Offshore vindmøller forskning, erfaring og utfordringer



Like dokumenter
Norwegian Centre for Offshore Wind Energy (NORCOWE)

Offshore vindkraft. Peter M. Haugan Norwegian Centre for Offshore Wind Energy (NORCOWE) og Geofysisk institutt, Universitetet i Bergen

Norwegian R&D on Offshore Wind Technology. Jan Onarheim Vice Director NOWITECH Senior Advisor NTNU

Norwegian Centre for Offshore Wind Energy

Forskning er forskning og business er business -men ikke i NORCOWE!

Universitet på dypt vann?

Er tiden moden for offshore vind i Norge? Annette F. Stephansen

Norwegian Offshore Wind Research Infrastructure (NOWERI) The FLEXWT Project Floating Wind Turbine NOWERI

HOG - 16/12/ Hvilke muligheter har Bergen til å bli landets ledende region innen miljøvennlig energi?

WÄRTSILÄ MARINE SOLUTION POWER CONVERSION INNOVATIVE LAV- OG NULLUTSLIPPSLØSNINGER OG UTFORDRINGER MED Å FÅ DISSE INN I MARKEDET.

Wind-IRIS Vindturbin for forskning. Øystein Lund Bø

Havmøller og industriutvikling - presentasjon til Energirådet

Status Aker Verdal Mai 2010

Energiforskningskonferansen 21.mai 2015 Forskningssentre for miljøvennlig energi (FME) Om utlysningen i 2015

EU Energi, SET-plan. Beate Kristiansen, Spesialrådgiver/EU NCP Energi

Nyskaping. Kunnskap for en bedre verden

Sterk global konkurranse, raske teknologiskift og det grønne skiftet utfordrer dagens løsninger og produksjonsmetoder.

HONSEL process monitoring

Baltic Sea Region CCS Forum. Nordic energy cooperation perspectives

What's in IT for me? Sted CAMPUS HELGELAND, MO I RANA Tid

Capturing the value of new technology How technology Qualification supports innovation

Centre for environmental design of renewable energy CEDREN. SINTEF Energy Research

Sarepta Energi AS Projects and Ambitions

Vindparktilkopling til offshore installasjonar

Slope-Intercept Formula

Norwegian Centre for Offshore Wind Energy

Med havvinden til nye markeder

Hva har fungert bra vi bra og hva ville vi gjort annerledes, erfaringer med FME

Tor Haakon Bakken. SINTEF Energi og NTNU

PETROMAKS & Integrerte Operasjoner. Rådgiver Tor-Petter Johnsen, PETROMAKS

CREATE Senter for forskningsdrevet innovasjon i havbruksteknologi. CREATE Merdmiljø workshop 4. november 2010

Research on Low Carbon Emissions - Road Transport in Norway

PSi Apollo. Technical Presentation

Erfaringer fra en vertsinstitusjon. FME Avlsutningkonferanse, 22. mai, 2017 Kristin Guldbrandsen Frøysa/Arvid Nøttvedt, CMR

Med havvinden til nye markeder

Centre for environmental design of renewable energy CEDREN

Perpetuum (im)mobile

Forskningssentre for miljøvennlig energi (FME) Orientering om ny utlysningsrunde. Presentasjon av FME-ordningen Ny utlysning

NOWITECH. Innspill til Energimeldingen. Desember Trond Kvamsdal Chair NOWITECH Scientific Committee

STIG REMØY CEO - Olympic Shipping. Infrastruktur for fremtidig vekst i Kyst-Norge

Forskningsrådets støtte til energiforskning og innovasjon. Einar Wilhelmsen

Havrommet. 70 % av jordens overflate er hav. Ocean Space Centre. Møre Ocean lab Det Digitale Havrom. Norwegian University of Science and Technology

Complete tank expertise

Nytt strømforbruk. Fra strøm til hydrogen, en ny lagringsmetode

IEA PVPS. Trond Moengen. Global co-operation towards sustainable deployment of photovoltaic power systems

BioCarb+ NFR KPN prosjekt MNOK. Enabling the biocarbon value chain for energy

Forskningssentre for miljøvennlig energi Midtveisevalueringen i Status på Stratos, 10. oktober 2013

Statoil- status og noen tanker om fremtidens energiforskning. Dialogmøte Oslo, 28. september 2011

Utstyr for avstandsmåling. Dommersamling 14. mars 2015 Stein Jodal

Smart Grid aktiviteter og FoU

Software applications developed for the maritime service at the Danish Meteorological Institute

