GRUNNLEGGENDE DIGITALTEKNIKK 4. Logiske Nivåer. 4. Logiske Grunnelementer. 4 OG (AND). 4 ELLER (OR). 4 NOG (NAND). 5 NELLER (NOR).



Like dokumenter
VEILEDNING TIL LABORATORIEØVELSE NR 4

TFE4101 Krets- og Digitalteknikk Høst 2016

EKSAMEN Emnekode: ITD13012

Løsningsforslag til 1. del av Del - EKSAMEN

Repetisjon digital-teknikk. teknikk,, INF2270

Dagens temaer. Architecture INF ! Dagens temaer hentes fra kapittel 3 i Computer Organisation and. ! Kort repetisjon fra forrige gang

Datamaskiner og operativsystemer =>Datamaskinorganisering og arkitektur

Emnenavn: Datateknikk. Eksamenstid: 3 timer. Faglærer: Robert Roppestad. består av 5 sider inklusiv denne forsiden, samt 1 vedleggside.

EKSAMEN (Del 1, høsten 2015)

Høgskoleni østfold EKSAMEN. Emnekode: Emne: ITD13012 Datateknikk (deleksamen 1, høstsemesteret) Dato: Eksamenstid: kl til kl.

Dagens temaer. Dagens temaer er hentet fra P&P kapittel 3. Motivet for å bruke binær representasjon. Boolsk algebra: Definisjoner og regler

Dagens temaer. Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture. Kort repetisjon fra forrige gang. Kombinatorisk logikk

Digitalstyring sammendrag

INF1400. Karnaughdiagram

Høgskoleni østfold EKSAMEN. Dato: Eksamenstid: kl til kl. 1200

TFE4101 Krets- og Digitalteknikk Høst 2016

EKSAMEN (Del 1, høsten 2014)

Potenser og tallsystemer

Forelesning 4. Binær adder m.m.

Potenser og tallsystemer

NY EKSAMEN Emnekode: ITD13012

Dagens temaer. temaer hentes fra kapittel 3 i Computer Organisation. av sekvensielle kretser. and Architecture. Tilstandsdiagram.

4 kombinatorisk logikk, løsning

Forelesning 6. Sekvensiell logikk

MIK 200 Anvendt signalbehandling, Lab. 5, brytere, lysdioder og logikk.

1. del av Del - EKSAMEN

Løsningsforslag til 1. del av Del - EKSAMEN

IN1020. Logiske porter om forenkling til ALU

VEILEDNING TIL LABORATORIEØVELSE NR 8

Løsningsforslag til regneøving 6. a) Bruk boolsk algebra til å forkorte følgende uttrykk [1] Fjerner 0 uttrykk, og får: [4]

Posisjonsystemet FRA A TIL Å

Dagens temaer. Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture. Sekvensiell logikk. Flip-flop er

Rapport. Lab 1. Absoluttverdikrets - portkretser

EKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK, LF DIGITALTEKNIKKDELEN AV EKSAMEN (VERSJON 1)

Dagens temaer. Dagens temaer hentes fra kapittel 3 i læreboken. Oppbygging av flip-flop er og latcher. Kort om 2-komplements form

En mengde andre typer som DVD, CD, FPGA, Flash, (E)PROM etc. (Kommer. Hukommelse finnes i mange varianter avhengig av hva de skal brukes til:

Dagens temaer. Sekvensiell logikk: Kretser med minne. D-flipflop: Forbedring av RS-latch

INF1400 Kap 1. Digital representasjon og digitale porter

Dagens temaer. Architecture INF ! Dagens temaer hentes fra kapittel 3 i Computer Organisation and

RAPPORT LAB 3 TERNING

ITPE2400/DATS2400: Datamaskinarkitektur

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK

UNIVERSITETET I OSLO

Datakonvertering. analog til digital og digital til analog

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Fredag 25. mai Tid. Kl LØSNINGSFORSLAG

Dagens tema. Dagens temaer hentes fra kapittel 3 i læreboken. Repetisjon, design av digitale kretser. Kort om 2-komplements form

Løsningsforslag INF1400 H04

Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK

Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK

UNIVERSITETET I OSLO

5 E, B (16) , 1011 (2) Danner grupper a' fire bit , (2) Danner grupper a' tre bit 1 3 6, 5 4 (8)

Monostabil multivibrator One shot genererer en enkelt puls med spesifisert varighet kretsen har en stabil tilstand

INF2270. Boolsk Algebra og kombinatorisk logikk

INF1400. Sekvensiell logikk del 1

INF1400. Sekvensiell logikk del 1

UNIVERSITETET I OSLO

Lab 5 Enkle logiske kretser - DTL og 74LS00

Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK

EKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK

7. Hvilket alternativ (A, B eller C) representerer hexadesimaltallet B737 (16) på oktal form?

Alle hele tall g > 1 kan være grunntall i et tallsystem.

