Analog til digital omformer

Like dokumenter
Datakonvertering. analog til digital og digital til analog

Den analoge verden blir digitalisert

Datakonvertering. analog til digital og digital til analog

Forelesning nr.13 INF 1411 Elektroniske systemer

Eivind, ED0 Ingeniørfaglig yrkesutøvelse og arbeidsmetoder Individuell fremføring

FYS1210 Løsningsforslag. Eksamen V2015

består av 7 sider inklusiv denne forsiden og vedlegg. Kontroller at oppgaven er komplett før du begynner å besvare spørsmålene.

Organisering og ledelse av hardware-utvikling

INF1400 Kap 0 Digitalteknikk

Laboratorieoppgave 3: Motstandsnettverk og innføring i Oscilloskop

Datakonvertering. analog til digital og digital til analog

UNIVERSITETET I OSLO.

Forelesning nr.13 INF 1411 Elektroniske systemer. Sensorer AD og DA-konvertering

Forelesning nr.13 INF 1411 Elektroniske systemer. Sensorer AD og DA-konvertering

Lab 6 Klokkegenerator, tellerkretser og digital-analog omformer

Forslag B til løsning på eksamen FYS august 2004

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

unngår å bruke meget avanserte og kostbare forsterkere og komponeriter. Dermed slipper man fra bl.a. problemer

Fakultet for teknologi, kunst og design Teknologiske fag

EKSAMEN Løsningsforslag Emne: Fysikk og datateknikk

EKSAMEN. Informasjon om eksamen. Emnekode og -navn: ITD13012 Datateknikk. Dato og tid: timer. Fagansvarlig: Robert Roppestad

Emnenavn: Datateknikk. Eksamenstid: 3 timer. Faglærere: Robert Roppestad. Hele oppgavesettet består av 8 oppgaver, samt 1 vedlegg.

Fasit og sensorveiledning eksamen INF1411 våren Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) A) B) Figur 1

Dagens temaer. Architecture INF ! Dagens temaer hentes fra kapittel 3 i Computer Organisation and

Fakultet for teknologi, kunst og design Teknologiske fag

En mengde andre typer som DVD, CD, FPGA, Flash, (E)PROM etc. (Kommer. Hukommelse finnes i mange varianter avhengig av hva de skal brukes til:

FYS1210 Løsningsforslag Eksamen V2015

Fasit og sensorveiledning eksamen INF1411 våren Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) A) B) Figur 1

Forelesning nr.6 INF Operasjonsforsterker Fysiske karakteristikker og praktiske anvendelser

Dagens temaer. temaer hentes fra kapittel 3 i Computer Organisation. av sekvensielle kretser. and Architecture. Tilstandsdiagram.

Angivelse av usikkerhet i måleinstrumenter og beregning av total usikkerhet ved målinger.

Forelesning nr.11 INF 1411 Elektroniske systemer

Monostabil multivibrator One shot genererer en enkelt puls med spesifisert varighet kretsen har en stabil tilstand

VEILEDNING TIL LABORATORIEØVELSE NR 8

Forelesning 4. Binær adder m.m.

FYS1210 Løsningsforslag Eksamen V2017

Løsningsforslag til EKSAMEN

Dagens temaer. Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture. Sekvensiell logikk. Flip-flop er

Analog til digital omforming

1. del av Del - EKSAMEN

Monostabil multivibrator One shot genererer en enkelt puls med spesifisert varighet kretsen har en stabil tilstand

UNIVERSITETET I OSLO

Reelle tall på datamaskin

UNIVERSITETET I OSLO

I oppgave 2 og 3 brukes det R 2R nettverk i kretsene. Det anbefales å gjøre denne forberedelsen før gjennomføring av Lab 8.

I oppgave 1 skal det prøves ut en binærteller i en integrert krets (IC). Telleren som skal brukes er SN74HC393N, hvor

Eksamensoppgaven: Hele oppgavesettet består av 8 oppgaver. Hver oppgave har en %-angivelse som angir hvor mye den teller ved sensurering.

Dagens temaer. Dagens temaer er hentet fra P&P kapittel 3. Motivet for å bruke binær representasjon. Boolsk algebra: Definisjoner og regler

UNIVERSITETET I OSLO.

