OBLIG 1 GEF Dråpevekst i skyer
|
|
|
- Arve Lindberg
- 8 år siden
- Visninger:
Transkript
1 OBLIG 1 GEF Dråpevekst i skyer Innledning I denne oppgaven skal vi ta for oss dråpevekst og simulering av dette numerisk. Det er lagt opp til bruk av Matlab. Det skal leveres en skriftlig besvarelse som i tillegg til svar på spørsmål, også skal inneholde plott(der det er naturlig) og de modifiserte matlab-programene: oblig1.m kelvinkohler.m Du vil også trenge å laste ned filen film.m, men denne trenger ikke leveres. Oppgave 1 -Homogen dråpevekst a) Forklar kort Kelvins formel for homogen dråpedannelse. b) Hvorfor har vi ikke homogen dråpedannelse i naturen? Kelvins formel (6.5 W& H) r = 2σ nkt ln( e e s ) c) Vis at Kelvins formel kan skrives på formen e e s = 1 + a/r der a = 2σ nkt d) Åpne programmet kelvinkohler.m og bruk dette til å lage et plott av Kelvins formel. Se figur (6.2 W& H). Her kan du bruke at: n = , antall vannmolekyler per liter vann. σ = J/m 2, overflatespenning. k er Stefan Boltzmanns konstant. For å lage dette plottet bør du ha dråperadius, r, på x-aksen og metning, S, på y-aksen. Kelvins formel må da skrives om slik at S = f(r) Ha temperaturen på 0 C. La radiusen variere fra 0.01µm til 10µm og ha minst 10 3 punkter på radiusen. Hvor stor overmetning skal til for at en dråpe på 0.1µm skal bli aktivert? Matlab tips r=linspace(fra,til,step): Definerer en vektor. a.*r: Kan man bruke for å gange en konstant med en vektor. semilogx(x,y): For å få logaritmisk x-akse på plottet. kelvinkohler.m er en funksjon som er beregnet på å generere verdier for köhlerkurver og evt sende de videre for bruk et annet sted. 1
2 Oppgave 2 -Hetrogen dråpevekst Fordi homogen vekst ikke skjer utenfor laboratoriet er det mer interessant å se på hetrogen vekst av dråper. Under er en tabell som viser noen egenskaper for to relativt vanlige CCN, NaCl (et salt) og (NH 4 ) 2 SO 4 ammoniumsulfat. i NaCl ioner per molekyl NaCl 2 i amm ioner per molekyl(nh 4 ) 2 SO 4 3 M w Molekylvekt vann g/mol M NaCl Molekylvekt NaCl g/mol M amm Molekylvekt (NH 4 ) 2 SO g/mol ρ NaCl Tetthet NaCl 650 kg/m 3 ρ amm Tetthet (NH 4 ) 2 SO kg/m 3 Tabell 1: Egenskaper for NaCl og (NH 4 ) 2 SO 4 som er viktige for deres evne til å danne dråper. i er antall ioner som dannes når stoffet løses opp i vann. Tetthetene har vi antatt at stoffene får når de løses opp i vann a) Forklar kort Raoults lov. e e = f b) Vis at formelen for Köhlerkurvene kan skrives som: RH = 1 + a/r b/r 3. Hvilken effekt representerer de to leddene? Vi skal nå bruke denne formelen for å se på vekst av hetrogene dråper. Vi bruker formel (6.7 W&H) for f, og siden m er veldig liten kan vi gjøre tilnærmingen: f = (1 + og b blir da gitt som: imm w M s ( 4 3 πr3 ρ m) ) 1 (1 + imm w M s ( 4 3 πr3 ρ ) ) 1 b = imm w M s ( 4 3 πρ ) 2