Norsk Offshoredag 2009 Bunnfaste vindmøller

Endring og kompetanseutvikling. Owe Hagesæther, CEO GCE Subsea

Offshore Wind Turbine Support Structures. Erfaringer med å søke EU finansiering

1 Atle Harby, CEDREN

Samarbeid om forvalting av Havrommet. Per Magne Einang Senterleder Smart Maritime SFI Forum 2016

FME-enes rolle i den norske energiforskningen. Avdelingsdirektør Rune Volla

CEDREN - Centre for environmental design of renewable energy. Atle Harby, senterleder SINTEF Energi

Europeiske FOU muligheter innen energiområdet

NO X -chemistry modeling for coal/biomass CFD

Kjell Arne Mork, Francisco Rey, Henrik Søiland

Subsea-Muligheter for virksomhet i den maritime klyngen. Utbygging og vedlikehold av subsea anlegg Prosjektleder : Torstein Vinterstø

ISO 41001:2018 «Den nye læreboka for FM» Pro-FM. Norsk tittel: Fasilitetsstyring (FM) - Ledelsessystemer - Krav og brukerveiledning

KROPPEN LEDER STRØM. Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal.

Hvordan komme i kontakt med de store

Den europeiske byggenæringen blir digital. hva skjer i Europa? Steen Sunesen Oslo,

2A September 23, 2005 SPECIAL SECTION TO IN BUSINESS LAS VEGAS

The ZEB Research Centre and Pilot Buildings. Zero Emission Buildings fra forskning til praksis

Arne Eik Ledende forretningsutvikler Nye. Foredrag Tekna

Presentasjon for Verdal Formannskap

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt)

Generalization of age-structured models in theory and practice

Forskning på miljøvennlig energi: Kan bergensregionen ligge i tet?

Rolls-Royce` globale strategi og maritimsatsingen

GYRO MED SYKKELHJUL. Forsøk å tippe og vri på hjulet. Hva kjenner du? Hvorfor oppfører hjulet seg slik, og hva er egentlig en gyro?

Fremtidsrettede prosjekter ved SMS

Konstruksjonsstål for arktiske forhold krav til sveisbarhet og egenskaper. Norsk Korrosjonsteknisk forening Mons Hauge, Statoil

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

TUNNEL LIGHTING. LED Lighting Technology

ESTABLISHING A EUROPEAN HIGH POWER CHARGING NETWORK JAN HAUGEN IHLE, REGIONSDIREKTØR NORTHERN EUROPE, IONITY. IONITY Präsentation October 2018

GOE-IP AS- GlobalOrganicEnergy-Intelligent Property AS

Kan havvind skape en ny grønn vekstnæring for Norge? Jon Dugstad, Director Wind & Solar

Horisont 2020 EUs forsknings- og innovasjonsprogram. Brussel, 6. oktober 2014 Yngve Foss, leder, Forskningsrådets Brusselkontor

NorSun AS. NorSun AS Karenslyst Allé 9C, 0278 Oslo, Norway (+47)

Solceller og bærekraft Kulturhuset 19. juni 2019

Building conservation in practice

Erfaringsseminar Scandic Hell, Stjørdal. 18 oktober, 2017

Eksamen vind og vannkraft 2013

Improved design criteria and forecast for energy yield from offshore wind turbines

Velkommen til CEDRENs avslutningsseminar. #miljødesign

Pumpeturbiner og Tekniske Utfordringer

Teknologi for et bedre samfunn

Emnedesign for læring: Et systemperspektiv

-it s all about quality!

Midler til innovativ utdanning

SFI-Norman presents Lean Product Development (LPD) adapted to Norwegian companies in a model consisting of six main components.

Forskningsrådets rolle som rådgivende aktør - innspill til EUs neste rammeprogram, FP9 og ERA

INSTALLATION GUIDE FTR Cargo Rack Regular Ford Transit 130" Wheelbase ( Aluminum )

Compact and efficient technology for particle separation Trondheim, 5. mai 2017 Jo Terje Lestum Project controller

INTPART. INTPART-Conference Survey 2018, Key Results. Torill Iversen Wanvik

Transkript:

Offshore vindmøller forskning, erfaring og utfordringer Ivar Langen Universitetet i Stavanger Slide 1 / 1-Sep-10