EKSAMEN (Del 1, høsten 2015)

Av denne ligningen ser vi at det bare er spenning over spolen når strømmen i spolen endrer seg.

MAT1030 Diskret Matematikk

Forelesning 29: Kompleksitetsteori

Treleder kopling - Tredleder kopling fordeler lednings resistansen i spenningsdeleren slik at de til en vis grad kanselerer hverandre.

Løsningsforslag til EKSAMEN

NY EKSAMEN Emnekode: ITD13012

Forslag til løsning på eksamen i FYS1210 våren 2005 side 1. Fig.1 viser et nettverk med to 9 volt batterier og 4 motstander, - alle på 1kΩ.

Forelesning nr.4 INF 1411 Elektroniske systemer

Forslag til løsning på Eksamen FYS1210 våren 2008

Dagens temaer. Sekvensiell logikk: Kretser med minne. D-flipflop: Forbedring av RS-latch

Emnenavn: Datateknikk. Eksamenstid: 3 timer. Faglærer: Robert Roppestad. består av 5 sider inklusiv denne forsiden, samt 1 vedleggside.

Oppgave 1. Komponenter i en målesløyfe: Hva er og hva gjør enhetene: 1,2,3,4 og 5? Oppgave 2

INF1400. Kombinatorisk Logikk

Høgskoleni østfold EKSAMEN. Oppgavesettet består av 8 sider inklusiv denne forsiden og vedlegg.

Norges teknisk-naturvitenskapelige universitet Institutt for Kjemi

INF1400. Kombinatorisk Logikk

En sensor er en komponent som mottar et signal eller stimulering og som svarer med et elektrisk signal.

EKSAMEN Løsningsforslag

1 Innledning. 2 Virkemåte for kortet. Bli kjent med USB I/O kort K8055. NB! Ta med multimeter og lite skrujern!

EKSAMEN Emnekode: ITD13012

IN1060: Bruksorientert design

INF1510: Bruksorientert design

ORIENTERING OM LABORATORIEØVELSER I FYS1210

UNIVERSITETET I OSLO

Forelesning nr.7 INF 1411 Elektroniske systemer. Tidsrespons til reaktive kretser Integrasjon og derivasjon med RC-krester

Kalibreringen av transmittere.

Forelesning nr.10 INF 1411 Elektroniske systemer

Forelesning nr.10 INF 1411 Elektroniske systemer. Felteffekt-transistorer

Fakultet for teknologi, kunst og design Teknologiske fag

INF1411 Obligatorisk oppgave nr. 3

Dagens tema. Dagens tema hentes fra kapittel 3 i Computer Organisation and Architecture. Sekvensiell logikk. Flip-flop er. Tellere og registre

WORKSHOP BRUK AV SENSORTEKNOLOGI

Modul nr Elektriske kretser

John Arne Lerum ABB

INF1040 Digital representasjon

INF1411 Oblig nr. 4 Vår 2011

«OPERASJONSFORSTERKERE»

Lab 7 Operasjonsforsterkere

Elevverksted Elektronikk Bruk av transistor som bryter

Oppgave Nr.og navn LABORATORIEØVELSE NR 6 Revidert utgave desember 2014 T. Lindem, K. Ø. Spildrejorde, M. Elvegård

Eksamen. 22. mai DAT3002 Apparat og utstyr. Programområde: Dataelektronikerfaget. Nynorsk/Bokmål

LAB 7: Operasjonsforsterkere

EKSAMEN. Emne: Fysikk og datateknikk

Husk å registrer deg på emnets hjemmeside!

Løsningsforslag til 1. del av Del - EKSAMEN

Oppgave 1 (30%) a) De to nettverkene gitt nedenfor skal forenkles. Betrakt hvert av nettverkene inn på klemmene:

Fakultet for teknologi, kunst og design Teknologiske fag

Transkript:

A/D-omformer Julian Tobias Venstad ED-0 Analog til digital omformer (Engelsk: Analog to Digital Converter, ADC) Forside En rask innføring.

