TMA4240 Statistikk Høst 2008

Like dokumenter
TMA4245 Statistikk Vår 2007

Bernoulli forsøksrekke og binomisk fordeling

A) B) 400 C) 120 D) 60 E) 10. Rett svar: C. Fasit: ( 5 6 = 60. Hvis A, B, C er en partisjon av utfallsrommet S, så er P (A B) lik.

Høgskolen i Telemark. Institutt for økonomi og informatikk FORMELSAMLING Statistikk I. Til bruk ved eksamen. Per Chr. Hagen

Oppfriskning av blokk 1 i TMA4240

MULTIPLE CHOICE ST0103 BRUKERKURS I STATISTIKK September 2016

FORMELSAMLING TIL STK1100 OG STK1110

STK1100 våren Kontinuerlige stokastiske variabler Forventning og varians Momentgenererende funksjoner

6 x P (X = x) = x=1 = P (X 2 = 6)P (X 2 = 6)P (X 3 = 6) =

TMA4240 Statistikk H2010

3.1 Stokastisk variabel (repetisjon)

TMA4240 Statistikk Høst 2009

Forelesing 27 Oppsummering. Torstein Fjeldstad Institutt for matematiske fag, NTNU

Kapittel 3: Stokastiske variable og sannsynlighetsfordelinger

Eksamensoppgave i Løsningsskisse TMA4240 Statistikk

Kap. 6, Kontinuerlege Sannsynsfordelingar

TMA4240 Statistikk. Øving nummer 7. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

To-dimensjonale kontinuerlige fordelinger

Kap. 6, Kontinuerlege Sannsynsfordelingar

UNIVERSITETET I OSLO

TMA4240 Statistikk H2015

Løsningsforslag, eksamen statistikk, juni 2015

TMA4245 Statistikk Eksamen desember 2016

Tyngdepunkt. Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at. Kapittel 4

3.4: Simultanfordelinger (siste rest) 4.1,4.2,4.3: Multivariat del (ferdig med kapittel 3 og 4 etter denne forelesningen)

Forelening 1, kapittel 4 Stokastiske variable

TMA4245 Statistikk Høst 2016

ST1101/ST6101 Sannsynlighetsregning og statistikk Vår 2019

FORMELSAMLING TIL STK1100 OG STK1110

TMA4240 Statistikk Høst 2016

ÅMA110 Sannsynlighetsregning med statistikk, våren

Kontinuerlige sannsynlighetsfordelinger.

TMA4240 Statistikk Eksamen desember 2015

Betinget sannsynlighet

Kapittel 2: Hendelser

TMA4240 Statistikk H2010 Kapittel 5: Diskrete sannsynlighetsfordelinger : Uniform, binomisk, hypergeometrisk fordeling

Kapittel 6: Kontinuerlige sannsynlighetsfordelinger

Forelesning 13. mars, 2017

1.1.1 Rekke med konstante ledd. En rekke med konstante ledd er gitt som. a n (1) n=m

Dagens tekst. Kap 7: Funksjonar av stokastiske variable Transformasjon av variable Moment Momentgenererande funksjon

TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger

TMA4240 Statistikk H2015

Regneregler for forventning og varians

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008

Formelsamling V-2014 MAT110. Statistikk 1. Per Kristian Rekdal

TMA4240 Statistikk Høst 2015

Foreleses onsdag 8. september 2010

STK1100 våren Forventningsverdi. Forventning, varians og standardavvik

TMA4240 Statistikk 2014

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2009

Kap. 6, Kontinuerlege Sannsynsfordelingar

Formelsamling i medisinsk statistikk

TMA4240 Statistikk Høst 2015

STK1100 våren Normalfordelingen. Normalfordelingen er den viktigste av alle sannsynlighetsfordelinger

