Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes

Like dokumenter
Graphs similar to strongly regular graphs

Verifiable Secret-Sharing Schemes

Existence of resistance forms in some (non self-similar) fractal spaces

UNIVERSITETET I OSLO

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

Slope-Intercept Formula

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Dynamic Programming Longest Common Subsequence. Class 27

Trigonometric Substitution

Call function of two parameters

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2

Moving Objects. We need to move our objects in 3D space.

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ.

Disjoint Sets. Chapter 21. CPTR 430 Algorithms Disjoint Sets 1

SVM and Complementary Slackness

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Databases 1. Extended Relational Algebra

Level Set methods. Sandra Allaart-Bruin. Level Set methods p.1/24

IN2010: Algoritmer og Datastrukturer Series 2

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

Hvordan føre reiseregninger i Unit4 Business World Forfatter:

Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet.

Resolvable Mendelsohn Triple Systems with Equal Sized Holes F. E. Bennett Department of Mathematics Mount Saint Vincent University Halifax, Nova Scoti

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl.

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

TMA4240 Statistikk 2014

5 E Lesson: Solving Monohybrid Punnett Squares with Coding

Level-Rebuilt B-Trees

Oppgave. føden)? i tråd med

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN

Smart High-Side Power Switch BTS730

UNIVERSITETET I OSLO

INF5820 Natural Language Processing - NLP. H2009 Jan Tore Lønning

Administrasjon av postnummersystemet i Norge Post code administration in Norway. Frode Wold, Norway Post Nordic Address Forum, Iceland 5-6.

Continuity. Subtopics

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

TMA4240 Statistikk Høst 2013

Trust region methods: global/local convergence, approximate January methods 24, / 15

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Motzkin monoids. Micky East. York Semigroup University of York, 5 Aug, 2016

UNIVERSITETET I OSLO

Qi-Wu-Zhang model. 2D Chern insulator. León Martin. 19. November 2015

EKSAMENSOPPGAVE I FAG TKP 4105

Maple Basics. K. Cooper

Eksamensoppgave i TMA4265 Stokastiske prosesser

2018 ANNUAL SPONSORSHIP OPPORTUNITIES

Ma Linær Algebra og Geometri Øving 5

KROPPEN LEDER STRØM. Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal.

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Trådløsnett med. Wireless network. MacOSX 10.5 Leopard. with MacOSX 10.5 Leopard

Oppgåvesettet er på 3 sider med oppgåvene Engelsk omsetjing på sidene 4-6.

Evaluating Call-by-need on the Control Stack

Eksamensoppgave i TMA4265 Stokastiske Prosesser

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5)

Prosjektet Digital kontaktinformasjon og fullmakter for virksomheter Digital contact information and mandates for entities

Neural Network. Sensors Sorter

Splitting the differential Riccati equation

UNIVERSITETET I OSLO

MeijerG1. Notations. Primary definition. Traditional name. Traditional notation. Mathematica StandardForm notation. Generalized Meijer G-function

Ma Flerdimensjonal Analyse Øving 1

hygienehjelpemidler Spesialtilpassede hygienehjelpemidler -ALT er mulig

Estimating Peer Similarity using. Yuval Shavitt, Ela Weinsberg, Udi Weinsberg Tel-Aviv University

The Political Game of European Fisheries Management

Start Here USB *CC * *CC * USB USB

GYRO MED SYKKELHJUL. Forsøk å tippe og vri på hjulet. Hva kjenner du? Hvorfor oppfører hjulet seg slik, og hva er egentlig en gyro?