Norsk vindkraftforskning Norsk satsing på vindkraftforskning er av nyere dato Lengst historie har IFE, NTNU og SINTEF Disse har siden tidlig 2000- tallet hatt et strategisk vindkraftprogram finansiert av Forskningsrådet og aktører i Næringslivet. Slide 2 / 1-Sep-10

Trondheimsmiljøet NTNU, SINTEF og IFE har siden tidlig 2000-tallet hatt et strategisk vindkraftprogram i finansiert av Norsk forskningsråd og aktører i næringslivet Slide 3 / 1-Sep-10

Forskning på miljøvennlig energi øker! Klimaforliket og Energi21 Budsjettvekst (300 mill i 2009) 8 nye Forskningssentre for Miljøvennlig Energi (FME) Ramme: 160-320 mill pr senter Varighet: 2009-2017 Samarbeid: forskning industri vind Offshore Wind Technology (NOWITECH) Sintef vind Offshore Wind Energy (NORCOWE) CMR vind - vannkraft Environmental Design of Renewable Energy (CEDREN) Sintef CO2 CO2 Capture and Storage (BIGCCS) Sintef CO2 Subsurface CO2 Storage (SUCCESS) CMR sol Solar Cell Technology (Solar United) IFE bio BioEnergy (CenBio) UMB energibruk Zero Emission Buildings NTNU Slide 4 / 1-Sep-10

Hvorfor FME på havvind? Eksisterende kommersielle løsninger for kraftproduksjon fra vind offshore er basert på tradisjonelle, landbaserte vindturbinkonsept. Disse er montert på havbunnen i relativt nære og grunne kystområder. Flytende løsninger for større havdyp er under utvikling, men er fremdeles i utforskningsfasen. FME-ordningen har sin bakgrunn i gode erfaringer med SFI og SFF-sentrene. Målet er å kombinere industri og anvendt forskning. Slide 5 / 1-Sep-10

NOWITECH -Norwegian Research Centre for Offshore Wind Technology Manager: John Olav Giæver Tande, john.tande@sintef.no Objective: Pre-competitive research laying a foundation for industrial value creation and cost-effective offshore wind farms. Emphasis on deep sea (+30 m). R&D partners: SINTEF, IFE, NTNU + associates: Risø DTU (DK), NREL & MIT (US) Industry partners: Statkraft, StatoilHydro, Vestavind, Dong Energy, Lyse, Conoco Phillips, Statnett, Umoe Mandal, Aker Solutions, SmartMotor, ChapDrive, ScanWind, Veritas, SWAY, Vestas, Oceanor, Devold, NTE, TrønderEnergi ++ Work packages: 1 Numerical design tools (including wind and hydrodynamics) 2 Energy conversion system (new materials for lightweight blades & generators) 3 Novel substructures (bottom-fixed and floaters) 4 Grid connection and system integration 5 Operation and maintenance 6 Concept validation, experiments and demonstration Total budget (8 years): + NOK 320 millions including 25 PhD/post docs Application granted by Research Council of Norway 4 February 2009 Slide 7 / 1-Sep-10

NORCOWE Norwegian Centre for Offshore Wind Energy Visjon kombinere norsk offshore-teknologi og dansk vind-energi-kompetanse Frambringe innovative og kostnadseffektive løsninger og teknologi for store vanndyp og krevende miljøtilstander til havs Budsjett 240 MNOK over 8 år Slide 8 / 1-Sep-10

Forskningspartnere Christian Michelsen Research (vert) Uni Research AS Universitetet i Agder Universitetet i Bergen Universitetet i Stavanger Aalborg Universitet Slide 9 / 1-Sep-10

Industripartnere Agder Energi AS Aker MH AS Lyse Produksjon AS National Oilwell Norway AS NorWind AS Origo Engineering AS Statkraft Development AS Statoil AS StormGeo AS Vestavind Offshore AS Slide 10 / 1-Sep-10

Forskningsområder 1. Vind og hav-forhold 2. Innovative konsepter 3. Marine operasjoner og vedlikehold 4. Optimalisering av vind-parker 5. Fellestema Utdanning Vurdering av miljøpåvirkning Testfasiliteter og infrastruktur Slide 11 / 1-Sep-10

Vind og hav-forhold (WP1) Klimatologi av meteorologi og havtilstand Modellering av det marine grenselag (MBL) Innovative konsepter (WP2) Dynamisk respons Innovative konsepter Komponent- og systemutvikling Slide 12 / 1-Sep-10