Emnenavn: Eksamenstid: 4 timer. Faglærer: Hans Kristian Bekkevard

TMA4240 Statistikk 2014

ST0202 Statistikk for samfunnsvitere

TMA4240 Statistikk Høst 2012

Statistikk 1 kapittel 4

Oppgave 1 Vi lar X være antall tankskip som ankommer havnen i løpet av en dag. Vi har fått oppgitt at X poisson(λ) med

Midtveiseksamen i STK1100 våren 2017

Diskrete sannsynlighetsfordelinger som histogram. Varians. Histogram og kumulativ sannsynlighet. Forventning (gjennomsnitt) (X=antall mynt i tre kast)

Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at

TMA4240 Statistikk Høst 2007

ÅMA110 Sannsynlighetsregning med statistikk, våren ÅMA110 Sannsynlighetsregning med statistikk, våren 2010

Forelesning 5: Kontinuerlige fordelinger, normalfordelingen. Jo Thori Lind

Siden vi her har brukt første momentet i fordelingen (EX = EX 1 ) til å konstruere estimatoren kalles denne metoden for momentmetoden.

for x 0 F X (x) = 0 ellers Figur 1: Parallellsystem med to komponenter Figur 2: Seriesystem med n komponenter

TMA4240 Statistikk Høst 2015

TMA4245 Statistikk Eksamen desember 2016

Transformasjoner av stokastiske variabler

statistikk, våren 2011

Binomisk sannsynlighetsfunksjon

Eksempel: kast med to terninger

Oppgave 1 a) La X være massen til et tilfeldig valgt egg, målt i gram. Sannsynligheten for at et tilfeldig valgt egg veier mer enn 60 g er

TMA4240 Statistikk H2010

Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 3 Diskrete tilfeldige variable. Diskrete tilfeldige variable, varians (kp. 3.

TMA4240 Statistikk H2015

Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår

Kontinuerlige sannsynlighetsfordelinger.

TMA4245 Statistikk. Innlevering 3. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

TMA4240 Statistikk Eksamen desember 2015

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering

TMA4240 Statistikk Høst 2009

Diskrete sannsynlighetsfordelinger.

Denne veka. Kap 7: Funksjonar av stokastiske variable Transformasjon av variable Moment Momentgenererande funksjon

ÅMA110 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 2010, s. 1. Oppgave 1. Histogram over frekvenser.

TMA4245 Statistikk Eksamen august 2014

TMA4240 Statistikk H2010

Utfordring. TMA4240 Statistikk H2010. Mette Langaas. Foreleses uke 40, 2010

Statistikk 1 kapittel 5

TMA4240 Statistikk H2010

Kapittel 6: Kontinuerlige sannsynlighetsfordelinger : Normalfordelingen, normalapproksimasjon, eksponensial og gamma.

Eksamensoppgave i TMA4240 / TMA4245 Statistikk

Diskrete sannsynlighetsfordelinger som histogram. Varians. Histogram og kumulativ sannsynlighet. Binomial-fordelingen

TMA4240 Statistikk H2010

Statistikk 1 kapittel 5

5.2 Diskret uniform fordeling. Midtveiseksamen (forts.) Kapittel 5. Noen diskrete sannsynlighetsfordelinger. TMA4245 V2007: Eirik Mo

Transkript:

TMA4240 Statistikk Høst 2008 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Oppgave 1 Tippekonkurranse Denne oppgaven er ment som en kjapp test på hva du har lært. Oppgavene skal besvares uten å bruke læreboka eller tabellen. Bestem det/de riktige svaret/svarene for hvert spørsmål. a) Hendelse Hva er en hendelse? 1. Et utfall som inntreffer sjelden 2. En mengde av enkeltutfall 3. Konvergens av relative hyppigheter 4. Et stokastisk forsøk som ikke kan gjentas under samme betingelser b) Disjunkte hendelser To disjunkte hendelser er 1. To hendelser som ikke kan inntreffe samtidig 2. To hendelser som bare kan inntreffe samtidig 3. To umulige hendelser 4. To hendelser som har minst ett enkeltutfall felles c) Kast en mynt to ganger. Da er det (når en ikke tar hensyn til rekkefølgen) 1. mer sannsynlig å få to kron enn å få en mynt og en kron 2. mindre sannsynlig å få to kron enn å få en mynt og en kron 3. like sannsynlig å få to kron som å få en mynt og en kron d) Hvor mange tre-sifrede tall av tallene 1,2,3,4,5 fins det? a. Trekker med tilbakelegging, ordnet: 1. 15 2. 60 3. 125 4. 243 5. 1000 b. Trekker uten tilbakelegging, ordnet: 1. 15 2. 60 3. 125 4. 243 5. 1000 e) Betinget sannsynlighet La A og B være to disjunkte hendelser. Hva er da P (A B)? 1. 1 2. 0 3. Ikke definert 4. P (A) + P (B) 5. 1 2 oving7-oppg-b 29. september 2008 Side 1

f) Total sannsynlighet Setningen om total sannsynlighet sier: La A 1,... A r være en oppdeling av utfallsrommet S (dvs. at hendelsene A j er parvis disjunkte og tilsammen oppfyller hele utfallsrommet) og la B være en vilkårlig hendelse. Da gjelder: 1. P (B) = r j=1 P (A j)p (B A j ) 2. P (B) = r j=1 P (A j)p (A j B) 3. P (B) = r j=1 P (B j)p (A B j ) 4. P (B) = r j=1 P (A j)p (B A j ) 5. P (B A j ) = r j=1 P (A j)p (B A j ) g) Uavhengighet Hva vil det si at to hendelser A og B er uavhengige? 1. At de ikke kan inntreffe samtidig 2. At de ikke er disjunkte 3. At de er disjunkte 4. At P (A B) = P (A)P (B A) 5. At P (A B) = P (A)P (B) 6. At de forekommer i atskilte stokastiske forsøk 7. At A er inneholdt i B eller omvendt h) Diskret variabel En stokastisk variable sies å være diskret fordelt dersom: 1. Den har bare endelig mange mulige verdier 2. Den har endelig eller tellbart uendelig mange mulige verdier 3. De mulige verdier er tallene 1,2,3,... 4. De mulige verdier er mengden av alle reelle tall 5. De mulige verdier er et intervall [a, b] på tallinjen, der vi kan ha a = og/eller b = i) Kontinuerlig variabel En stokastisk variable sies å være kontinuerlig fordelt dersom: 1. Den har bare endelig mange mulige verdier 2. Den har endelig eller tellbart uendelig mange mulige verdier 3. De mulige verdier er tallene 1, 2, 3,... 4. De mulige verdier er mengden av alle reelle tall 5. De mulige verdier er et intervall [a, b] på tallinjen, der vi kan ha a = og/eller b = j) Punktsannsynlighet diskret variabel Punktsannsynligheten p(x) for en diskret stokastisk variabel X tilfredsstiller:

1. p(x) > 0 for alle reelle tall x 2. p(x) > 0 for alle mulige verdier for X 3. p(x) > 0 for x = 1, 2,... 4. p(x) er en strengt voksende funksjon av x 5. p(x) er overalt ikke-avtagende som funksjon av x 6. x p(x) = 1 k) Fordelingsfunksjon diskret variabel Fordelingsfunskjonen F (x) for en diskret stokastisk variabel X tilfredsstiller: 1. F (x) er definert for alle reelle tall x 2. F (x) > 0 for alle reelle tall x 3. F (x) > 0 for alle mulige verdier for X 4. F (x) > 0 for x = 1, 2,... 5. F (x) er en strengt voksende funksjon av x 6. F (x) er overalt ikke-avtagende som funksjon av x 7. x F (x) = 1 8. lim x F (x) = 1 9. F (0) = 0 l) Forventning og varians En stokastisk variabel X har punktsannsynlighet: p( 1) = 0.5, p(1) = 0.5. En stokastisk variabel Y har punktsannsynlighet: p( 2) = 0.5, p(2) = 0.5. 1. X har mindre forventingsverdi enn Y 2. X har større forventingsverdi enn Y 3. X og Y har samme forventningsverdi, nemlig 0 4. X har mindre varians enn Y 5. X har større varians enn Y 6. X og Y har samme varians 7. SD(X) = 1, SD(Y ) = 2 m) Ved innføringen av bomringen i Trondheim vil 80% av bilistene ha køfri- brikke. For en gruppe på 10 bilister, hva er sannsynligheten for at alle har køfri-brikke? 1. 0.2 10 2. 1 0.2 10 3. 0.8 10 4. 1 0.8 10 5. 0.8/10 = 0.08 n) En urne inneholder 7 røde og 5 grønne kuler. Trekk 3 kuler - og la X være antall grønne blant de 3. Mulige sannsynlighetsfordelinger for X kan være: 1. X er binomisk fordelt. 2. X er poissonfordelt. 3. X er hypergeometrisk fordelt. Skriv riktig tall (1,2 eller 3) for fordeling i situasjonene nedenfor.

a.... De 3 kulene trekkes med tilbakelegging. b.... De 3 kulene trekkes uten tilbakelegging. o) Kontinuerlige variable La X være en kontinuerlig stokastisk variabel med sannsynlighetstetthet f(x) og fordelingsfunksjon F (x). Sett ring rundt de utsagn nedenfor som er korrekte. 1. 0 f(x) 1 for alle x. 2. f(x) 0 for alle x. 3. 0 F (x) 1 for alle x. 4. F (x) > 0 for alle x. 5. F (x) er en ikke-avtagende funksjon. 6. f(x) er en ikke-avtagende funksjon. 7. f(x) er stykkevis kontinuerlig 8. f (x) = F (x) for alle unntatt muligens endelig mange x. 9. F (x) = f(x) for alle unntatt muligens endelig mange x. 10. P (X = x) = 0 for alle verdier av x. 11. P (X = x) > 0 for alle unntatt muligens endelig mange x. 12. F (x) = x f(u)du. 13. f(x) = x F (u)du. 14. P (a < X b) = b a f(u)du. 15. P (a X b) = b a f(u)du. 16. P (a < X b) = F (b) F (a). p) Forventningsverdi og varians La X være en kontinuerlig stokastisk variabel med sannsynlighetstetthet f(x) og fordelingsfunksjon F (x). Sett ring rundt de utsagn nedenfor som er korrekte. 1. E(X) = xf(x)dx 2. E(X) = x2 f(x)dx 3. E(X) = xf (x)dx 4. E(X) er alltid lik den verdi av x der f(x) er størst 5. Var(X) = x2 f(x)dx 6. Var(X) = x2 f(x)dx hvis E(X) = 0 7. Var(X) = (x E(X))2 f(x)dx 8. Var(X) = x2 f(x)dx [E(X)] 2 q) Eksponensialfordelingen Hva mener en med at eksponensialfordelingen ikke har hukommelse? (T eksp(λ)) 1. Den er vanskelig å huske.