3 c) Utvid programmet til å inneholde 6 forskjellige CCN er av NaCl og (NH 4 ) 2 SO 4. Plott disse Köhlerkurvene sammen med plottet av Kelvinsformel fra oppgaven før.(se Fig. 6.3 W& H). De CCN vi ønsker 1 er: NaCl, masser i Kg m1 = m2 = m3 = (NH 4 ) 2 SO 4, masser i Kg m4 = m5 = m6 = Matlab tips hold on: Holder plottet slik at neste plott kommer oppå. PS: det lønner seg å ikke endre navnene på parametrene som blir sendt videre til oblig1.m ( Color, fargekode ): Angir fargen på et plott, tilgjengelige verdier er blandt andre: k =sort, c =cyan, m =maroon, r =red, b =blue, og g =green. Det kan lønne seg å bruke de samme fargene på en gitt CCN gjennom hele oppgaven. Oppgave 3 -Sondediagram Vi skal fremover i denne obligen følge en luftpakke som har verdiene: p = 900 hpa, T = 8 C, T d = 2 C. Forklar følgende begreper og finn luftpakkens verdier ved hjelp av et sondediagram (se Appendix 2): Potensiell tempereatur θ Potensiell wetbulbtemperatur θ w Blandingsforhold w og metningsblandingsforhold w s Ekvivalent potensiell temperatur θ e Lifting condensation level LCL Oppgave 4 -Dråpevekst ved Kondesasjon Last ned programmet oblig1.m. Dette programmet kan brukes til å beregne sammenhengen mellom dråperadius (r) og metning(s) i en stigende luftpakke for forskjellige CCN. oblig1.m bruker formlene for dråpevekst ved kondensasjon til å kalkulere utviklingen til den enkelte dråpen. 2 Endring i dråpens radius pr. tidsenhet er gitt ved en modifisert versjon av 6.21 i W& H: r dr dt = (S 1) a r + b r 3 F k + F d 1 De samme som i Fig.6.3 i W&H og en til 2 Se appendix 2 for nærmere beskrivelse 3
4 Endring i metningen til omgivelsene pr. tidsenhet er gitt ved: ds dt = Q dχ 1w Q 2 dt Vi starter med å se på den luftpakken vi har tatt for oss i oppg.3. Det vi nå ønsker å finne ut er hvilke dråper som blir aktivert og hvilke som forblir dis(haze). Du er avhengig av å ha verdier for (a,b1,b2,b3,b4,b5,b6) for at programmet skal kjøre. Disse hentes fra kohler funksjonen kelvinkohler.m, og hentes inn i oblig1.m gjennom et kall som allerede er lagt inn i oblig1.m. a) Sett deg inn i programmet oblig1.m og legg inn alle de verdier som mangler, inkludert de verdier for trykk (p i Pa) og temperatur (T i Kelvin) du fant for LCL i oppg.3. Initialverdiene til dråperadiene må du også fylle inn. Disse kan du lese av fra plottet du fikk i programmet kelvinkohler.m. Du må passe må at du leser av der metningen, S, er lik 1. For å justere verdiene slik at de blir helt nøyaktige kan du kjøre programmet oblig1.m med vertikalhastigheten, w, lik null. Verdiene for radiene du får ved t=100sek er de riktige verdiene. Kan du forklare hvorfor det er slik? Pass på at nummereringen av dråperadiene, r01-r06, passer overens med nummereringen av Köhlerkurvene, slik at r01 er startradien til dråpen med Köhlerkurve nr. 1. Matlab tips length(t): Gir lengden på en array y(n,1): Gir verdien for r1 på n te posisjon. Denne oppgaven er om betydningen av CCN tetthet og vertikal oppdrift for antallet dråper som blir aktivert b) Sett først vertikalhastigheten w = 0.6 [m/s]. Kjør programmet for de CCN du fant i oppg.2. Se på plott og figurer. -Hvor mange av de ulike typene CCN blir aktivert, hvilke CCN er de og hvorfor er akkurat de blitt aktivert? -Hvilken verdi får du for maksimal metning og i hvilken høyde over LCL finner du denne? -Hvorfor er det maksimal metning akkurat der? -De aktiverte dråpene vokser i forskjellig tempo, forklar. -Endre vertikalhastighet og CCN tetthet (N) og forklar hvordan de påvirker veksten av dråper. 4
