Løysingsframlegg eksamen TFY4215/FY1006 Innføring i Kvantemekanikk vår 2013



Like dokumenter
Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Telefon: August 6, r L2. r r. h 2 r 2 ) sin 2 θ φ.

Fasit Kontekesamen TFY4215/FY1006 Innføring i kvantefysikk 2015

Eksamen TFY4215/FY1006 Innføring i kvantemekanikk Vår 2013

Fasit Kontekesamen TFY4215/FY1006 Innføring i kvantefysikk 2015

Fasit TFY4215/FY1006 Innføring i kvantefysikk Vår 2015

Kontinuasjonseksamen TFY4215/FY1006 Innføring i kvantemekanikk august 2013

NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Løysingsframlegg prøveeksamen TFY4215/FY1006 Innføring i Kvantemekanikk

Fasit TFY4215/FY1006 Innføring i kvantefysikk Vår 2015

Løysingsframlegg øving 1

Fasit TFY4215/FY1006 Innføring i kvantemekanikk august 2014

Fasit TFY4215/FY1006 Innføring i kvantefysikk Vår 2014

FY1006/TFY4215 Innføring i kvantefysikk - Øving 2 1 ØVING 2. Krumningseigenskapar for eindimensjonale energieigenfunksjonar

1 Stokastisk variabel

FY1006/TFY4215 Innføring i kvantefysikk - Løysing øving 2 1 LØYSING ØVING 2. a) For grunntilstanden for den harmoniske oscillatoren har vi

ØVING 2. Krumningseigenskapar for eindimensjonale energieigenfunksjonar. h2 + V (x). (0.1) 2m dx 2

LØYSING ØVING 6. Grunntilstanden i hydrogenliknande atom

FY1006/TFY Løysing øving 5 1 LØYSING ØVING 5. Krumning og stykkevis konstante potensial

Løsningsforslag Konte-eksamen 2. august 2003 SIF4048 Kjemisk fysikk og kvantemekanikk

TFY4215 Innføring i kvantefysikk - Løsning øving 1 1 LØSNING ØVING 1

Løysingsframlegg TFY4305 Ikkjelineær dynamikk Haust 2012

TFY4215 Innføring i kvantefysikk - Øving 2 1 ØVING 2. Krumningsegenskaper for endimensjonale energiegenfunksjoner

TFY4215 Kjemisk fysikk og kvantemekanikk - Øving 1 1 ØVING 1. En liten briefing om forventningsverdier, usikkerheter osv

EKSAMENSOPPGAVE. Eksamen i: Fys-2000 Kvantemekanikk Dato: 5. juni 2013 Tid: Kl Sted: Åsgårdveien 9. og fysikk, lommekalkulator

EKSAMEN I SIF4018 MATEMATISK FYSIKK mandag 28. mai 2001 kl

LØSNING ØVING 2. Løsning oppgave 5. TFY4215 Innføring i kvantefysikk - Løsning øving 2 1

Løsningsforslag Eksamen 11. august 2010 FY1006/TFY4215 Innføring i kvantefysikk

FY1006/TFY4215 Innføring i kvantefysikk - Øving 1 1 ØVING 1. En liten briefing om forventningsverdier, usikkerheter osv

FY1006/TFY Løysing øving 4 1 LØYSING ØVING 4. Vibrerande to-partikkelsystem. = k(x l) og F 2 = V = V. k (x l) dvs ω 1 =,

FY1006/TFY Øving 12 1 ØVING 12. Vinkelfunksjonar, radialfunksjonar og orbitalar for hydrogenliknande. Y lm ; l = 0, 1, ; m = l,, l.