2. La T være levetiden til en lyspære. En ny lyspære har like stor sannsynlighet for å leve i 10 timer som en lyspære som virker etter 100 timer har å leve i 10 timer til. 3. P (T > y) = P (T > x + y T > x) 4. Parameteren λ endrer seg hele tiden. Eksponensialfordelingen husker ikke sin verdi av λ. r) Funksjon av stokastisk variabel La X være kontinuerlig fordelt med sannsynlighetstetthet f X (x), og la Y = e X. Da blir sannsynlighetstettheten til Y: 1. f Y (y) = f X (e y )e y 2. f Y (y) = f X (ln y)e y 3. f Y (y) = f X (ln y) 1 y s) La X være normalfordelt med forventningsverdi µ og varians σ 2. La Y = ax + b for gitte konstanter a og b. Sett ring rundt de riktige utsagn nedenfor. 1. Y er ikke nødvendigvis normalfordelt 2. Y er normalfordelt 3. Hvis a = 1/σ og b = µ/σ, så er Y standard normalfordelt 4. E(Y ) = aσ + b 5. E(Y ) = aµ + b 6. Var(Y ) = aσ 7. Var(Y ) = a 2 σ 2 8. Var(Y ) = aσ 2 + b 2 t) La X være normalfordelt med forventningsverdi µ og varians σ 2. Hvilken av følgende transformasjoner av X gir en standard normalfordeling (dvs. N(0,1))? 1. Z = X µ σ 2. Z = X µ σ 2 3. Z = X µ µ 4. Z = X µσ u) La Φ(x) være fordelingsfunksjonen i standard normalfordelingen. Sett ring rundt de riktige utsagnene nedenfor. 1. Φ(x) = 1 2π e x2 2 4. Φ( x) = Φ(x) 7. Φ( x) = 1 Φ(x) 2. Φ(x) = 1 Φ( x) 5. Φ( x) = Φ(x) 8. Φ(0) = 0 3. Φ(0) = 0.5 6. Φ(0) = 1 9. lim x Φ(x) = 0 v) La X 1 og X 2 være diskrete stokastiske variable, hver med mulige verdier 0, 1, 2, 3,.... Sett ring rundt det riktige utsagnet nedenfor. 1. P (X 2 = 0 X 1 = 0) + P (X 2 = 1 X 1 = 0) + P (X 2 = 2 X 1 = 0) + P (X 2 = 3 X 1 = 0) +... = 1 2. P (X 2 = 0 X 1 = 0) + P (X 2 = 0 X 1 = 1) + P (X 2 = 0 X 1 = 2) + P (X 2 = 0 X 1 = 3) +... = 1 w) La X 1 og X 2 være to stokastiske variable, diskrete eller kontinuerlige. Sett ring rundt de korrekte utsagnene nedenfor. 1. Var(X 1 + X 2 ) = Var(X 1 ) + Var(X 2 )

2. Var(X 1 + X 2 ) = Var(X 1 ) + Var(X 2 ) + Cov(X 1, X 2 ) 3. Var(X 1 + X 2 ) = Var(X 1 ) + Var(X 2 ) + 2Cov(X 1, X 2 ) 4. Var(X 1 + X 2 ) = Var(X 1 ) + Var(X 2 ) 2Cov(X 1, X 2 ) 5. Var(X 1 + X 2 ) = Var(X 1 ) + Var(X 2 ) hvis X 1 og X 2 er stokastisk uavhengige 6. Cov(X 1, X 2 ) = E(X 1 X 2 ) E(X 1 )E(X 2 ) 7. Cov(X 1, X 2 ) = E(X 1 X 2 ) hvis X 1 og X 2 er stokastisk uavhengige 8. Cov(X 1, X 2 ) = E(X 1 )E(X 2 ) hvis X 1 og X 2 er stokastisk uavhengige 9. E(X 1 X 2 ) = E(X 1 )E(X 2 ) hvis X 1 og X 2 er stokastisk uavhengige x) La X 1 og X 2 være uavhengige stokastiske variable. La Y = X 1 X 2 og Z = 1 2 (X 1 +X 2 ). Sett ring rundt de riktige svarene nedenfor: Fasit 1. Var(Y ) = Var(X 1 ) Var(X 2 ) 2. Var(Y ) = Var(X 1 ) + Var(X 2 ) 3. Var(Z) = 1 2 (Var(X 1) + Var(X 2 )) 4. Var(Z) = 1 4 (Var(X 1) + Var(X 2 )) 5. Var(Z) = 1 4 Var(Y ) 6. Var(2Z) = Var(Y )