for 7 v. f() ( ), for 0 e, for 0 at 0 at 0 at at 7 at 0 vi. f() 0 7 4 5 cos 4 0, 7, for 0 vii. f() si cos, for 0, for 0 at 0 for 0 [Oct ] at 0 [Mar 4] log( ) log( ) viii. f(), ta for 0, for 0 si i. f(), for, for. f(), for 0 c, for 0 at 0 at at 0 (where c is arbitrary costat) [Oct 5] i. f(), for 0 <, for < at 5

Std. XII : Perfect Maths - II ii. 9 f(), for 0 < <, for < 6 9, for 6 < 9 si iii. f() cos, for 0 < cos, for < < e iv. f(), for 0 e, for 0 at ad 6 at at 0 6 v. f() 5... ( ) ( )(4 ) 6 ( ) Solutio: i. f(0).(give) f() 0 0 5 e e si 0, for, for e ( e ) si e e e (0) 0 si e 0 f(0) Sice, f() f(0), f is cotiuous at 0. 0 ii. f(0) 00 f() 0 Sice, 0 0 00.(give) ( ) log00 log 0.0 log 00 0 0 00 0 00 ( ) 00 f(0) 0 ( ) log 00 ( ) 00 0 f() f(0), f is cotiuous at 0.. ( ) log 00 e si Q, 0 0 ( ) at log. Q 0

iii. f().(give) f() a a a Sice, f() f(), f is discotiuous at. (). Q ( a) iv. f(7) 7.(give) log log 7 f() 7 7 7 Put 7 h, the 7 h, as 7, h 0 h 7 log log (h 7) log 7 7 f() 7 h 0 h h 0 h h h log 7 h 0 h 7 log 7 7 0 h 7 7 Sice, 7 f(7) f() f(7), f is discotiuous at 7. 7 v. f(0) e.(give) f() 0 0 ( ) ( ) 0 0 ( ) e. ( ) Q e 0 f(0) Sice, f() f(0), f is cotiuous at 0. 0 7 (). log ( ) Q 0 Chapter 0: Cotiuity vi. f(0) 0 7...(give) f() 0 0 0 0 0 7 4 5 cos 4 ( )( 5 7 ) ( ) si.5 5 7. 7 si 0 0 5 7 4 si 4 ( )( 5 7 ) si 0 ( ) ( ) 5 7 si [ Mark] 7

Std. XII : Perfect Maths - II 8 Sice, 0 5 7 0 0 0 si 8 0 ( ) log log5 log 7 8() 5 log log 7 f(0) 8 f() f(0), f is discotiuous at 0. vii. f(0).(give) f() (si cos ) si 0 Sice, viii. f(0) 0 0 f() 0 0 0 f() f(0), f is cotiuous at 0. 0 0 0 0.(give) log log ( ) ( ) ta log ta log ta log log ta log log 0 ta log log 0 0 ( ) ta 0 log log 0 0 cos si 0 cos 0 0 f(0) [ Mark] [ Mark] [ Mark] [ Mark]

Chapter 0: Cotiuity Sice, () (). log( ) 0 f() f(0), f is cotiuous at 0. 0 i. f.(give) f() si Put h, the as, h 0 si h f() cos h h 0 h h 0 h Sice, h si 4 h 4 h h 4 si h si f f() f, f is discotiuous at. h [ Mark] () [ Mark] [ Mark]. f().(give) Thus,, if 0, if 0 f(), if 0, if 0 i. Now, ad Sice, f() 0 0 f() 0 () 0 () f() f(), f is discotiuous at 0. 0 0 f f() Sice, f() ( ) f() f() f, f is cotiuous at. 9

Std. XII : Perfect Maths - II ii. Case : Whe, f() 6 0 f() Sice, f() f() 9 ( ) 6 ( ) 6 f() f(), f is cotiuous at. Case : Whe 6, f(6) 9 6 f() ( ) 6 9 6 6 9 f() 6 6 ( ) 6 6 Sice, f() f() f(6), f is discotiuous at 6. 6 6 si iii. f si si 0 0 cos cos ( ) 0 cos si f() cos si cos si cos (0) 0 f() cos Put h, the as, h 0 cos h f() si h si h h 0 h h 0 h h si h h () Sice, f() f() f, f is discotiuous at. iv. f(0) f() 0 0 e e...(give) As 0,, thus e e e i.e., e i.e., e 0 0 e 0 0 e Also, as 0,, thus e e i.e., e i.e., 0 e

Chapter 0: Cotiuity 0 Sice, e 0 0 e f() f(), f is discotiuous at 0. e e 0 0 ( )(4 ) v. f().(give) 6 5... ( ) f() Sice, ( ) 5... ( ) 5... ( ) ( ) ( ) ( ) 5( )... ( )( ) ( ) 5... ( ) ( ) 5 ( ) ( )... ( ) () 5()... ( )(). Q ( r ) r ( r r) r r 6 r r r ( )( ) ( ) ( ) ( ) ( ) ( 4 ) ( )( 4 ) 6 f() f(), f is cotiuous at.. Fid the value of k, so that the fuctio f() is cotiuous at the idicated poit ( k e ) i. f() r si k, for 0 4, for 0 at 0. Q ( ) r r r ii. f(), si for 0 k, for 0 iii. f(), for k, for iv. f(), for 0 k, for < 0 at 0 at at 0