Løsningsforslag Eksamen 5. august 2009 TFY4215 Kjemisk fysikk og kvantemekanikk

EKSAMEN I SIF4048 KJEMISK FYSIKK OG KVANTEMEKANIKK Tirsdag 13. august 2002 kl

TFY Løsning øving 6 1 LØSNING ØVING 6. Grunntilstanden i hydrogenlignende atom

Løysingsframlegg TFY 4305 Ikkjelineær dynamikk Haust 2011

Eksamen i fag FY1004 Innføring i kvantemekanikk Fredag 30. mai 2008 Tid: a 0 = 4πǫ 0 h 2 /(e 2 m e ) = 5, m

Løsningsforslag Eksamen 29. mai 2010 FY1006 Innføring i kvantefysikk/tfy4215 Kjemisk fysikk og kvantemekanikk

Ein par(kkel i 3 dimensjonar

Eksamen i fag FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Tid:

Løsningsforslag Eksamen 13. august 2011 FY1006/TFY4215 Innføring i kvantefysikk

FY1006/TFY Løysing øving 7 1 LØYSING ØVING 7

Figur 1: Skisse av Franck-Hertz eksperimentet. Hentet fra Wikimedia Commons.

Løsningsforslag Eksamen 27. mai 2011 FY1006/TFY4215 Innføring i kvantefysikk

FY1006/TFY Øving 4 1 ØVING 4

FY1006/TFY Løsning øving 8 1 LØSNING ØVING 8. a. (a1): Ved kontroll av egenverdiene kan vi se bort fra normeringsfaktorene.

Løsningsforslag Eksamen 7. august 2006 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Konte-eksamen 13. august 2002 SIF4048 Kjemisk fysikk og kvantemekanikk

TUNNELERING. - eit viktig kvantemekanisk fenomen

NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk

EKSAMENSOPPGAVE. Tillatte hjelpemidler: K. Rottmann: Matematisk Formelsamling Lommekalkulator med tomt minne

Løsningsforslag Matematisk fysikk, 28. mai 2001

Løsningsforslag Eksamen 16. august 2008 TFY4215 Kjemisk fysikk og kvantemekanikk

FY1006/TFY Øving 7 1 ØVING 7

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Fredag 19. august 2005 kl

TFY Løsning øving 4 1 LØSNING ØVING 4. Vibrerende to-partikkelsystem

UNIVERSITETET I OSLO

Løsningsforslag for FYS2140 Kvantemekanikk, Torsdag 16. august 2018

TFY Øving 7 1 ØVING 7. 3-dimensjonal isotrop harmonisk oscillator

FYS2140 Kvantefysikk, Hjemmeeksamen V Leveringsfrist fredag 20. mars kl.14:45 (før ekspedisjonen stenger!!!)

EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 INNFØRING I KVANTEFYSIKK Onsdag 11. august 2010 kl

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK onsdag 5. august 2009 kl

Løsningsforslag Eksamen 12. august 2004 TFY4215 Kjemisk fysikk og kvantemekanikk

BOKMÅL Side 1 av 6. En partikkel med masse m beveger seg i det endimensjonale brønnpotensialet V 1 = h 2 /(2ma 2 0) for x < 0,

Løysingsframlegg TFY 4104 Fysikk Kontinuasjonseksamen august 2010

Løsningsforslag Eksamen 20. desember 2012 FY2045/TFY4250 Kvantemekanikk I

Løysingsframlegg Eksamen TFY 4230 Statistisk Fysikk onsdag 17/

FY2045/TFY4250 Kvantemekanikk I, øving 5 1 ØVING 5

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Torsdag 12. august 2004 kl

TFY Løsning øving 7 1 LØSNING ØVING 7. 3-dimensjonal isotrop harmonisk oscillator

Løsningsforslag Eksamen 28. mai 2003 SIF4048 Kjemisk fysikk og kvantemekanikk

Oppgave 2 Vi ser på et éndimensjonalt system hvor en av de stasjonære tilstandene ψ(x) er gitt som { 0 for x < 0, ψ(x) = Ne ax (1 e ax (1)

UNIVERSITETET I OSLO

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Mandag 23. mai 2005 kl

Løysingsframlegg TFY4305 Ikkjelineær dynamikk Haust 2013

Oppgave 1 (Teller 34 %) BOKMÅL Side 1 av 5. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk

Løsningsforslag Eksamen 4. august 2008 TFY4250 Atom- og molekylfysikk

FY2045/TFY4250 Kvantemekanikk I, øving 2 1 ØVING 2. nesten en posisjonsegentilstand

FY1006/TFY Løsning øving 3 1 LØSNING ØVING 3. Ikke-stasjonær bokstilstand

Løysingsforslag for øving 13

ØVING 12. Vinkelfunksjonar, radialfunksjonar og orbitalar for hydrogenliknande. Y lm ; l =0, 1, ; m = l,,l.