Forelesning 3. Karnaughdiagram

EKSAMEN Løsningsforslag Emne: Fysikk og datateknikk

Modulo-regning. hvis a og b ikke er kongruente modulo m.

kl 12:00 - mandag 31. mars 2008 Odde: uke 11 (12. mars 2008) Utlevert: fredag 7. mars 2008 Like: uke 13 (26. mars 2008) Regneøving 4

Forelesning nr.10 INF 1411 Elektroniske systemer. Felteffekt-transistorer

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK

Oppgave Nr.og navn LABORATORIEØVELSE NR 6 Revidert utgave desember 2014 T. Lindem, K. Ø. Spildrejorde, M. Elvegård

I oppgave 1 skal det prøves ut en binærteller i en integrert krets (IC). Telleren som skal brukes er SN74HC393N, hvor

Forelesning nr.10 INF 1411 Elektroniske systemer

Datakonvertering. analog til digital og digital til analog

INF2270. Sekvensiell Logikk

IN1020. Sekvensiell Logikk

Digital representasjon

Hva gikk vi gjennom forrige uke? Omid Mirmotahari 3

ENKLE LOGISKE KRETSER

Løsningsforslag til regneøving 4

Dagens tema. Dagens tema hentes fra kapittel 3 i Computer Organisation and Architecture. Sekvensiell logikk. Flip-flop er. Tellere og registre

Tall. Posisjons-tallsystemer. Representasjon av heltall. Tall positive, negative heltall, flytende tall. Tekst ASCII, UNICODE XML, CSS

DIGITALE kretser og systemer

Resymé: I denne leksjonen blir de viktigste tallsystemer presentert. Det gjelder det binære, heksadesimale og desimale tallsystem.

Alle hele tall g > 1 kan være grunntall i et tallsystem.

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir =

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir =

UNIVERSITETET I OSLO.

Monostabil multivibrator One shot genererer en enkelt puls med spesifisert varighet kretsen har en stabil tilstand

Tallregning Vi på vindusrekka

Forelesning 5. Diverse komponenter/større system

Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Onsdag 15. august Tid. Kl LØSNINGSFORSLAG

Analog til digital omformer

Øving 7: Løsningsforslag (frivillig)

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Fredag 25. mai Tid. Kl LØSNINGSFORSLAG

ADDISJON FRA A TIL Å

Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK

Repetisjon. Sentrale temaer i kurset som er relevante for eksamen (Eksamen kan inneholde stoff som ikke er nevnt her)

FYS1210. Repetisjon 2 11/05/2015. Bipolar Junction Transistor (BJT)

Batteri. Lampe. Strømbryter. Magnetbryter. Motstand. Potensiometer. Fotomotstand. Kondensator. Lysdiode. Transistor NPN. Motor. Mikrofon.

Brukerveiledning for webapplikasjonen. Mathemateria Terje Kolderup

Diskret matematikk tirsdag 13. oktober 2015

INF1400 Kap4rest Kombinatorisk Logikk

Transkript:

GRUNNLEGGENDE DIGITALTEKNIKK 4 Logiske Nivåer. 4 Logiske Grunnelementer. 4 OG (AND). 4 ELLER (OR). 4 NOG (NAND). 5 NELLER (NOR). 5 Exklusiv ELLER (XOR). 5 Exklusiv NELLER (XNOR). 6 IKKE (NOT). 6 Invertering 7 Sannhetstabeller 8 Boolsk Algebra 9 De Morgans Theorem. 11 Karnaughdiagrammet 11 Fra sannhetstabell til uttrykk 13 Fra skjema til uttrykk 13 TALLSYSTEMER 14 Det binære tallsystem 14 Legge sammen to binære tall 15 To'ers komplement. 15 Oktal Tallsystem 16 HEXA desimalt tallsystem 17 LOGISKE ELEMENTER, FAMILIER 18 TTL Logikk 18 "Innmaten" i TTL-logikken. 19 C-MOS logikk 20 K. Øen -86 Side 1 av 52

VIPPER (FLIP-FLOP) 22 Monostabile vipper 22 Bistabil vippe. 23 DATA-vippe (D-vippe). 25 Pulsdiagram 25 J-K Vippe. 26 Tellere. 27 Asynkronteller 27 Synkronteller 28 Multiplekseren 29 De-Multiplekseren 30 Skiftregister. 32 Serie inn Serie ut 32 Serie inn Parallell ut 32 Universalregister 33 Kodere / Dekodere 34 BCD-Desimal dekodere 34 BCD/7-segmentdekoder 35 Oppkobling av tellere med sifferdisplay 36 Display dekoder/driver. 37 Aritmetriske kretser 38 Adderere 38 Halv-adderer 38 Full- adderer 38 Schmitt-Trigger 40 ØVINGSOPPGAVER 42 OPPGAVE 1.1 42 K. Øen -86 Side 2 av 52

APPENDIX 47 K. Øen -86 Side 3 av 52

Grunnleggende Digitalteknikk La oss aller først repetere noe av det du lærte på grunnkurset. Logiske Nivåer. Du husker sikkert hva vi mente med logiske nivåer. De betegnes,"l' og "0" eller kanskje "høy" og "lav" eller til og med "av" og på. Vi skal heretter betrakte en logisk "l" (høy) som en tilstand med en eller annen spenning, og logisk "0" (lav) som en tilstand uten spenning (0 volt). Logiske Grunnelementer. Som du sikkert husker, hadde vi 6 typer logiske elementer. Du husker sikkert best de 4 første, men vi skal ta for oss alle 6. OG (AND). Figur 1.1. Figur 1.1 viser logisk symbol for et OG-element i to forskjellige varianter. IEC, og Amerikansk. Vi skal tilstrebe å bruke IEC symbolene selv om de amerikanske symbolene finnes i de fleste databøker. Et OG-element må ha logisk "l" på alle innganger før utgangen får logisk "l'. Eller sagt på en annen måte: Det er nok at en av inngangene er logisk "0" for at utgangen skal bli logisk "0". Denne funksjonen kan vi uttrykke med et såkalt funksjonsuttrykk: A B=Q Vi bruker det matematiske gangetegn ( ) som tegn for OG. ELLER (OR). Figur l.2. Figur l.2 viser logisk symbol for et ELLER-element. Her er det nok at en av inngangene har logisk "l" for at utgangen skal få logisk "l". Vi kan også uttrykke dette på en annen måte: Alle K. Øen -86 Side 4 av 52