Unfoldable Self-Avoiding Walks

MA2501 Numerical methods

Fault Tolerant K-Center Problems

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Stationary Phase Monte Carlo Methods

Computing MP Distance Between Binary Phylogenetic Trees 575

TMA4329 Intro til vitensk. beregn. V2017

Ole Isak Eira Masters student Arctic agriculture and environmental management. University of Tromsø Sami University College

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt)

Second Order ODE's (2P) Young Won Lim 7/1/14

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Endelig ikke-røyker for Kvinner! (Norwegian Edition)

Løsningsforslag 2017 eksamen

melting ECMI Modelling week 2008 Modelling and simulation of ice/snow melting Sabrina Wandl - University of Linz Tuomo Mäki-Marttunen - Tampere UT

Den som gjør godt, er av Gud (Multilingual Edition)

EMPIC MEDICAL. Etterutdanningskurs flyleger 21. april Lars (Lasse) Holm Prosjektleder Telefon: E-post:

C13 Kokstad. Svar på spørsmål til kvalifikasjonsfasen. Answers to question in the pre-qualification phase For English: See page 4 and forward

TFY4170 Fysikk 2 Justin Wells

Tips for bruk av BVAS og VDI i oppfølging av pasienter med vaskulitt. Wenche Koldingsnes

Ma Flerdimensjonal Analyse Øving 6

Skjema for spørsmål og svar angående: Skuddbeskyttende skjold Saksnr TED: 2014/S

Exercise 1: Phase Splitter DC Operation

Information search for the research protocol in IIC/IID

1 Aksiomatisk definisjon av vanlige tallsystemer

Medisinsk statistikk, KLH3004 Dmf, NTNU Styrke- og utvalgsberegning

Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX)

EN Skriving for kommunikasjon og tenkning

Transkript:

Kneser hypergraphs Frédéric Meunier May 21th, 2015 CERMICS, Optimisation et Systèmes

Kneser hypergraphs m, l, r three integers s.t. m rl. Kneser hypergraph KG r (m, l): V (KG r (m, l)) = ( [m]) l { E(KG r (m, l)) = {A 1,..., A r } : A i ( [m]) l, Ai A j = for i j}

Chromatic number Theorem (Alon-Frankl-Lovász theorem) χ(kg r m r(l 1) (m, l)) = r 1 All proofs: if true for r 1 and r 2, then true for r 1 r 2. true when r is prime. Original proof for the case r prime: as for Lovász-Kneser conjecture, uses box complexes but Dold s theorem instead BU theorem.

A combinatorial proof Ziegler (2003) proposed a combinatorial proof via a Z p -Tucker s lemma. Assume p prime and KG p (m, l) properly colored with t colors. Z p = pth roots of unity With the help of coloring, build a map λ : (Z p {0}) m \ {0} Z p [t + pl 2] x (s(x), v(x) ) }{{}}{{} sign absolute value satisfying condition of a Z p-tucker lemma λ(ωx) = ωλ(x) for ω Z p condition on {λ(x 1 ),..., λ(x p )} when x 1 x p. Second point satisfied by coloring condition: no p adjacent vertices get the same color. Thus, (p 1)(t 1) + pl 1 m, i.e. t m p(l 1) p 1

Z p -Tucker lemma Lemma. Let α {0, 1,..., k}. If there exists λ : (Z p {0}) m \ {0} Z p [k] x (s(x), v(x)) such that λ(ωx) = ωλ(x) for ω Z p v(x) = v(y) α and x y = s(x) = s(y) v(x 1 ) = = v(x p ) α + 1 and x 1 x p = s(x i ) s not pairwise distinct, then m α + (k α)(p 1). Octahedral Tucker s lemma. Let λ : {+,, 0} m \ {0} {±1,..., ±k} s.t. λ( x) = λ(x) x y = λ(x) + λ(y) 0 Then m k.

Z p = {1, g, g 2,..., g p 1 }. 1 g g 2 g 3 g 4 1 g g 2 g 3 g 4 λ α (g 2, g, 0, g 3, g 3, g 2, g 2, 0, g 4 )

K = Z p Z p }{{} m times L = Z p Z p } {{ } α times Z p -Tucker: a proof p 1 p 1 }{{} k α times Lemma (Z p -Tucker lemma reformulation) If there exists λ : sd(k) Zp L, then m α + (k α)(p 1). Proof. Dold s theorem: connectivity(sd(k)) < dim(l). connectivity(sd(k)) = m 2 and dim(l) = α + (k α)(p 1) 1.