Innholdsfortegnelse Forside 1 Innholdsfortegnelse 2 1. Introduksjon 3 1.2 Hensikt 3 1.3 Digitalisering 3 2. Analogt signal 3 3. Oppløsning 4 3.1 Bits 4 3.2 Utregninger 5 3.2.1 Hvor mange mulige verdier har n bit? 5 3.2.2 Hvor stor endring vil det være per diskret verdi? Maks verdi2n-1=endring per nivå5000 mv28-1=19.608 mv per nivå 5 3.2.3 Hva er den tilhørende digitale verdien til en analog verdi? 5 4. Støy 6 5. Simpel A/D-omformer 7 6. Flash ADC 8 7. Suksessiv tilnærming 9 8. Single Slope ADC 10 9. Kilder 10 9.1 Nettsider 10 Side 2

1. Introduksjon A/D omformer kommer vanligvis i form av en integrert krets. En integrert krets er en brikke av et halvledermateriale, som oftest silisium, som inneholder en fullstendig elektronisk krets. Brikkene er som regel ikke større enn 2.5 cm 2. I en slik krets består i all hovedsak av svært mange transistorer. En transistor er en elektronisk komponent som kan bli brukt som en forsterker, eller som en bryter. 1.2 Hensikt Hensikten med en A/D-omformer er å omgjøre analoge elektriske signaler til digitale signaler. 1.3 Digitalisering Det digitale signalet er et tall representert med et antall binære siffer. Et binært siffer, en bit, er et siffer i to-tallsystemet, det vil si 0 eller 1. En bit er en enhet for informasjon. Bits håndteres somregel i mengder på 2n. Det kontinuerlige analoge signalet må avleses med like lange tidsintervaller, og gjøres om til digitale verdier. Det digitale signalet må avrundes til nærmeste hele tall. 2. Analogt signal Analog-digital-omformere tas vanligvis i bruk for å motta analoge signaler fra forskjellige signalgivere som termometer, mikrofoner, trykkmålere eller andre apparater som avgir en spenning, og gjør disse om til digitale verdier. Disse verdiene kan så videre gjennomgå signalbehandling i digitale systemer som datamaskiner, måleinstrumenter eller annet digitalt utstyr. Digital signalbehandling er matematiske operasjoner utført på digitale signaler i en PC. Teknikken kan brukes på all typer digitaliserte signaler, enten det er målesignaler, lydsignaler eller billedinformasjon. En mikroprosessor kalt en signalprosessor er spesielt designet for å utføre signalbehandling. På figuren ser vi et eksempel av et analogt signal og dens digitale motpart. Den digitale verdien måles med et fast intervall. I dette tilfellet kan signalet måles i intervallet [0, 10]. Bildet viser et analogt signal og dens digitale representasjon Side 3

3. Oppløsning På bildet til høyre ser vi et analogt signal gitt ved rød kurve og digitalt signal gitt ved blå «trappetrinn». Trappetrinnene kommer av at den digitale verdien har en lav oppløsning. Ved høyere oppløsning vil trappetrinnenes høyde være mindre. Høy samplingsrate vil gi kortere trappetrinn i lengde. Bildet viser en digitalverdi med 2 bit. 3.1 Bits Oppløsningen til en omformer er gitt ved dens bit-verdi. Vanlige oppløsninger er 8, 16 og 24 bit. Signalet ligger imellom 0 og 5V Bit Nivåer Endring per nivå 8 256 19.608 mv 16 65536 0.0763 mv 24 16777216 0.0003 mv Tabellen over viser at endringen per nivå synker omvendt proporsjonalt med bit-størrelsen. Side 4

3.2 Utregninger 3.2.1 Hvor mange mulige verdier har n bit? Eksempel med en 8 bit omformer: Der n er oppløsningen til omformeren gitt i bit. 2 n = antallet nivåer 2 8 = 256 De 256 nivåene ligger i intervallet [0,255] 3.2.2 Hvor stor endring vil det være per diskret verdi? M aks verdi = endring per nivå n 2 1 5000 mv = 19.608 mv per nivå 8 2 1 3.2.3 Hva er den tilhørende digitale verdien til en analog verdi? Oppløsning til ADC ADC V erdi Systemets Spenning = Målt analog spenning 1023 5.00V = ADC V erdi Målt analog spenning 1023 5.00V * 2.12V = A DC V erdi A DC V erdi = 434 Side 5