inngangene må være logisk "0" for at utgangen skal være logisk "0". ELLER-funksjonen har følgende funksjonsuttrykk: A+B=Q Her bruker vi det matematiske addisjonstegnet som tegn for ELLER-funksjonen. NOG (NAND). Figur l.3. Figur l.3 viser logisk symbol for et NOG-element. Vi velger å bruke den amerikanske betegnelsen NAND fordi den er lettere å bruke (vi tar det inn i det norske språk og kaller det for godt norsk!). Vi sammenligner med OG-elementet. I stedet for at utgangen blir logisk "l" ved OG, vil den ved NAND bli logisk "0" når alle inngangene er "1" Funksjonsuttrykk: A B=Q Streken over et uttrykk betyr at når funksjonen er oppfyllt, vil utgangen bli logisk "0". Vi kan også skrive dette uttrykket på en annen måte: A B=Q NELLER (NOR). Figur l.4. Figur l.4 viser logisk symbol for et NELLER-element. Også her velger vi å bruke den amerikanske betegnelsen NOR fordi den er enklere å bruke. Også her sammenligner vi med ELLER-elementet. I stedet for at utgangen blir logisk "l" ved ELLER, vil den ved NOR bli logisk "0" når en av inngangene er logisk "l". Eller sagt på en annen innlate: Alle inngangene må være logisk "0" før utgangen blir logisk "1". Funksjonsuttrykk: A+B=Q alternativt A+B=Q Exklusiv ELLER (XOR). K. Øen -86 Side 5 av 52

Dette er en spesialutgave av ELLER-elementet. Figur l.5. Figur l.5 viser logisk symbol for EXCLUSIVE ELLER-elementet. Dette elementet har den egenskapen at utgangen er logisk "l" når bare en av inngangene er logisk "l". Når mer enn en inngang (eller ingen) er logisk "l" samtidig, vil utgangen være logisk "0". Funksjonsuttrykk: A B=Q Vi bruker ring rundt addisjonstegnet for å indikere EXCLUSIVE ELLER. Exklusiv NELLER (XNOR). Figur l.6. Dette er det 6. og siste av de logiske elementene. Når bare en av inngangene er logisk "l", blir utgangen logisk "0". Alle andre tilstander gir logisk "l" på utgangen. Funksjonsuttrykk: Et slikt element med 2 innganger kalles også for en logisk komparator eller sammenligner. Den kan sammenligne to logiske nivåer. Dersom de er like, blir utgangen "l" og dersom de er ulike, blir utgangen "0" Til slutt skal vi ta for oss et element som ikke direkte er et logisk element, men som er ei viktig brikke i digitalteknikken. IKKE (NOT). K. Øen -86 Side 6 av 52

Figur l.7. Figur l.7 viser logisk symbol for IKKE-elementet. Dette har den egenskapen at utgangen alltid har den motsatte logiske tilstanden som inngangen. D.v.s logisk "0" på inngang - logisk "l" på utgang og "vise versa", logisk "l" på inngang gir logisk '0' på utgang. Funksjonsuttrykk: A=Q > alternativt > A=Q Invertering Vi kan tenke oss grunnfunksjonene OG og ELLER. Dersom vi henger på et IKKE-element på utgangen av disse, får vi tilsvarende NAND eller NOR. Invertering eller negering angis i Boolske uttrykk med en strek variabelen (variablene) som skal inverteres. Vi kan også ha to inverteringstegn over en variabel/uttrykk. Vi innfører da følgende regel: Når vi har to inverteringstegn etter hverandre er det det samme uttrykket kan vi stryke dem. Altså - dobbel invertering er ingen invertering. Dette beskrives også (kanskje litt utydelig) i regel 3a i figur 1.12. Vi må imidlertid ikke la oss lede til å sette likhetstegn mellom invertering over hvert uttrykk og invertering over hele uttrykket. Eksempel: A+B er ikke det samme som A+B I skjemasymbolene angis inverteringen med en ring. Også her kan vi sløyfe ringene dersom det er to ringer på samme utgang. Eks: Figur l.7a. Vi kan også sette inverteringstegnet på inngangen på et logisk element og på denne måten gjøre tegningen litt mer kompakt. Eks: Figur l.7b. I matematikken vet vi at dersom der ikke står noe regnetegn mellom to variabler eller uttrykk, vil vi oppfatte det som om der står gangetegn ( ). Det samme har vi i Boolsk Algebra. A B er altså det samme som AB. K. Øen -86 Side 7 av 52

Vi kommer for framtiden i stor utstrekning til å sløyfe OG-tegnet Sannhetstabeller For de logiske elementene opererer vi med såkalte sannhetstabeller eller funksjonstabeller. Du ser her sannhetstabellene for de fire hovedelementene i logikken med to innganger (A og B) Figur 1.8 Vi kan også operere med sannhetstabeller for sammensatte systemer Figur 1.9 Figur 1.9 viser prinsippet for en selvparkerende vindusvisker til en bil. Bryterene A, B og C er inngangssignaler til kretsen og F er utgangen som starter vindusviskermotoren. For å løse problemet logikken, må vi ha problemet klart for oss. Vi prøver nå å definere problemet ved hjelp av sannhetstabell. Når vi har 3 inngangsvariabler, så har vi 8 mulige kombinasjoner av innganger. Disse setter vi nå inn i en sannhetstabell Figur 1.10 K. Øen -86 Side 8 av 52