Eksamen i: FYS145 - Kvantefysikk og relativitetsteori Eksamensdag: Mandag 10. mai 2004, kl (3 timer)

ψ(x) 2 dx = 1. (3) For det siste integralet har vi brukt fra Rottmann at

Eksamen FY1006/TFY mai løsningsforslag 1

TFY Løsning øving 5 1 LØSNING ØVING 5. Krumning og stykkevis konstante potensialer

B.1 Generelle egenskaper til energiegenfunksjoner

Løysingsframlegg TFY 4104 Fysikk Hausten 2009

FYS2140 Hjemmeeksamen Vår 2014

FY2045/TFY4250 Kvantemekanikk I, løsning øving 14 1 LØSNING ØVING 14. ψ 210 z ψ 100 d 3 r a.

TUNNELERING. - eit viktig kvantemekanisk fenomen

Løsning til øving 8 for FY1004, høsten 2007

EKSAMEN I SIF4048 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 2. august 2003 kl

Lfisningsforslag SIF4045 Kvantemekanikk Oppgave 1 a) Den tidsavhengige Schrödingerlikningen = c HΨ= Separable lfisninger av denn

Løsningsforslag Eksamen 1. desember 2008 TFY4250 Atom- og molekylfysikk/fy2045 Kvantefysikk

EKSAMENSOPPGAVE. FYS 2000, Kvantemekanikk Dato: 7. Juni 2017 Klokkeslett: 9:00-13:00 Sted: Tillatte hjelpemidler: rute.

Eksamen i TFY4170 Fysikk 2 Mandag 12. desember :00 18:00

EKSAMEN I FY2045 KVANTEFYSIKK Onsdag 30. mai 2007 kl

Løsningsforslag for FYS2140 Kvantemekanikk, Tirsdag 29. mai 2018

Løsningsforslag Eksamen 14.desember 2011 FY2045/TFY4250 Kvantemekanikk I

Transkript:

NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Løysingsframlegg eksamen TFY45/FY6 Innføring i Kvantemekanikk vår 3 Oppgåve Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Telefon: 735933 April 9, 5 a) Den tidsuavhengige Schrödingerlikninga er ] [ h m + V (r, φ) ψ(r, φ) = Eψ(r, φ). () der Innsetting av L z = i h gjev φ ( [ h m r + ) r r L z h r = r + r r + r φ. () ] + V (r, φ) ψ(r, φ) = Eψ(r, φ). (3) L z = i h φ kommuterer med Ĥ fordi L z kommuterer med r (partielderiverte kommuterer) fordi L z kommuterer med r (fordi L z er uavhengig av r) og difor med ein vilkårleg funksjon f(r).

Dersom vi krev at bølgjefunksjonen skal vere eintydig får vi ψ(r, ) = ψ(r, π), (4) sidan φ = og φ = π er same punkt på sirkelen. (Ein kan sjølsagt velje eit vilkårleg punkt på sirkelen). Etter innsetting i (4) og forkorting med R(r) gjev dette = e πim. Denne likninga har løysing m =, ±, ±,.... (5) b) Innsetting av ψ(r, φ) = R(r)e imφ i likning () og forkorting med e imφ gjev direkte den oppgjevne likninga. etc. Ved innset- c) Dersom vi skiftar variabel x = r µω får vi d = µω h dr h ting av V (r) = µω r = hωx gjev dette hω [ d dx + d x dx m x Vi har R(r) = u(x) = P (x)e x. Dette gjev d dx ] u(x) + hωx u(x) = Eu(x) (6) u (x) = P (x)e x P (x)xe x, (7) u (x) = P (x)e x P (x)xe x + P (x) ( x ) e x. (8) Innsetting av u (x) og u (x) og forkorting med hω og e x gjev ( ) ) P (x) + x x P (x) + (ɛ m P (x) =. (9) x c) Vi bruker potensrekkjemetoden og skriv P (x) = a n x n. () Dette gjev P (x) = P (x) = n= a n nx n = n= a n n(n )x n = n= Innsetting gjev da a n n(n )x n + n= +(ɛ ) n= a n nx n, () n= a n n(n )x n. () n= a n nx n a n nx n a n x n m n= n= n= a n x n =. (3)