Marine operasjoner og vedlikehold (WP3) Asset management Kontrollsystem for enkelt-turbiner Fjernstyring Marine operasjoner Optimalisering av vindparker (WP4) Nowcasting Integrasjon i kraftsystemer Modellering av vindparker Slide 13 / 1-Sep-10

Fellestema Utdanning Vurdering av miljøpåvirkning Testfasiliteter og infrastruktur Slide 14 / 1-Sep-10

Senterorganisasjon Generalforsamling Alle partnerne Styret: 12 medlemmer. Styreleder: Hans Roar Sørheim,CMR Vitenskaplig komite Leder: Peter M Haugan, Universitetet i Bergen Komite for kommersialisering og innovasjon (CiC) Leder: Jan Pedersen, Agder Energi Senterleder Kristin Guldbrandsen Frøysa, CMR Administrasjonskoodinator Charlotte Gannefors Krafft, CMR Work Package 1 Leder: Idar Barstad, Uni Research Work Package 2 Leder: Asbjørn Stard, CMR Prototech Work Package 3 Leder: Ivar Langen, Universitetet i Stavanger Work Package 4 Leder: Trygve Skjold, CMR Gexcon Work Package 5 Leder: Joachim Reuder, Universitetet i Bergen Slide 15 / 1-Sep-10

En sterk klynge for norsk havvind Industrinettverk/arena ARENA Windcluster Mid-Norway ARENA NOW Norwegian Research Centre for Offshore Wind Technology NOWITECH NORCOWE Norwegian Centre for Offshore Wind Energy CEDREN Centre for Environmental Design of Renewable Energy Slide 16 / 1-Sep-10

NORCOWE WP2.1 Dynamisk analyse av offshore vindturbiner Målet er å evaluere og videreutvikle eksisterende numeriske verktøy for konstruksjonsanalyser av offshore vindturbiner. Involverte fagpersoner ved UiS: Prof. Jasna B. Jakobsen Prof. Jonas T. Snæbjörnsson PhD stud. Lene Eliassen Masterstudenter

NORCOWE WP2.1 Dynamisk analyse av offshore vindturbiner Fokuset er på aeroelastisk modellering (som inngår i aero-hydroservo-elastiske analyser), særlig på aerodynamikk av vindturbiner med vertikalakse. Illustrasjon, fra http://vertaxwind.com/ Fullskala vind- og responsmålinger (innen NORCOWE og i samarbeid med IRIS), planlegges for verifikasjon og kalibrering av numeriske modeller.

NORCOWE WP 2.3 Design Optimization of Offshore Wind Turbines Objective: Optimizing the design by treating the turbines, the floater, the station keeping system and control as an integrated system with strong interrelation between the disiplines. Key personel at UiS: prof Arnfinn Nergaard postdoc. NN Slide 19 / 1-Sep-10

Norway today From Smøla vindpark (Gunnar Iversen).to Hywind (Statoil)

Basically two types of Wind Turbines.. HAWTs VAWTs (Statoil) (Wikipedia)

HAWTs advantages Variable blade pitch, which gives the turbine blades the optimum angle of attack. Allowing the angle of attack to be remotely adjusted gives greater control, so the turbine collects the maximum amount of wind energy for the time of day and season. The tall tower base allows access to stronger wind in sites with wind shear. In some wind shear sites, the wind speed can increase by 20% and the power output by 34% for every 10 metres in elevation. High efficiency, since the blades always move perpendicular to the wind, receiving power through the whole rotation. In contrast, all vertical axis wind turbines, and most proposed airborne wind turbine designs, involve various types of reciprocating actions, requiring airfoil surfaces to backtrack against the wind for part of the cycle. Backtracking against the wind leads to inherently lower efficiency. The face of a horizontal axis blade is struck by the wind at a consistent angle regardless of the position in its rotation. This results in a consistent lateral wind loading over the course of a rotation, reducing vibration and audible noise coupled to the tower or mount. (Wikipedia)

VAWTs advantages A massive tower structure is less frequently used, as VAWTs are more frequently mounted with the lower bearing mounted near the ground. Designs without yaw mechanisms are possible with fixed pitch rotor designs. The generator of a VAWT can be located nearer the ground, making it easier to maintain the moving parts. VAWTs have lower wind startup speeds than HAWTs. Typically, they start creating electricity at 6 m.p.h. (10 km/h). VAWTs may be built at locations where taller structures are prohibited. VAWTs situated close to the ground can take advantage of locations where mesas, hilltops, ridgelines, and passes funnel the wind and increase wind velocity. VAWTs may have a lower noise signature. [citation needed] (Wikipedia)