Figur 1.10 viser denne sannhetstabell og det tilhørende logiske skjema. Koblingen er her sammensatt av både IKKE, OG og ELLER-elementer. Funksjonsuttrykket for denne koblingen ser slik ut: Dette funksjonsuttrykket (og skjemaet) er unødig komplisert. Figur 1.11. Figur 1.11 viser et funksjonsuttrykk og logisk skjema som gjør samme jobben som det i figur 1.10. Digitalteknikken tilbyr flere måter å forenkle slike uttrykk på. En engelsk matematiker som hette George Boole fant en måte å forenkle logiske problemer. Denne teknikken kaller vi i dag for Boolsk Algebra. Vi skal nå se litt nærmere på denne forenklingsmetoden. Boolsk Algebra Boolsk Algebra er en form for matematikk. Noen av reglene i matematikk følges, mens andre ikke. La oss først slå fast at vi bare har to "regnetegn", nemlig pluss (+) og gange ( ). Plusstegnet betyr som vi før har nevnt ELLER og gange-tegnet betyr OG. Dette kan kanskje virke litt rart (+ burde vært OG i.flg. matematikken), men vi skal se at det er litt fornuft i det likevel. La oss ta et (vanskelig) eksempel på en forenkling: F. eks. Vindusviskeren vår. Her tillater matematikken at vi kan trekke fellesfaktorer utenfor en parantes. Vi trekker ut A og C invertert som felles faktor. Uttrykket blir da: Hva har vi oppnådd med dette? - ingenting vil du si. Ut fra regel nr XXX på side YYY ser vi at uttrykket i parantesen alltid blir "1". Dette utrykket kan vi da stryke. Uttrykket blir da: Vi ser videre at dersom vi anvender regel 6a i figur 1.12 vil vi kunne dele opp den siste parantesen i to paranteser. Uttrykket blir da: Vi kan da stryke den siste parantesen på samme måte som vi gjorde med den forrige parantesen. Vi får da sluttresultatet: Dette ligner mistenkelig på det uttrykket som vi hadde i figur 1.11 K. Øen -86 Side 9 av 52

Figur 1.12 viser ei liste over regneregler innen Boolsk Algebra. Vi skal ikke føre bevis for disse, men øve oss i å bruke dem riktig. Figur 1.12 Som vi var inne på i begynnelsen har vi flere måter å forenkle uttrykk på i digitalteknikken og flere regler som vi benytter. En matematiker med navn De Morgan fant ut en viktig regel som kalles De Morgans Theorem. K. Øen -86 Side 10 av 52

De Morgans Theorem. Vi kan tenke oss et sammensatt uttrykk av både OG og ELLER. Theoremet har 3 punkter: l. Inverter hvert enkelt uttrykk. 2. Bytt om alle fortegn. 3. Inverter hele uttrykket. La oss se på et eksempel: Vi inverterer hvert enkelt uttrykk. Vi skifter alle fortegn. Til slutt inverterer vi hele uttrykket. Ut fra denne regel kan vi finne at følgende er riktig: Dette betyr at vi kan gjøre om uttrykk fra ELLER-logikk til NAND-logikk eller fra OG-logikk til NOR-logikk og omvendt. Dette skal vi senere se at er svært nyttig. Karnaughdiagrammet Forenkling med Boolsk Algebra er den mest vanlige og Tiest logiske måten å forenkle uttrykk på. Det finnes imidlertid en annen og kraftigere måte å forenkle på - nemlig KARNAUGH diaqramnet. Det er gjerne litt mer komplisert å lære, men er desto raskere å bruke når man behersker den. Karnaugh-diagrammet er et rutediagram med ruter både vertikalt og horisontalt. Antall ruter er avhengig av hvor mange variabler vi har. To variabler gir 4 ruter (4 muligheter). Tre variabler gir 8 ruter (8 muligheter) o.s.v. Figur 1.14. Vi begynner med å vise et eksempel. Vi bruker den evindelige vindusviskeren vår igjen. Uttrykket kjenner du vel nå: Figur 1.14 viser et Karnaugh-diagram for 3 variabler (8 ruter). Du ser at vannrett har vi fire ruter som gir oss alle mulighetene for to av variablene. Det som er viktig å merke seg, er rekkefølgen vi setter opp nullerene og enerene etter hverandre. For hver posisjon vi flytter oss, forandrer vi BARE ett bit om gangen. Forandringen følger en kode som kalles: GREY-kode. Vi skal senere komme tilbake til GREY-koden. K. Øen -86 Side 11 av 52