Dette kan vi skrive som a n n(n )x n + a x + a n nx n a n nx n n= n= n= ( +(ɛ ) a n x n m a x + a ) m a n x n =. (4) x n= Dersom vi redefinerer n n i det første, tredje og siste leddet, får vi etter litt opprydding n= [ ] an+ (n + ) m a n+ + (ɛ n ) a n x n n= + a ( m ) x a m x =. (5) Koeffisienten foran kvar potens av x må vere lik null. Dette gjev rekursjonsrelasjonen a n+ = n + ɛ (n + ) m a n. (6) I tillegg må a = viss m og a = viss m. Rekursjonsformelen viser at a n+ /a n /n for store n som er same oppførsel som rekkja for e x. Det vil seie at P (x) e x for store x og difor at u(x) e x for store x. u(x) er såleis ikkje normerbar. Einaste vegen ut er at rekkja terminerer, det vil seie a n+ = for passe heiltal n. Dette gjev eller ɛ = n +, (7) E = hω(n + ). (8) d) Dersom P (x) = A er konstant får vi ved innsetting i (9) ) (ɛ m A =, (9) som har løysing når ɛ = og m =. Dersom P (x) = Bx får vi ved innsetting og litt opprydding x ( ) m B + x (ɛ 4) B =, () x

som har løysing ɛ = 4 og m =, det vil seie m = ±. e) Energien til den isotrope todimensjonale oscillatoren er E = hω(n x + n y + ), () der n x =,,... og n y =,,... Grunntilstanden er for n x = n y = og E = hω som tilsvarer ɛ =. Middelverdien r kan skrivast som r = π r ψ r dr dφ π ψ r dr dφ, () der nemnaren er normeringsintegralet av ψ (r, φ). Etter innsetting av ψ (r, φ) gjev vinkelintegralet π i tellar og nemnar. Ny variabel x = r µω/ h gjev da r = h x 3 e x dx µω xe x dx = h µω = h µω, ye y dx e y dx der vi andre linje har skifta variabel, y = x. Dette gjev V (r) = µω r = hω. (3) Vi har H = E k + V (r) og E = H. Dette gjev Sidan E = ( hω)ɛ = hω for grunntilstanden får vi E k = E V (r). (4) E k = hω. (5) Energien E er da i middel likt fordelt mellom potensiell og kinetisk energi. Venderadien er gjeve E V (r vende ) =. (6)

Med E = hωɛ = hω får vi µω r vende = hω, (7) som har løysing r vende = h µω. (8) Oppgåve a) På grunn av faktoren e αx går ψ(x) når x + og ψ(x) er difor lokalisert. ψ(x) beskriv da ein bunden tilstand. Normeringsintegralet er ψ(x) = A x e αx dx = A 8α 3 y e y dy = A 4α 3! =. (9) Dersom ein veljer A reell får vi A = α 3 blir og den normerte bølgjefunksjonen b) Middelverdien til den potensielle energien er ψ(x) = α 3 xe αx. (3) V (x) = 4F α 3 x 3 e αx dx = F 4α c) Middelverdien til den kinetiske energien er E k = h m = h m y 3 e y dy = 3F α. (3) ψ(x) d ψ(x) dx dx [ ] d dx ψ(x) dx (3)