5 c) Antall CCN, N, er satt til kg/m 3, og tiden T lik 100sek. Bruk Fig.6.5 i W& H til å sette inn realistiske verdier for antall CCN i henholdsvis maritime og kontinentale luftmasser. -Hvor mange CCN bruker du? -Hva har det å si for dråpenes vekst? Blir de større/mindre? -Hva skjer med overmetningen? -Klarer du endre w slik at de samme dråpene blir aktivert som i oppg b? Hva blir w da? Hva skjer med metningen? Oppgave 5 -Film Last ned film.m i samme mappe som oblig1.m. a) Aktiver kallet til film.m som ligger i oblig1.m (kommentert vekk) og kjør gjennom oblig2. -Forklar hva den illustrerer? b) ds dt = Q dχ 1w Q 2 dt dχ Forklar hvorfor vi kan se på Q 1 w som et kildeledd og Q 2 dt som et sluk for metningen S. 3 3 Appendixet inneholder litt mer informasjon om formlene om ønskelig. 5
6 Appendix 1 Litt mer om formlene som er blitt brukt for dråpevekst i denne obligen. Det meste av dette er mer avansert enn dette kursets rekkevidde, men det kan være greit å ha en oversikt. Formlene er hentet fra boken A Short Course in Cloud Physics 4 Endring i dråpens radius pr. tidsenhet er gitt ved: r dr dt = (S 1) a r + b r 3 F k + F d Der F k er assosiert med vanndamps-diffusjon og F d er assosiert med varmeledning. De er gitt som: F k = ( L v R v T 1) L vρ L kt F d = ρ LR V T De s Endring i metningen til omgivelsene pr. tidsenhet er gitt ved: Der Q 1, Q 2 og χ er gitt som: ds dt = Q dχ 1w Q 2 dt Q 1 = 1 T [ ǫl vg R d C p T g R d ] Q 2 = ρ[ R dt ǫe s χ = nρ liquid ρ lu f t + ǫl v ptc p ] volum χ er definert som endringen i masse vann(kg)/masse luft(kg) pr. tidsenhet. I Matlab løser vi dette koblede differensialligningssystemet ved en av matlabs Ordinary Differential Equation solvers, ode15s. Dette er en spesialtilpasset metode som passet veldig bra til dette settet med ligninger. På kun 78 steps løser det hele systemet for tiden T=100sek. Med den mest kjente metoden vi har, Forward Euler, trengte vi steps, mens 4th order Runge Kutta ikke løste det særlig godt i det hele tatt. 4 A Short Course in Cloud Physics Third edition, R.R Rogers & M. K. Yau 6
7 Appendix 2 7
Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: GEF2200 Eksamensdag: 14. Juni 2013 Tid for eksamen: 09.00-12.00 Oppgavesettet er på 4 sider + Vedlegg 1 (1 side) Vedlegg 1: Sondediagram
GEF2200 Atmosfærefysikk 2016
GEF2200 Atmosfærefysikk 2016 Løsningsforslag til oppgavesett 5 WH06 6.8 j. Husk at den adiabatiske LWC er definert i forhold til en luftpakke (et lukket system).innblanding (entrainment) av tørrere omkringliggende
Repetisjonsforelsening GEF2200
Repetisjonsforelsening GEF2200 Termodynamikk TD. Førstehovedsetning. dq=dw+du Nyttige former: dq = c v dt + pdα dq = c p dt αdp Entalpi (h) h = u+pα dh = c p dt v/konstant trykk (dp=0) dq=dh Adiabatiske
Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: GEF2200 Eksamensdag: 14. Juni 2013 Tid for eksamen: 09.00-12.00 Oppgavesettet er på 4 sider + Vedlegg 1 (1 side) Vedlegg 1: Sondediagram
Figur 1. Skisse over initialprofilet av θ(z) før grenselagsblanding
Høyde (km) Eksamen GEF2200 6 5 4 θ(z) 2 1 0 285 290 295 00 05 10 Potentiell Temeratur (K) Figur 1. Skisse over initialrofilet av θ(z) før grenselagsblanding Ogave 1. a. Anta at otentiell temeratur (θ(z))
Det matematisk-naturvitenskapelige fakultet
Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: GEF2200 Eksamensdag: 19. mars 2018 Tid for eksamen: 14.30-16.30 Oppgavesettet er på 3 sider Vedlegg: Sondediagram Tillatte
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: GEF1 Eksamensdag: 3. November 9 Tid for eksamen: 9.-1. Oppgavesettet er på 5 sider Vedlegg: Ingen Tillatte hjelpemidler:
Oppgavesett kap. 6 (3 av..) GEF2200
Oppgavesett kap. 6 (3 av..) GEF2200 [email protected] Exercise 1 - Denitions ect What do we call droplets in the liquid phase with temperatures below 0 C? What changes when an embryo of ice exceeds
FYS1120 Elektromagnetisme - Ukesoppgavesett 2
FYS1120 Elektromagnetisme - Ukesoppgavesett 2 7. september 2016 I FYS1120-undervisningen legger vi mer vekt på matematikk og numeriske metoder enn det oppgavene i læreboka gjør. Det gjelder også oppgavene
TDT4105 IT Grunnkurs Høst 2014
TDT4105 IT Grunnkurs Høst 2014 Norges teknisknaturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Øving 6 1 Teori a) Hva er 2-komplement? b) Hva er en sample innen digital
Løsningsforslag: Gamle eksamner i GEO1030
Løsningsforslag: Gamle eksamner i GEO1030 Sara Blihner Deemer 1, 2017 Eksamen 2003 Oppgave 1 a Termodynamikkens første hovedsetning: H: varme tilført/tatt ut av systemet. p: trykket. H = p α + v T (1)
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO HJEMMEEKSAMEN: GEO 1030 Vind, strøm og klima Atmosfæredelen Basert på undervisningen etter utvalgte deler av Aguado & Burt: Weather and Climate, 7th edition UTDELES: 26. oktober 2016,
Løsningsforslag. og B =
Prøve i Matte EMFE DAFE ELFE BYFE Dato: august 25 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave a) Gitt matrisene A = 2 3 2 4 2 Løsningsforslag og
Flervalgsoppgaver. Gruppeøving 1 Elektrisitet og magnetisme
Gruppeøving Elektrisitet og magnetisme Flervalgsoppgaver Ei svært tynn sirkulær skive av kobber har radius R = 000 m og tykkelse d = 00 mm Hva er total masse? A 0560 kg B 0580 kg C 0630 kg D 0650 kg E
Det matematisk-naturvitenskapelige fakultet
Det matematisk-naturvitenskapelige fakultet Eksamen i: GEF2210 Eksamensdag: 9. oktober 2017 Tid for eksamen: 09:00-11:00 Oppgavesettet er på 2 sider Vedlegg: Ingen Tillatte hjelpemidler: Kalkulator Kontroller
FYS1120 Elektromagnetisme, Ukesoppgavesett 1
FYS1120 Elektromagnetisme, Ukesoppgavesett 1 22. august 2016 I FYS1120-undervisningen legg vi mer vekt på matematikk og numeriske metoder enn det oppgavene i læreboka gjør. Det gjelder også oppgavene som
a. Tegn en skisse over temperaturfordelingen med høyden i atmosfæren.