Vi skal nå sette vindusviskeruttrykket inn i karnaugh-diagrammet vårt. Vi har nummerert rutene i fig. 1.14 og vi tar for oss del for del i uttrykket. Dette betyr at vi får "l" når A = "l", B = "0" og C = "0". Vi finner den ruten som gir denne kombinasjonen og setter inn en ener i denne ruten. Det blir rute nr. 2. Vi gjør det samme med det neste uttrykket. Det skulle bli rute nr. 3. Til slutt gjør du det samme med det siste uttrykket og vi får rute nr. 7. Når vi har tatt alle uttrykkene, setter vi "0" i alle tomme ruter. Vi har nå fatt et resultat som vist i figur 1.15. Figur 1.15. Vi skal nå begynne å "ringe inn" enerene våre, men her har vi regler. l. Vi kan bare ringe inn naboruter horisontalt og vertikalt. 2. Vi kan bare ringe inn l, 2, 4, 8 eller 16 ruter i hver ring. 3. Alle fire hjørnerutene er naboruter. 4. Øvre og nedre rute i samme kolonne er naboruter. 5. Høyre og venstre rute på samme linje er naboruter. Vi bygger videre på figur 1.15. Vi setter ring rundt enerene i rute 2 og 3 og så setter vi ring rundt enerene i rute 3 og 7. Her ser vi at vi har "ringet" inn 2 ruter (jmf. regel 2) i hver ring, en horisontalt og en vertikalt (jmf. regel l). Vi merker oss at vi kan ringe inn samme enere i flere ringer samtidig. Vi merker oss også at vi lager så store ringer som mulig uten å glemme reglene 1 og 2. Vi skal nå betrakte ringene hver for seg: Ringen i rute 2 og 3. Vi ser her at innen denne ringen at B er både "0" og "l". Dette betyr at uttrykket ikke er avhengig av B. Men vi ser at A er "l" i begge tilfellene. Altså er vi avhengig av at A må være "l". Vi ser videre at C må være "0" fordi hele ringen ligger på første linje. Altså uttrykket for denne ringen blir:. Vi tar så den neste ringen. Her ser vi at den ikke er avhengig av C fordi den dekker begge tilstander for C. Derimot er den avhengig av at både A og B er "l". Altså uttrykket for denne ringen blir: AB. Det endelige uttrykket blir da: Du ser kanskje ikke at dette er det samme uttrykket som det vi har i figur 1.11, men hvis du trekker ut A som felles faktor så ser du det straks. K. Øen -86 Side 12 av 52

Fra sannhetstabell til uttrykk Vi skal nå se på hvordan vi plukker ut et boolsk uttrykk fra en sannhetstabell. Vi skal her ta for oss sannhetstabellen for vindusviskeren vår i fig. 1.10. Vi rna' her velge om vi vil finne uttrykket for F eller F. Det mest vanlige er å velge den som gir det minste uttrykket. Hvordan finner vi så det ut? Jo - dersom vi ønsker -a' plukke ut F, så må vi se i rubrikken for F der hvor vi har logisk "l". vårt tilfelle er det de tre siste. Dette gir også det enkleste.uttrykket ettersom vi har ferrest enere. Vi tar for oss hver enkelt ener og ser at for den første er A=1 og B og C er begge "0". Dette gir følgende uttrykk: For den neste eneren får vi og den siste blir ABC. Mellom disse tre uttrykkene får vi ELLER-funksjon og det endelige uttrykket ser da slik ut: Vi ser her at dette er det samme uttrykket som vi hadde på side 6 Vi kunne selvfølgelig funnet uttrykket for større uttrykk, men med samme funksjonen. men da måtte vi brukt nullerene og vi ville da fått et Fra skjema til uttrykk På samme måte som vi kan gå fra sannhetstabell til uttrykk, kan vi gå fra logisk skjelna til uttrykk. Vi tar fram skjemaet for vindusviskeren vår igjen i figur 1.13. Her ser vi at denne gangen har vi satt på resultatene på hver av utgangene. Vi ser at en IKKE-funksjon for B og C gir og Det øverste OG-elementet har 3 innganger - fra A og og. Dette gir et utgangsresultat som er. De andre OG-elementene gir tilsvarende og. Mellom disse tre funksjonene er der en ELLER-funksjon. (dette ser vi ut fra ELLER-elementet til slutt). Det endelige uttrykket ser da slik ut: Dette er også det samme uttrykket som på side 6. K. Øen -86 Side 13 av 52

Tallsystemer Det binære tallsystem Som du vet, arbeider digitalteknikken med nullere og enere. Dette betyr at for at vi skal kunne bruke digitalteknikk i utregninger, må vi finne oss et tallsystem som bruker bare nullere og enere. Her kan det binære tallsystem brukes. Som i titallsystemet har vi et grunntall. Grunntallet i titallsystemet er 10 mens i det binære tallsystem er grunntallet 2. Derfor kalles også det binære tallsystem for TO-tallssystemet. La oss sammenligne med Ti-tallssystemet. F.eks. tallet 264: Dette tallet kan vi skrive som: 2 x 10 2 = 200 + 6 x 10 1 = 64 + 4 x 10 0 = 4 (et tall opphøyet i null'te potens er alltid lik 1) Sum 264 Sifferets posisjon i forhold til komma angir altså en bestemt potens av grunntallet 10. Slik er det også i det binære tallsystem. La oss ta et eksempel - det binære tallet 101. Dette tallet kan vi dele opp slik: 1 x 2 2 = 4 + 0 x 2 1 = 0 + 1 x 2 0 = 1 (et tall opphøyet i null'te potens er alltid lik 1) Sum 5 For hver plass mot venstre vi går, øker vi potensen av grunntallet med en. Ettersom dette er gjennomgått på grunnkurset, skal vi ikke bruke for mye tid på dette men bare repetere fremgangsmåten for omgjøring fra det ene tallsystem til det andre. La oss se på hvordan vi gjør om fra desimaltall til binærtall - tallet 23: Vi setter opp på følgende måte: 23 : 2 = 11 > rest 1 (LSB) 11 : 2 = 5 rest 1 5 : 2 = 2 rest 1 2 : 2 = 1 rest 0 1 : 2 = 0 rest 1 (MSB) Vi dividerer altså tallet med 2, tar vare på resten og dividerer svaret igjen på 2.Dette gjøres til svaret er null. Ut fra restene, setter vi sammen det binære tallet med den siste resten som den mest signifikante bit (MSB). Det binære tallet for dette eksempelet er: 10111 Hva mener vi så med betegnelsene MSB og LSB? MSB betyr Most Significant Bit og LSB tilvarende Least Significant Bit. Med andre ord - MSB betyr det bittet som har høyeste potens av 2 og LSB betyr det bittet som har laveste potens av 2. K. Øen -86 Side 14 av 52