etter delvis integrasjon. Innsetting av ψ(x) gjev E k = h m 4α3 = h m α = h m α. [ αx] e αx dx ( y ) e y dy d) Den totale energien til systemet kan vi da skrive som E = E k + E p = h m α + 3F α. (33) Verdien på α som minimaliserer E, α min, finn ein ved å løyse de dα gjev =. Dette h m α min 3F α min =, (34) eller α min = ( 3mF h ) 3. (35) Innsett i uttrykket for E får vi da E min = 3 4 6 3 ( h m ) 3 F 3. (36) der prefaktoren er 36 3.48. Feilen i grunntilstandsenergien er omlag 6 4 d prosent. Ikkje dårleg. Merk: E = h + 3F > for alle α > og vi har dα m α 3 såleis eit minimum og ikkje eit maksimum. E k er gjeve integralet ved ( d dx ψ) og blir mindre jo flatare ψ(x) er (ψ(x) = konstant minimerer E k ). Den potensielle energien E p blir mindre desto meir bølgjefunksjonen er konsentret rundt x = (som er minimum til V (x)). Verdien på α som minimaliserer E, α min, er da eit kompromiss mellom desse to ledda.

Oppgåve 3 a) Funksjonen r kommuterer opplagt med funksjonen V (r) og også med L mr fordi L er uavhengig av. Vi treng difor berre å rekne ut [ +, r]. Vi r r r r får da [ r + ] r r, r ψ = r (rψ) + (rψ) r r r r ψ r ψ = ( r + r ) ψ, der ψ er ein vilkårleg glatt funksjon. Altså er [Ĥ, r] = h m ( r + r ). (37) b) Fouriertranformen i tre dimensjonar er Φ(p) = ψ(r)e ip r/ h d 3 r. (38) (π h) 3 Ved innsetting gjev dette Φ(p) = π(π ha ) 3 e ip r/ h e r/a d 3 r. (39) Sidan ψ er uavhengig av vinklane kan vi bruke hintet som er gjeve i oppgåva. Vinkelintegralet blir då π π e ipr cos θ/ h dω = dφ e ipr cos θ/ h sin θdθ [ ] e ipr cos θ/ h π = π h ipr = π h [ e ipr/ h e ipr/ h]. (4) ipr Innsetting av dette i radialintegralet gjev Φ(p) = π h re [ r/a e ipr/ h e ipr/ h] dr ip (πa h) 3 = ( ) 3 a π h ( + a p / h (4) ) Vi noterer oss at Φ(p) er kulesymmetrisk i impulsrommet akkurat som ψ(r, θ, φ) er kulesymmetrisk i koordinatrommet. Φ(p) gjev impulsfordelinga i grunntilstanden.

c) Klassisk mekanikk er deterministisk. I prinsipp kan vi løyse Newtons bevegelseslikningar dersom vi kjenner kreftene på systemet og initialkrava. I kvantemekanikken gjev ψ som er løysinga av Schrödingerlikninga all informasjon om systemet. Denne informasjonen er av statistisk natur. For eksempel vil ψ(x) gje sannsynlegheitsfordelinga for posisjonen til ein partikkel på x-aksen. I tillegg vil to observable som ikkje er kompatible (der dei tilhøyrande operatorane ikkje kommuterer) ikkje vere skarpe samtidig. Det vil seie at systemet ikkje kan vere i ein eigentilstand for begge observable samtidig. Eksempel er posisjonen x og impulsen p. Usikkerheita i slike observable er gjevne ved uskarpheitsrelasjonar. d) Dersom vi bruker klassisk fysikk vil partikkelen sprette tilbake viss E < V (%refleksjon). Dersom E > V vil partikkelen beveges seg mot høgre med redusert hastighet (% transmisjon) Kvantemekanisk vil refleksjonskoeffisienten, det vil seie sannsynlegheiten for at partikkelen blir reflektert vere lik når E < V. Dette er klassisk oppførsel. Når E > V er refleksjonskoeffisienten ein avtagande funksjon av E, men er positiv. Dette er altså ikkje-klassisk oppførsel. Sjå figur. Figure : Refleksjonskoeffisient for eit potensialsprang som funksjon av E/V.