Berry Phases of Boundary Gravitons

Like dokumenter
Qi-Wu-Zhang model. 2D Chern insulator. León Martin. 19. November 2015

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with.

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5)

Exam in Quantum Mechanics (phys201), 2010, Allowed: Calculator, standard formula book and up to 5 pages of own handwritten notes.

Ringvorlesung Biophysik 2016

Existence of resistance forms in some (non self-similar) fractal spaces

Oppgave 1. Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk EKSAMEN I: MNFFY 245 INNFØRING I KVANTEMEKANIKK

Graphs similar to strongly regular graphs

Lipschitz Metrics for Non-smooth evolutions

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)

Ma Flerdimensjonal Analyse Øving 2

Verifiable Secret-Sharing Schemes

TFY4170 Fysikk 2 Justin Wells

Generalization of age-structured models in theory and practice

Stationary Phase Monte Carlo Methods

Second Order ODE's (2P) Young Won Lim 7/1/14

Trust region methods: global/local convergence, approximate January methods 24, / 15

Lattice Simulations of Preheating. Gary Felder KITP February 2008

Databases 1. Extended Relational Algebra

SVM and Complementary Slackness

UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl.

Splitting the differential Riccati equation

melting ECMI Modelling week 2008 Modelling and simulation of ice/snow melting Sabrina Wandl - University of Linz Tuomo Mäki-Marttunen - Tampere UT

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F.

Slope-Intercept Formula

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 16. august 2008 kl

Løsningsforslag til eksamen i TFY4170 Fysikk 2 Fysikk 2 Lørdag 8. august 2005

Eksamen i FY3466 KVANTEFELTTEORI II Tirsdag 20. mai :00 13:00

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt)

Løsningsforslag til eksamen i SIF4022 Fysikk 2 Tirsdag 3. desember 2002

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK og FY2045 Kvantefysikk Tirsdag 13. desember 2005 kl

Perpetuum (im)mobile

GYRO MED SYKKELHJUL. Forsøk å tippe og vri på hjulet. Hva kjenner du? Hvorfor oppfører hjulet seg slik, og hva er egentlig en gyro?

A Benchmark of Selected Algorithmic. Machine Learning and Computer Vision

Eksamen i FY3452 GRAVITASJON OG KOSMOLOGI Lørdag 19. mai :00 13:00

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2

Exercise 1: Phase Splitter DC Operation

Neural Network. Sensors Sorter

Level Set methods. Sandra Allaart-Bruin. Level Set methods p.1/24

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN

Eksamen i TMA4190 Mangfoldigheter Onsdag 4 juni, Tid :

Ma Flerdimensjonal Analyse Øving 1

On time splitting for NLS in the semiclassical regime

Call function of two parameters

FYS2140 Kvantefysikk. Løsningsforslag for Oblig 7

Emneevaluering GEOV272 V17

Moving Objects. We need to move our objects in 3D space.

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes

Abstract. i x + a x +. a = (a x, a y ) z γ + 1 γ + z )

EN Skriving for kommunikasjon og tenkning

LØSNINGSFORSLAG TIL EKSAMEN I FY1002 BØLGEFYSIKK Mandag 10. desember 2007 kl

Trigonometric Substitution

Energy Dissipation in Hybrid Stars. Sophia Han. Washington University

Eksamensoppgave i FY8104 / FY3105 Symmetrigrupper i fysikken

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ÿ Œ œ ˆ ˆ Š Œ. .. ³μ. μ ± Ë ²Ó Ò Ö Ò Í É Å ˆˆ Ô± ³ É ²Ó μ Ë ±, μ, μ Ö Œ Œ ˆˆ 79 ˆ Š ˆ

PROBLEM 2 (40%) Consider electron-muon scattering e + µ e + µ. (a) Draw the lowest order Feynman diagram and compute M.