Std. XII : Perfect Maths - II v. cos 4 f(), for < 0 k, for 0, for > 0 6 4 vi. f() log( k ), si for 0 5, for 0 vii. f() 8, k for 0, for 0 viii. f() k ( ), for 0 4, for > 0 cot i. f() (sec ), for 0 k, for 0 at 0 at 0 at 0 at 0 at 0 ta. f(), for k, for Solutio: i. f(0) 4.(give) Sice, f() is cotiuous at 0 ( k ) k e si k e si k f(0) f() k k 0 0 k k e si k 0 k k 0 k 0 k k ()() k f(0) k 4 k k ± ii. f(0) k. (give) Sice, f() is cotiuous at 0 f(0) f() 0 0 si 0 si k log log log 9 0 si 0 0 0 si 0 ( ) ( ) si (log) (log ) iii. f() k.(give) Sice, f() is cotiuous at f() ( ) 0 f() 0 Sice, f() f(), f is cotiuous at. at log

Chapter 0: Cotiuity k 0 Now, f() f() 0 iv. Sice, f() is cotiuous at 0 f() f() 0 0 ( k ) 0 0 k 0 k k 0 ( ) v. f(0) k.(give) Sice, f() is cotiuous at 0 f() f() f(0) 0 0 Cosider, f(0) f(0) 8 k 8 cos4 f() 0 0 si 0 4 4 8 0 si 0 si si 8 4 0 vi. f(0) 5.(give) Sice, f() is cotiuous at 0 log ( k) k.log ( k) log ( k) f(0) f() 0 k 0 0 si 0 si si 0 f(0) k k 5 vii. f(0).(give) Sice, f() is cotiuous at 0 f(0) 8 f() 0 0 k 0 8 0 k 0 8 8 0 0 k k 0 log8 log log k log log k log log k k 8 log log 4 log k log k log log k log log k ( 8 ) ( ) k log ( k) k 0 k k si k 0

Std. XII : Perfect Maths - II viii. Sice, f is cotiuous at 0 f() f() 0 0 0 k( ) k(0 ) 4(0) k k 0 4 i. f(0) k.(give) Sice, f() is cotiuous at 0 f(0) f() 0 ( cot sec ) 0 ( ta ) 0 ta k e. f k.(give) Sice, f() is cotiuous at e e. ( ) Q 0 f f() ta Put h, the, as, h 0 ta h h 0 h h 0 h 0 ( ta h) ( ta h) h ( ta h) ( ) h 0 ta ta h ta ta h h h 0 4 ta h ta h 4 h h 0 h ( ta h) ta h ta h ta h h ta h ta h ta h h h ( ta h ) h 0 4 ( 0) 4 ta h () 4 k 4. Discuss the cotiuity of the followig fuctios, which of these fuctios have a removable discotiuity? Redefie the fuctio so as to remove the discotiuity. 4 ( ) i. si f(), for 0, for 0 ii. f() cos ta, for 0 9, for 0 at 0 at 0

iii. f() ( e ) ta, for 0 si e, for 0 si iv. f(), for ( ) 7, for at 0 at Chapter 0: Cotiuity v. f() 4 e, 6 for 0 log, for 0 ( e ) vi. f() si, for 0, 60 for 0 at 0 [Mar 6] at 0 vii. f() (8 ), i [, ] {0}; si log 4 Defie f() i [, ] so that it becomes cotiuous at 0. viii. f(), for <, for Solutio: i. f(0).(give) f() 0 0 0 f() f(0) si( ) si( ) si( ) ( ) ( ) (0 ) 0 ( ) 0 ( ) f is discotiuous at 0. The discotiuity of f is removable ad it ca be made cotiuous by redefiig the fuctio as ( ) si f(), for 0, for 0 ii. f(0) 9.(give) cos f() 0 0 ta 0 0 9 si 4 9 4 ta si ta 0 si 9 0 ta 0 at 0 si ta 9 ( ) 9 at 5

Std. XII : Perfect Maths - II 0 f() f(0) f is discotiuous at 0. The discotiuity of f is removable ad it ca be made cotiuous by redefiig the fuctio as f() cos ta, for 0 9, for 0 iii. f(0) e.(give) f() 0 f() 0 f() f(0) 0 (e ). ta (e ) ta 0 si 0 si (e ) ta e ta 0 0 0 si si 0 f is discotiuous at 0. The discotiuity of f is removable ad it ca be made cotiuous by redefiig the fuctio as ( e ) f() ta for 0 si for 0 at 0 at 0 iv. f 7 f() ( ).(give) si si Put h, the h As, h 0 si h cos h f() h 4h h 0 f() f ( ) si h 4h ( cos h) si h 4 h cos h 4h ( cos h) cosh cosh h 0 4 () cos h 4h ( cosh) 8 f is discotiuous at. 6

Chapter 0: Cotiuity The discotiuity of f is removable ad it ca be made cotiuous by redefiig the fuctio as si f(), for ( ) 8, for at v. f(0) log f() 0 4 e 0 0 0 6 (4 ) (e ) 6 4 e 6 log 4 log e log 6 4 log e log 6.(give) 4 e 0 6 4 e 0 0 6 0 f() f(0) 0 f is discotiuous at 0. The discotiuity of f is removable ad it ca be made cotiuous by redefiig the fuctio as f() 4 e, for 0 6 4 log e, for 0 log 6 at 0 [ Mark] [ Mark] [ Mark] [ Mark] vi. f(0) 60 f() 0 ( e ) 0...(give) si e si 0 si e. 80 si e 0 80. 80 0 80 0 80 80 f() 0 80 60 Sice, f() f(0), f is cotiuous at 0. 0 log e () 80 7