By far more resources have been spent on developing HAWTs Carl Brothers, Atlantic Wind Test Site, Canada: The surface has not yet been scratched on the technical potential of VAWTs

Take a look at the Gyroscope Rotating masses behave strangely When exposed to external forces rotating masses behave even more strangely They tend to keep the direction of the rotating axis Precession is a strange merit of gyroscopes (Wikipedia)

Challenges of Ocean Wind Turbines - OWTs Complex dynamics Equipment exposure to offshore conditions Remoteness gwind addresses these with a new approach gwind. gyro stabilized ocean wind turbine Patent a. number 20091473

Merits of gwind gwind Suppressed motion Less dynamic forces Lower COG Lower wind forces Less exposure Omni directional Less/simpler maintenance Wildlife friendly. gyro stabilized ocean wind turbine

Features of the Gyroscope gwind A gyroscope will maintain the direction of the rotation axis if there are no external forces Rotating the rotational axis will require a higher moment than what would the dead inertia. This effect is being used to stabilize and neutralize effect of motion, eg gyro compasses Gyro forces can be of advantage, and can, on the other hand, be detrimental Applying a torque perpendicular to the rotational axis gives a motion perpenducular to the torque. This is precession. gyro stabilized ocean wind turbine

At the Outset of the new Era. Given a certain number of types of main elements yields a certain number of outcome combinations. The turbine - two types The floater - four types The station keeping - four types Gives more than 25 viable combinations! Thank You!

NORCOWE WP 3.1 Asset management 3.1.1 Integrity through systems perspective: Risk-based criteria. Supervisor: J.P. Liyanage, UiS Postdoc/visiting researcher from VTT, Finland Duration 2010-12 3.1.2 Remote diagnostics and prognostic platform by use of Watchdog technology Budget: 1000 knok Supervisor: J.P. Liyanage, UiS Postdoc/visiting researcher from IMS, Cincinnati, USA Duration 2010-12 Slide 30 / 1-Sep-10

WP3.1 Asset management 3.1.3 Strategies for integrated work management system and development of effective operational infrastructure. PhD- project Supervisor: J.P. Liyanage, UiS Duration August 2013- August 2016 3.1.4 Condition-Based Maintenance for Floating Offshore Wind Turbines Project manager: Geir Hovland UiA Resources: M.R. Hansen and M.K. Ebbesen UiA Duration 2009-12 Slide 31 / 17.12.2009

WP3.1 Asset management 3.1.5 Reliability analysis of wind turbines basis for O&M planning. PhD- project Supervisor: John D. Sørensen, AAU and Jonas Thor Sigbjörnsson, UiS Duration. 2010-2013 3.1.6 Measurement technology for asset management Project manager: Trygve Buanes, CMR Resources: CMR Instrumentation Budget: 2450 knok Duration 2009-13 3.1.7 Risk-based operation and maintenance of offshore wind farms. PhD- project Supervisor: John D. Sørensen, AAU and Jonas Thor Snæbjörnsson, UiS Duration. 2013-2015 Slide 32 / 17.12.2009

WP3.4 Marine operations 3.4.1 Marine Operations for Installation, Intervention and Decommissioning of Offshore Wind Turbines. PhD- project Supervisor: Ove T. Gudmestad, UiS Budget: 2890 knok Duration. 2010-2013 Deliveries 2010: Documentation of a new solution for installation and maintenance of fixed and floating wind turbine (UiS property) 2 conference or journal papers 3.4.2 Marine Operations for Fixed Offshore Wind Turbine Concepts Project manager: Geir Hovland, UiA Resources: Jørgen Jorde, NorWind Budget: 772 knok per Year Duration: 2010 Deliveries 2010: Survey paper Slide 33 / 17.12.2009

WP3.4 Marine operations 3.4.3 Heave Compensation During Installation and Intervention. Research and PhD- project Supervisor: Michael Rygaard Hansen, UiA Resources: Geir Hovland, Morten Kjeld Ebbesen and Hamid Reza Karimi Duration. 2010-2014 Slide 34 / 17.12.2009

Joint infrastructure applications EFOWI: Equipment for Offshore Wind Infrastructure NFR special call for FME infrastructure NORCOWE and NOWITECH Mainly plug and play instrumentation for a fast start-up 17 MNOK (ca. 2M ) approved Project ends 12/2010 NOWERI: Norwegian Offshore Wind Energy Infrastructure (82 MNOK, ca. 10 M ) NFR: national research infrastructure programme NORCOWE, NOWITECH and CEDREN Advanced platforms and instrumentation Funding of 45 MNOK approved Contract negotiations with NFR start on 10.06. Slide 35 / 1-Sep-10