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Ma Flerdimensjonal Analyse Øving 11

Eksamen TFY 4210 Kvanteteorien for mangepartikkelsystem, våren 2012

EKSAMENSOPPGAVE I FAG TKP 4105

Geir Lieblein, IPV. På spor av fremragende utdanning NMBU, 7. oktober 2015 GL

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Solution to Exam 4. december 2010 FY2045/TFY4250 Quantum Mechanics I

5 E Lesson: Solving Monohybrid Punnett Squares with Coding

Im{ f (0)}. For which situations is the Born-approximation for

Asymptotic FOEL for the Heisenberg model on boxes

The regulation requires that everyone at NTNU shall have fire drills and fire prevention courses.

Eksamen i fag FY1004 Innføring i kvantemekanikk Fredag 30. mai 2008 Tid: a 0 = 4πǫ 0 h 2 /(e 2 m e ) = 5, m

KROPPEN LEDER STRØM. Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal.

Kap. 14 Mekaniske svingninger. 14. Mekaniske svingninger. Vi skal se på: Udempet harmonisk svingning. kap

Classical Mechanics and Electrodynamics

NORSK OG ENGELSK TEKST Side 1 av 10

UNIVERSITETET I OSLO

Løsningsforslag til eksamen i SIF4072 KLASSISK FELTTEORI Onsdag 28. mai 2003

On Capacity Planning for Minimum Vulnerability

Motzkin monoids. Micky East. York Semigroup University of York, 5 Aug, 2016

UNIVERSITETET I OSLO

Development of the Norwegian WFD classification system for eutrophication

The Effects of an Extended Neutrino Sphere on Supernova Neutrino Oscillations

PROBLEM 1 (20%) d L. L = Q j (1)

Smart High-Side Power Switch BTS730

Matematikk 4, ALM304V Løsningsforslag eksamen mars da 1 er arealet av en sirkel med radius 2. F = y x = t t r = t t v = r = t t

GEF2200 Atmosfærefysikk 2017

HARP-Hybrid Ad Hoc Routing Protocol

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23

Løsningsforslag, eksamen FY desember 2017

Eksamen i FY3452 GRAVITASJON OG KOSMOLOGI Lørdag 11. august :00 13:00

Eksamen i fag TFY4205 Kvantemekanikk II Torsdag 8. desember 2011 Tid:

Prising av ODINs egenforvaltede aksjefond 2013

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ.

stjerneponcho for voksne star poncho for grown ups

UNIVERSITETET I OSLO

2003/05-001: Dynamics / Dynamikk

UNIVERSITETET I OSLO

A Non-Metric Approach to Space, Time and Gravitation

EKSAMENSOPPGAVE I SØK3004 VIDEREGÅENDE MATEMATISK ANALYSE ADVANCED MATHEMATICS

Lie 2-Groups, Lie 2-Algebras, and Loop Groups

Transkript:

Berry Phases of Boundary Gravitons Blagoje Oblak (ETH Zurich) February 2018 Based on arxiv 1703.06142 (JHEP) Based on arxiv 1710.06883 (JHEP) Based on arxiv 1711.05753 (CQG)

MOTIVATION Gravity has rich asymptotic symmetries Virasoro for AdS 3 [Brown-Henneaux 1986] BMS for Minkowski [Bondi et al. 1962] Aspt symmetries act on space-time metric Boundary gravitons Observable quantities? Berry phases for loops in space of For definiteness : 3D gravity { metrics reference frames Generalize Thomas precession [Thomas 1926]

PLAN OF THE TALK 1. Berry phases in group reps 2. Virasoro Berry phases 3. Berry phases & asymptotic symmetries

1. Berry phases in group reps A. Berry phases B. Application to unitary reps

BERRY PHASES System with parameters p 1,..., p n Coordinates on manifold M Hamiltonian H(p) with p M Eigenvalue E(p), eigenvector φ(p) Adiabatic variation of parameters Path γ(t) in M Time-dependent Hamiltonian H(γ(t)) Solve Schrödinger with ψ(0) = φ(γ(0)) Adiabatic theorem : ψ(t) = e iθ(t) φ(γ(t))

BERRY PHASES T T θ(t) = dt E(γ(t)) + i dt φ(γ(t)) φ(γ(t)) 0 0 t }{{}}{{} Dynamical phase Geometric phase Due to parameter-dependence in φ( ) Independent of t parametrization Closed paths : γ(t) = γ(0) Berry phase : T B φ [γ] = i dt φ(γ(t)) φ(γ(t)) = i φ( ) d φ( ) 0 t γ }{{} Berry connection

BERRY PHASES & GROUPS Group G, algebra g Time translations = e tx for some X g Let U = unitary rep of G Evolution operator U[e tx ] = e t u[x] Hamiltonian H = i u[x] This relies on a choice of frame! Let f G be a change of frame Hamiltonian U[ f ]H U[ f ] 1 G space of parameters Berry phases?