4. Støy Indusert spenning, støy, vil forekomme i en vilkårlig krets på grunn av elektromagnetisk stråling. Støy vil kunne påvirke dine avlesninger. Dersom oppløsningen din er høy vil støyen kunne påvirke avlest signal. Støyen vil ha mindre innvirkning dersom dens størrelsesorden er liten i forhold til intervallet du operer i. Ideelt sett ønsker man at en slik støy ikke skal påvirke avlesningen din. Dersom støyen ligger i store deler av intervallet ditt vil du ikke kunne gjøre gode avlesninger. Vi ønsker at våre omformere skal være så nøyaktige og presise som mulig. Dette er oppnådd dersom én analog verdi er representert av én diskret, digital verdi. Målingene må være repeterbare og gi samme resultat, hver måling. Det er viktig at sensoren som blir brukt er kalibrert riktig og at den ikke har en feil «offset». Innsignalets offset er en parameter som definerer spenningsforskjelen imellom forsterkeren og signalet. Ved korrekt innstillinger vil 0 volt være likt for begge systemer. Typiske offsetverdier vil ligge rundt 1 til 10 mv for billige integrerte kretser. Side 6

5. Simpel A/D-omformer Over ser vi en tellekrets den fungerer ved å bruke en sammenligner, som gir høy når positiv side er større enn negativ side. Port og kontroll registrerer høy og med en klokkepuls sender den et signal til telleren som øker spenningen med én. Telleren sender sitt signal til forsterkeren og ved bruk av en binær stige. Dette skjer helt til sammenligneren stopper. Sammenligneren vil stoppe når analog inn og referansespenning er like. Når telleren har stoppet vil vi kunne lese av dens verdi fra digital ut. Signalet er nå digitalisert. Et problem med denne måten å gjøre det på er at tiden prosessen tar er proporsjonal med signalet inn. En høy spenning vil ta lang tid å lese av fordi telleren må telle hele veien. Side 7

6. Flash ADC Et raskere alternativ er en såkalt Flash ADC. Den fungerer ved bruk av en rekke slike sammenlignere. I dette eksempelet settes referansespenningen til 8 volt som fordeles over 8 like motstander. Spenningsfallet vil være 1 volt over hver motstand. Brikken til høyre registrerer den høyeste verdien og printer resultatet. Hele denne prosessen skjer momentant. Dette er den raskeste formen for ADC vi har. Den har en enabler iform av en klokkepuls som skrur denne prosessen av og på. Side 8

7. Suksessiv tilnærming Her brukes en digital to analog converter for å konstruere en ADC. Her igjen er det en sammenligner som blir forsynt med en analog spenning utenfra - og en spenning gitt fra DAC. Port og kontrolleren starter med den høyste bitverdien og tester om verdien er over eller under 8V. DAC printer 8V og sammenligneren skrur seg av, positiv side er ikke større enn negativ. Kontrolleren registrerer dette og prøver videre med neste bit. Er spenningen større enn 4V? Ja. Større enn 6V? Ja. Større enn 7V? Nei. Spenningen ligger altså mellom 6 og 7. Side 9

8. Single Slope ADC Den enkleste formen for en integrert omformer er en såkalt «Single-slope arkitektur», sett på figur a. Her vil en ukjent spenning inn bli sammenlignet med en kjent referanseverdi. Tiden denne prosessen tar er direkte proporsjonalt med den ukjente verdien. Gitt at referanseverdien holder seg stabil og nøyaktig vil vi kunne regne ut det tidligere ukjente signalet. En ulempe med denne fremgangsmåten er at dens nøyaktighet er avhengig av de passive komponentene i kretsen. I dette tilfellet vil det være en motstand og en kondensator. En liten forskjell i komponentenes verdi vil endre resultatet og dermed gjøre omformeren mindre pålitelig. Signalene vil også ikke nødvendigvis blir repeterbare. For å overkomme denne sensitiviteten til komponentenesverdi, kan en mer avansert arkitektur brukes. Vi kommer ikke til å gå inn de mer avanserte kretsene her. Dersom dette er av interesse kan du lese deg opp på «Dual slope ADC». Fagstoff ligger tilgjengelig i kildelisten. 9. Kilder 9.1 Nettsider https://snl.no/analog-digital-omformer https://snl.no/integrert_krets https://snl.no/transistor https://snl.no/bit https://snl.no/digital_signalbehandling https://en.wikipedia.org/wiki/input_offset_voltage Side 10