Legge sammen to binære tall Et tallsystem bør kunne gjøre regneoperasjoner?ned. Det kan vi selvfølgelig gjøre ogs'a' med det binære tallsystelnet. Vi skal først se på hvordan vi legger sammen to binære tall. La oss legge sammen følgende tall: 11011 og 10101. 1 1 1 1 1 Menter 1 1 0 1 1 + 1 0 1 0 1 11 0 0 0 0 Vi legger sammen 1 + 1 og får 2, men siden vi ikke har tallet 2 i det binære tallsystemet, så får vi en i mente og 0 ned. Det samme skjer igjen inntil siste to bit 1 + 1 + mente gir 1 og en i mente. To'ers komplement. Vi har en spesiell måte å trekke et binært tall fra et annet. Vi setter opp det første tallet som vanlig, mens det andre tallet blir satt opp med tallets "to'ers komplement. Hva er så to'erskomplement. Jo, vi bytter om alle enere til nullere og alle nullere til enere og til slutt legger vi til en. Men la oss heller se på et eksempel: 110001-011100 --- > to'ers komplement --> 100011 + 1 Vi setter da opp regnestykket slik og legger sammen. 110001 + 100011 + 1 = 1010101 Den første eneren stryker vi, og vi sitter da igjen med svaret: 10101 Du bør nå gjøre disse tallene om til desimaltall og kontrollregne svaret. K. Øen -86 Side 15 av 52

Oktal Tallsystem Vi husker fra det desimale og det binære tallsystem at vi hadde et grunntall for hvert tallsystem. Grunntallet for desimalsystemet var 10 og for binærsystemet var grunntallet 2. På samme måte kan vi lage et hvilket som helst tallsystem ved a velge et annet grunntall. Dette har vi gjort i det Oktale tallsystem. Her er grunntallet 8. Oktalsystemet bruker sifrene fra 0-7. Sifrene 8 og 9 eksisterer ikke i oktalsystemet. La meg vise deg et eksempel på et oktaltall: tallet 247. (8 2 8 1 8 0 ) 2 4 7 Vi ser at det bygger på det samme prinsipp som de to tidligere tallsystemene. Posisjonen i forhold til komma bestemmer hvilken potens av 8 sifferet har. Vi skal nå gjøre dette tallet om til det tilsvarende desimale tall. 2 x 8 2 = 128 4 x 8 1 = 32 + 7 x 8 0 = 7 Sum 167 Du ser at det er det samme prinsippet som for binære tall. Hvorfor lager vi så disse tallsystemene og hva bruker vi de til. La oss først se litt på sammenhengen mellom binære tall og oktale tall. F. eks. tallet vårt 247. Her kan vi ta siffer for siffer å gjøre om til binærtall. (fordi tallet 8 er en potens av 2) og sette dem etter hverandre. Det binære tallet blir da: 2 4 7 010 100 111 Som du ser er oktale tall meget enkle å omforme til binære tall og dette er grunnen til at vi bruker dem. Du kommer vesentlig til å støte på dette tallsystemet når du skal lære PLS (Programmerbar Logisk Styring). Vi skal nå vise hvordan vi gjør om desimale tall til oktale. Det er samme prinsippet som for det binære tallsystemet. F. eks. 635 635 : 8 = 79 -> rest 3 (LSD) 79 : 8 = 9 -> rest 7 9 : 8 = 1 -> rest 1 1 : 8 = 0 -> rest 1 (MSD) Det oktale tallet skulle da bli: 1173. LSD står for "Least Significant Digit" og MSD står da selvfølgelig for "Most Significant Digit". I likhet med desimale og binære tall, kan vi også gjøre beregninger med disse tallene. Vi skal nå legge sammen de to oktale tallene: 3453 og 1173. 1 K. Øen -86 Side 16 av 52

3453 + 1173 = 4646 Vi legger først sammen 3 + 3 og får 6. Dette er ikke større enn 8 og vi fører det da ned uten mente. Vi legger så sammen 5 + 7 og får 12. Dette er større enn 8 og vi får da mente. Vi får 4 ned og en åtter i mente. Vi får altså mente når summen er større enn 7. HEXA desimalt tallsystem Vi har også et fjerde tallsystem innen digitalteknikken. Dette har grunntallet 16 og kalles HEXAdesimal tallsystem. Dette tallsystemet har sifrene fra 0 til 9 + bokstavene A til F. Den HEXAdesimale tallrekken ser da slik ut: 0 1 2 3 4 5 6 7 8 9 A B C D E F Altså 16 forskjellige siffer. La oss igjen se på et eksempel på et hexa-desimalt tall: C48F H La oss analysere dette tallet: 16 3 16 2 16 1 16 0 C 4 8 F Som vi ser er det samme forholdet mellom posisjon i forhold til komma og potens av grunntallet i HEXA som i de andre tallsystemene. Vi skal også her gjøre om tallet vårt til desimaltall. Vi setter da opp på samme måten som før: C =12: 12 x 16 3 = 49152 4 = 4 : 4 x 16 2 = 1024 8 = 8 : 8 x 16 1 = 128 F =15: 15 x 16 0 = 15 Sum 50319 Samme teknikken igjen - bare med et annet grunntall. Som du husket var grunntallet i oktaltallsystemet en potens av 2. Det er også grunntallet i HEXA systemet. Dette betyr at det er svært enkelt å omforme fra HEXA til binærtall. Vi trenger 4 binære siffer for å skrive tallet 15. Dette betyr at vi ved hjelp av 4 siffer kan beskrive alle tall fra og med 0 til og med 15. Hvert enkelt siffer i det HEXA-desimale tallet kan altså erstattes av et 4- bits binærtall. La oss da gjøre tallet vårt om til et binærtall: C 4 8 F 1100 0100 1000 1111 I vedlegg A finner du en omgjøringstabell for HEXA til Desimal og omvendt. K. Øen -86 Side 17 av 52