Ziegler s proof c : ( ) [m] l [t] proper coloring of KG p (m, l) with t colors. Extension for any U [m]: c(u) = max{c(a) : A U, A = l}. x ω = {i : x i = ω} λ(x) = (x a, x ) if x p(l 1) and a = min{i : x i 0} (ω, c(x ω ) + p(l 1)) if x p(l 1) + 1 and ω = arg max{c(x ω ) : ω Z p} α = p(l 1).

A Zig-zag theorem for Kneser hypergraphs Theorem (M. 2014) Let p be a prime number. Any proper coloring c of KG p (m, l) with t colors contains a complete p-uniform p-partite hypergraph with parts U 1,..., U p satisfying the following properties. It has m p(l 1) vertices. The values of U j differ by at most one. The vertices of U j get distinct colors. Generalizes Alon-Frankl-Lovász theorem and almost generalizes the Zig-zag theorem for Kneser graphs. Proof uses a Z p -Fan lemma due to Hanke, Sanyal, Schultz, Ziegler (2009), M. (2006)

Z p -Fan lemma Theorem Let be such that λ : (Z p {0}) m \ {0} Z p [k] x (s(x), v(x)) λ(ωx) = ωλ(x) for ω Z p v(x) = v(y) and x y = s(x) = s(y). Then there exists an m-chain x 1 x m such that λ({x 1,..., x m }) = {(s 1, v 1 ),..., (s m, v m )} with v 1 < < v m and s i s i+1 for i [m 1].

Local chromatic number of Kneser hypergraphs Let H = (V, E) be a uniform hypergraph. For X V, N [X] := X N (X). N (X) = {v : e E s.t. e \ X = {v}}. ψ(h) = min c max e E, v e c(n [e \ {v}]), where minimum taken over all proper colorings c. Consequence of the Zig-zag theorem for Kneser hypergraphs: Theorem ( ) ψ(kg p m p(l 1) m p(l 1) (m, l)) min + 1, p p 1 for any prime number p.

Hedetniemi s conjecture for Kneser hypergraphs Theorem (Hajiabolhassan-M. 2014) χ ( KG r (m, l) KG r (m, l ) ) = min ( χ ( KG r (m, l) ), χ ( KG r (m, l ) ))

Product of hypergraphs and Zhu s conjecture u 1 v 1 {u 1, u 2, u 3} E(G) {v 1, v 2, v 3, v 4} E(H) u 2 v 2 {(u 1, v 1), (u 1, v 2), (u 2, v 1), (u 3, v 3), (u 3, v 4)} E(G H) u 3 v 3 v 4 Let G, H be two hypergraphs. Categorical product G H: V (G H) = V (G) V (H) E(G H) = {e V (G H) : π G (e) E(G), π H (e) E(H)} Proper coloring of a hypergraph: no monochromatic edges. Zhu s conjecture (1992) χ(g H) = min(χ(g), χ(h))

Product of graphs vs of hypergraphs, and coloring Product of two graphs seen as hypergraphs: will have edges of cardinality 3 and 4. G H G H G H G H G H G H But the chromatic number does not depend of the definition of the product. G H Zhu s conjecture is a true generalization of Hedetniemi s conjecture.

New graphs for Hedetniemi s conjecture U 1,..., U s pairwise disjoint, l 1,..., l s integers B = { A ( ) } [n] : A U i l i k bases of the truncation of a partition matroid Proposition (Hajiabolhassan-M.) Graphs KG 2 (B) satisfy Hedetniemi s conjecture. Holds also if B is the set of spanning trees of some dense graph.

Thank you