BERRY PHASES & GROUPS Let φ = eigenstate of H Let f (t) = closed path in G States U[ f (t)] φ Berry phase : B φ [ f ] = i dt φ U[ f (t)] t U[ f (t)] φ = i dt φ u[ f 1 ḟ ] φ Maurer-Cartan form Note : Berry phase vanishes for f (t) in stabilizer of φ Parameter space is G/G φ

BERRY PHASES & GROUPS Example : G = SU(2), highest-weight state j Parameter space = SU(2)/S 1 = S 2 Closed path f (t) SU(2) Berry phase = j (enclosed area) How does this work for Virasoro?

2. Virasoro Berry phases A. Maurer-Cartan form of Diff S 1 B. Maurer-Cartan form of Virasoro C. Berry phases

DIFF S 1 Diff S 1 = group of circle diffeos Half of 2D conformal group Elements are fcts f (ϕ) with f (ϕ + 2π) = f (ϕ) + 2π and f (ϕ) > 0 Group operation is composition : ( f g ) (ϕ) = f ( g(ϕ) ) = ( f g ) (ϕ) Infinite-dimensional Lie group Lie algebra = Vect S 1 = Witt algebra l m e imϕ ϕ

DIFF S 1 Examples : Rotations f (ϕ) = ϕ + θ Boosts :Text e i f (ϕ) = e iϕ cosh(λ/2) + sinh(λ/2) e iϕ sinh(λ/2) + cosh(λ/2) λ = rapidity

DIFF S 1 Examples : Rotations f (ϕ) = ϕ + θ Superboosts : e in f (ϕ) = e inϕ cosh(λ/2) + sinh(λ/2) e inϕ sinh(λ/2) + cosh(λ/2) λ = rapidity

DIFF S 1 Maurer-Cartan form? Let f (t) = path in G Derivative ḟ (t) = τ f (τ) τ=t is tangent vector at f (t) f 1 ḟ = ( f (t) 1 τ=t f (τ)) τ g For Diff S 1 : path f (t, ϕ) ( f 1 ḟ ) (t, ϕ) = τ ( f 1( t, f (τ, ϕ) )) = ḟ (t, ϕ) f (t, ϕ)

VIRASORO Virasoro group = Central extension of Diff S 1 = Diff S 1 R Lie algebra = Vect S 1 R = Virasoro algebra Extra central entry in Maurer-Cartan form : ( f 1 ḟ ) Virasoro = ( ḟ f ϕ, 1 48π 2π 0 dϕ ḟ ( ) ) f f f We can compute Berry phases! [Alekseev-Shatashvili, Rai-Rodgers 1989]

BERRY PHASES Berry : B φ [ f ] = i dt φ u[ f 1ḟ ] φ Apply this to Virasoro! Central charge c Highest weight h : u[l 0 ] h = h h u[l n ] h = 0 if n > 0 Take φ = h Take f (t, ϕ) closed path Berry phase B h,c [ f (t, ϕ)]?

BERRY PHASES Berry : B h,c [ f ] = i dt h u[ f 1ḟ ] h Maurer-Cartan : f 1ḟ ( = ḟ 1 ḟ ( f ) ) f ϕ, 48π dϕ f f i i [( ḟ dt h u )] f ϕ, 0 h = h c/24 dt dϕ ḟ 2π f dt dϕ ḟ ( f f f [( dt h u 0, ḟ ( f ) )] f f h = c 48π B h,c [ f ] = 1 dt dϕ ḟ [ 2π f h c 24 + c 24 ( ) f ] f )