NOWERI Vision: easily accessible Norwegian Wind Energy Research Infrastructure for the measurement of: a) the state of the atmospheric and oceanic boundary layer with focus on specific offshore conditions b) the resulting atmospheric and oceanic forcing on the foundation, tower and rotor structures for offshore wind energy production c) the effects of the forcing on the structures for strength and fatigue investigations d) the potential environmental impact of offshore wind installations Slide 36 / 1-Sep-10

Proposed NOWERI infrastructure Slide 37 / 1-Sep-10

OBLO Offshore Boundary Layer Observatory Observatory for the advanced characterization of all relevant atmospheric and oceanic parameters Measurement mast with top at around 100 m a.s.l; platform for additional instrumentation (e.g. lidar, sodar, avian radar, etc.) Additional buoy system for characterization of the waves and currents Dedicated both to basic and applied research on offshore wind energy Improvement of the understanding of the offshore marine boundary layers in atmosphere and ocean, e.g. wave atmosphere interactions turbulence structure Key for validation and improvement of corresponding models Basis for applied research on forcings and effects by colocation with FLEXWT Slide 38 / 1-Sep-10

FLEXWT Floating experimental wind turbine for research purposes (general problem of data confidentiality when industry is involved) Scaled (ca. 1:4; 250 kw) => faster and cheaper than full scale (as e.g. HyWind); more realistic than tank experiments testing and experimentation of various modifications of the plant, e.g. new control concepts, new components, etc. providing data for validating numerical tools for predicting the dynamic behaviour of the floating facility under wave, current and wind loads, e.g. floater motion and acceleration, structural loads and stresses, mooring line tension, etc., testing and experimentation with various sensors and measuring equipment for identification of improved O&M schemes Slide 39 / 1-Sep-10

HYWIND Main particulars Turbine power: 2.3 MW Turbine weight: 138 tons Draft hull: 100 m Nacelle height: 65 m Rotor diameter: 82.4 m Water depth: 150-700 m Displacement: 5300 t Mooring: 3 lines Diameter at water line: 6 m Diam. submerged body: 8.3 m Slide 40 / 1-Sep-10

IRIS testturbin IRIS har kjøpt en brukt Vestas V29 250kW turbin for forskningsformål. Tårnhøyde 31m. Rotordiameter 27m, Vekt 22.8 tonn Planlagt reist ved Risavika Gas Centre for samkjøring med gassturbin Reises nå ved Rosenberg verft Bygges om for test av Anglewinds gir konsept Instrumenteres for måling av vindlast og konstruksjonsrespons Slide 41 / 1-Sep-10

Demo Rogaland Lyse i samarbeid med Statoil og GE har fått konsesjon for et demonstrasjonsanlegg for offshore vindkraft utenfor Rennesøy, Kvitsøy eller Karmøy. Det gjelder 2 GE 4 turbiner med rotordiameter 110 m og navhøyde 85 m Slide 42 / 1-Sep-10

Experiences Slide 43 / 1-Sep-10

The same shown in the (frozen) video below: Hornslet failure On February 22nd, 2008, a 600kW wind turbine at Hornslet collapsed after the failure of the breaking system in strong wind, (photo, Valdemar Jørgensen) Slide 44 / 1-Sep-10

Offshore wind farm grout failure may cost 25 million Grout injected during the erection of offshore wind farms is breaking up, leading to concerns over their structural integrity, according to engineers at Scottish & Southern Energy. Industry figures believe 600 turbines at 13 wind farms could currently be affected, leading to repair bills estimated to be around the 25 million mark. For the time being, they are recommending monitoring of any movement and installing steel blocks on the T-piece brackets that support the structure. Meanwhile, the grout, which was initially classified with a safety factor of 3 has been reclassified for this type of design to 1 or below with the proviso that the larger the design structure, the less safe it is. The problem arises with current offshore wind farm designs that use a monopile construction, involving a hollow steel rod (typically 4m diameter, 45mm thick and weighing 300 tonnes for a 2MW turbine) driven into the sea bed to depths of 30 to 40 metres. (Plant Engineer 12.08.2010) Slide 45 / 1-Sep-10

Takk for oppmersomheten! Velkommen til: www.norcowe.no Slide 46 / 1-Sep-10