For ordens skyld skal vi vise hvordan vi gjør om fra desimal til HEXA (selv om jeg tror du kan tenke deg det). Vi velger oss et tall: 5643 Vi deler som vanlig på grunntallet og tar vare på resten. 5643 : 16 = 352 rest 11 = B (LSD) 352 : 16 = 22 rest 0 = 0 22 : 16 = 1 rest 6 = 6 1 : 16 = 0 rest 1 = 1 (MSD) Det HEXA-desimale tallet blir da: 1 6 0 B H Som du ser har vi nå satt på en index H som indikerer at dette er et HEXA-desimalt tall. Vi har tilsvarende indexer for de andre tallsystemene. For oktal-tall heter indexen O og for binærtall heter den B, og ingen index eller D betyr Desimaltall. Logiske elementer, Familier Vi skal i dette avsnittet se litt nærmere på noen av de viktigste typene av logiske elementer. De to mest brukte i dag er TTL-loqikk og C-MOS-Ioqikk. TTL Logikk TTL står for Transistor Transistor Logikk. Dette betyr at den har bipolare transistorer både på inngang og utgang. Det som karakteriserer TTL-elementene er bl.a. at de alltid har en forsyningsspenning på 5 volt ± 5%. De leveres i INTEGRERTE KRETSER med forskjellig antall pinner (vanligvis 14 eller 16). TTL-Iogikken er mer effekt-krevende enn C-MOS-logikken, men den er til gjengjeld vesentlig raskere (selv om C-MOS er blitt raskere med årene). TTL-logikken leveres også i flere utgaver alt etter behovet som skal dekkes. Normalutgaven er den billigste og betegnes: 74xx (Mil.std. 54xx) 74-tallet indikerer at det er TTL-logikk og xx er et to eller tresifret tall som forteller hvilken funksjon den har. 74Lxx Dette er laveffekt TTL-logikk. Den bruker mindre strøm enn normalutgaven, men er til gjengjeld tregere. L' en står for Low Power. 74Sxx Dette er spesielt rask logikk, men den bruker mer strøm enn normalutgaven. S' en står for Shottky (rask som et skudd). 74LSxx Dette er en kombinasjon mellom stor hastighet og lavt strømforbruk. Den er ikke så rask som S-versjonen og den bruker heller ikke så lite strøm som L-versjonen, men den gir et rimelig kompromiss. Det er denne typen logikk som brukes i de fleste datamaskiner som tilpasningslogikk. LS står for Low Power Shottky K. Øen -86 Side 18 av 52

I laboratorieøvingen kommer vi for det meste til å bruke standard logikk. Vi henviser ellers til databøker fra produsentene. Figur 1.16. Figur 1.16 viser noen eksempler på kapsling for integrert logikk. De aller fleste er kapslet i såkalte-dual In Line (forkortes DIL). Dette kommer av at pinnene i to parallelle rekker. Pinnene nummer eres i hesteskoform som vist i figur 1.17. De aller fleste integrerte kretser har et merke som forteller hvor pinne 1 er. Dette fremgår av figur 1.17. Finn deg en krets og finn ut hvor pinne 1 og pinne 8 er. Figur 1.17. "Innmaten" i TTL-logikken. TTL-logikken er som sagt oppbygget av transistorer sammen med tilhørende motstander og kondensatorer. Figur 1.18 viser skjelna for en standard TTL NAND element med to innganger. Vi merker oss inngangskomponenten Tl. Dette er en såkalt multieinittertransistor. Utgangstrinnet T3 og T4 er et såkalt Totem Poleutgang. Denne karakteriseres ved at den kan levere strøm ut og kan trekke strøm inn. Når T3 er stengt, er T4 åpen og strømmen kan gå fra Ucc til utgangen. Figur 1.18. K. Øen -86 Side 19 av 52