BERRY PHASES B h,c [ f ] = 1 dt dϕ ḟ [ 2π f h c 24 + c 24 ( ) f ] f Actual parameter space is G/G φ = Diff S 1 /G h Stabilizer of h : U(1) or SL(2, R) Diff S 1 /S 1 or Diff S 1 / SL(2, R) Coadjoint orbits of Virasoro Berry phase = symplectic flux

BERRY PHASES Circular path f (t, ϕ) = g(ϕ) + ωt Closes at t = 2π/ω Berry phase : [ dϕ B h,c [ f ] = g h c 24 + c 24 ( g g ) ] ( + 2π h c ) 24

3. Berry phases & asymptotic symmetries A. Berry phases in AdS 3 B. Berry phases in flat space

BERRY PHASES IN ADS 3 AdS 3 space-time Infinity = time-like cylinder Light-cone coordinates x ± = t l ± ϕ Include gravity Asymptotic symmetries : Diff S 1 Diff S 1 [Brown-Henneaux 1986] (x +, x ) ( f (x + ), f (x ) )

BERRY PHASES IN ADS 3 On-shell AdS 3 metrics : ds 2 = l2 ( r 2 dr2 rdx + 4Gl r (T, T) = CFT stress tensor Pure AdS 3 : T = T = c/24 Aspt symmetry tsfs : ( f T ) ( f (x + )) = T(x )dx )( rdx 4Gl r T(x+ )dx +) c = 3l 2G 1 [ ( f (x + )) 2 T(x + ) + c ] 12 { f ; x+ } Boundary gravitons around (T, T) : { ( O T, T = f T, f T) f, f } Diff S 1

BERRY PHASES IN ADS 3 UIRREP of Diff S 1 Diff S 1 with weights h, h Particle dressed with bdry gravitons Berry phases appear when particles undergo cyclic changes of frames : B total = B h,c [ f ] + B h, c [ f ] Symplectic fluxes of bdry gravitons Space-time interpretation? Let s turn to Minkowskian gravity!

BERRY PHASES IN FLAT SPACE 3D Minkowski space-time Future null infinity Bondi coordinates ϕ, u Aspt symmetries : BMS 3 = Diff S 1 Vect S 1 ϕ f (ϕ) superrotations u u + α(ϕ) supertranslations Conformal tsfs of celestial circles

BERRY PHASES IN FLAT SPACE BMS 3 UIRREPs = dressed particles in flat space Labelled by mass and spin [Barnich-B.O. 2014] Quantum states = wavefcts in supermomentum space dual to supertranslations Rest-frame state φ Consider a closed path ( f (t), α(t)) in BMS 3 superrotations supertranslations States U[( f (t), α(t))] φ Berry phases?

BERRY PHASES IN FLAT SPACE Path f (t) without supertranslations dt dϕ B spin = 2π [ ḟ f s c 24 + c ( f ) ] 24 f c 0 iff parity is broken Identical to Virasoro phase Bulk interpretation?

BERRY PHASES IN FLAT SPACE Circular path f (t, ϕ) = g(ϕ) + ωt Take g = boost Berry phase : B = 2π s (cosh λ 1) Thomas precession! [Thomas 1926]

BERRY PHASES IN FLAT SPACE Circular path f (t, ϕ) = g(ϕ) + ωt Take g = superboost Berry phase : ( B = 2π s + c ) 24 (n2 1) (cosh λ 1) Thomas precession for dressed particles [B.O. 2017]

BERRY PHASES IN FLAT SPACE Paths with supertranslations : B scalar = dt dϕ 2π α f f [ M 1 8G + 1 4G { f ; ϕ} ] [B.O. 2017] Involves Planck mass Non-zero even when M = 0! Total Berry phase = B spin + B scalar [B.O. 2017] 2

Conclusion

CONCLUSION Recap : Berry phases occur in all unitary reps For Virasoro / BMS 3 : Berry connections on -diml coadjoint orbits Berry phases can be computed explicitly! What now? Extend Thomas precession Relation to memory effect? Appearance in KdV equation? In shallow water? Observable in quantum Hall effect? [with P. Mao] [with T. Neupert & F. Schindler]

Thank you for listening!