Vi skal nå se litt på virkemåten av dette skjemaet. Sannhetstabellen for NAND forteller oss at begge inngangene må være høye for at utgangen skal bli lav. Vi tar utgangspunkt i at begge innganger er høye (logisk "l"). Hva er da spenningen mellom bas og emitter på inngangstransistoren? Den blir 0 volt fordi både bas og emitter har full spenning. T1 er da stengt. Bas på T2 får da strøm gjennom bas-kollektor dioden på T1 som nå er forspendt i lederetningen. T2 er nå ledende og det er spenningsfarl'r3 som igjen gir basespenning til T3. T3 er da ledende og utgangsspenningen er tilnærmet lik 0 volt. Ettersom det går strøm gjennom T2, vil vi få et spenningsfall over R2 som gjør at basespenningen på T4 reduseres (T4 stenger). Vi har nå fått en såkalt -Push-Pull utgang hvor den ene transistoren er åpen når den andre er stengt. Det gir en nuller på utgangen når vi har to enere på inngangene. Dette stemmer med sannhetstabellen for et NAND-element. Men det er ikke fullstendig. Vi prøver oss med en "0" og en "1" på inngangene. Den ene emitteren blir da lagt til jord og vi får en transistorkobling med T1 i felles emitter-kobling med R1 som basemotstand og T2 som kollektorlast. T1 vil da være ledende og T2 vil miste sin basestrøm fordi bas/kollektor dioden (T1) er forspendt i sperreretningen. Dette fører da til at T2 og T3 sperrer og T4 leder. Utgangen blir da høy. Det samme vil skje dersom den andre inngangen (eller begge) er lave. Dette vil gi sannhetstabellen til et NAND. Det er imidlertid en viktig ting du må merke deg: Dersom du ikke kobler inngangene til verken høy eller.lav, vil inngangene legge seg høye. Intet inngangssignal er altså ikke en nuller. Figur 1.19. Figur 1.19 viser en annen type logisk element. Her har vi kuttet ut T4 (fra fig. 1.18). Denne koblingen kalles for Open Kollektor Her har vi ingen kontakt mellom utgangstransistoren og Ucc. Det fører til at vi ikke kan få en "l" på utgangen uten utvendig kobling. Hva er så vitsen med dette vil du spørre. Jo - vi kan koble utgangene sammen til felles Pull-up motstand uten å risikere kortslutning mellom utgangene. Vi kan ikke koble sammen flere utqanger med Totem-Pole utgang. Den stiplede motstanden i fig. 1.19 er den såkalte Pull-Up motstanden. Den er kollektorlast for utgangstransistoren. Vi skal senere se mer detaljert på hvordan man utnytter disse to egenskapene i praktisk bruk. C-MOS logikk C-MOS er en type logikk som er bygget opp med NMOS og PMOS transistorer. NMOS og PMOS er komplementære og derfor kalles de for Complementary_Metal Oxide Semiconductor. Derav navnet C-MOS. De logiske funksjonene er selvfølgelig de samme som for TTL, men vi har endel praktiske forskjeller. Forsyningsspenningen kan være hvilken som helst spenning mellom 3 og 18 volt. Effektforbruket er vesentlig lavere enn for TTL (ca 10 nw). Hastigheten er vesentlig lavere enn for TTL. K. Øen -86 Side 20 av 52

Grunnen til at C-MOS er så lite effektkrevende, er på grunn av den usedvanlig høye inngangsimpedansen for MOS-transistorene. Men dette har også noen negative sider. På grunn av den høye impedansen kan det bygge seg opp betydelige ladninger mellom gate og substratet på MOS-transistorene. Dette kan føre til store statiske spenninger som kan føre til overslag og ødeleggelse av kretsen. Derfor må C-MOS kretser behandles med omtanke og lagres på ledende materiale for å kortslutte pinnene. Dagens C-MOS er i stor utstrekning diodebeskyttet på inngangene slik at dette ikke er det samme problemet som det var, men vi skal likevel vise forsiktighet. Figur 1.20. Figur l.20 viser oppbygning og virkemåte for en N-MOS IKKE-port. K. Øen -86 Side 21 av 52

Vipper (Flip-Flop) En av de viktigste byggestenene i digitalteknikken er vippene. Det finnes 3 hovedtyper av vipper: Monostabil, Bistabil og Astabil Monostabile vipper Monostabile vipper er en fellesbetegnelse for vipper som bare har en stabil posisjon. Det kan være enten logisk 1 eller logisk 0. De kan tvinges ut av denne stabile posisjonen med et triggesignal. Typisk er da at de blir liggende i denne tvangsposisjonen en viss tid for så å legge seg tilbake i den stabile posisjonen. Et typisk eksempel er et lys som du slår på, og etter en viss tid slår det seg av selv. Figur 2.41 Figur 2.41 viser hvordan SN74121 skal kobles opp for å virke. Vi ser at vi har to eksterne komponenter som vi må koble til. C ext skal kobles mellom pinne 10 og 11. R ext skal kobles mellom pinne 9 og 14 (+5 volt). Pulslengden er da gitt ved formelen: t p = 0, 7 R ext C ext Vi ser videre at vi kan velge mellom flere muligheter for inngangssignaler. Pinnene 3, 4 og 5 er alle innganger. Ved å koble pinnene 3 og 4 til jord (0 volt), vil vi kunne trigge vippa med en positiv puls på pinne 5. Og på samme måten kan man ved å leggepinne 5 til +5 volt trigge vippa ved å legge en av inngangene 3 eller 4 til jord (0 volt). Dette gir oss mange triggemuligheter. Produsenten gir oss maksimale og minimale verdier for R ext og C ext. Verdiene for R ext er max. 40k og min. 1,4k. Ekstremalverdiene for C ext er max. 1000 µf og min 0 µf. Monostabile vipper i C-mos utførelse Det finnes også C-mos utgaver av den monostabile vippa. 4528 er en dobbel (dual) slik. Virkemåten er den samme som for TTL-utgaven. K. Øen -86 Side 22 av 52

Figur 2.42 viser en slik krets Figur 2.42 Bistabil vippe. Denne vippa har to stabile tilstander, enten "0" eller "1". Den kalles også for RS-vippe (set/reset). Den har to innganger og (vanligvis) to utganger. Utgangene heter og. Som du vet fra tidligere, er motsatt av. Inngangene heter S og R. S setter høy ( lav). R setter lav ( høy). Figur 2.1. Figur 2.1 viser skjemasymbol og funksjonsskjema for ei RS-vippe. Denne er bygget opp av 2 NOR-element. Karakteristisk for ei RS-vippe er at den "husker" hva den ble satt til. La oss prøve å sette opp en sannhetstabell for vippa i fig. 2.1. K. Øen -86 Side 23 av 52