Oppgave 1 a. Tegn en skisse over temperaturfordelingen med høyden i atmosfæren. Hvorfor er temperaturfordelingen som den er mellom ca. 12 og ca. 50 km? Svar: Her finner vi ozonlaget. Ozon (O 3 ) absorberer
Konstanter og formelsamling finner du bakerst Merk: Figurene til oppgavene er ofte på en annen side en selve oppgaven
UNIVERSITETET I OSLO Det matetmatisk-naturvitenskapelige fakultet Midtveis -eksamen i AST1100, 7. oktober 2008, 15.00 18.00 Oppgavesettet inkludert formelsamling er på 8 sider Konstanter og formelsamling
Løsningsforslag til midtveiseksamen i FYS1001, 26/3 2019
Løsningsforslag til midtveiseksamen i FYS1001, 26/3 2019 Oppgave 1 Løve og sebraen starter en avstand s 0 = 50 m fra hverandre. De tar hverandre igjen når løven har løpt en avstand s l = s f og sebraen
Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: GEF2200 Eksamensdag: 4. Juni 2015 Tid for eksamen: 14.30-17.30 Oppgavesettet er på X sider + Vedlegg 1 (1 side) Vedlegg 1: Sondediagram
Figur 1: Volumet vi er ute etter ligger innenfor de blå linjene. Planet som de røde linjene ligger i deler volumet opp i to pyramider.
TMA415 Matematikk Vår 15 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Alle oppgavenummer referer til 8. utgave av Adams & Esse alculus: A omplete ourse. 5 Eercise 14.1.6
Løsningsforslag eksamen INF3480 vår 2011
Løsningsforslag eksamen INF3480 vår 0 Oppgave a) A - Arbeidsrommet er en kule med radius L 3 + L 4. B - Alle rotasjonsaksene er paralelle, roboten beveger seg bare i et plan, dvs. null volum. C - Arbeidsrommet
Løsningsforslag til øving 1
Oppgave 1 FY1005/TFY4165 Termisk fysikk. Institutt for fysikk, NTNU. åren 2013. a) i deriverer på begge sider og finner ( ) α p ( ) κt T T p Løsningsforslag til øving 1 = p = T ( 1 ( 1 ) = 1 T ) = 1 p
FYS2140 Kvantefysikk, Løsningsforslag for Oblig 1
FYS4 Kvantefysikk, Løsningsforslag for Oblig. januar 8 Her er løsningsforslag for Oblig som dreide seg om å friske opp en del grunnleggende matematikk. I tillegg finner dere til slutt et løsningsforslag
MAT-INF 1100: Obligatorisk oppgave 2
MAT-INF 1100: Obligatorisk oppgave 2 Innleveringsfrist: torsdag 8. november 2018 kl. 14:30 Obligatoriske oppgaver («obliger») er en sentral del av MAT-INF1100 og er utmerket trening i å besvare en matematisk
Obligatorisk oppgave 1
Obligatorisk oppgave 1 Oppgave 1 a) Trykket avtar eksponentialt etter høyden. Dette kan vises ved å bruke formlene og slik at, hvor skalahøyden der er gasskonstanten for tørr luft, er temperaturen og er
Alle svar skal grunngis. Alle deloppgaver har lik vekt.
Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom
Løsningsforslag nr.4 - GEF2200
Løsningsforslag nr.4 - GEF2200 [email protected] Oppgave 1 - Definisjoner og annet pugg s. 375-380 a) Hva er normal tykkelse på det atmosfæriske grenselaget, og hvor finner vi det? 1-2 km. fra bakken
Oppgave 1A.8: En forenklet kode for stjernedannelse
Oppgave 1A.8: En forenklet kode for stjernedannelse P. Leia Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, 0315 Oslo, Galactic Empire [email protected] Sammendrag
Simulering i MATLAB og SIMULINK
Simulering i MATLAB og SIMULINK Av Finn Haugen ([email protected]) TechTeach (http://techteach.no) 13. november 2004 1 2 TechTeach Innhold 1 Simulering av differensiallikningsmodeller 7 1.1 Innledning...
Matematikk 1000. Øvingsoppgaver i numerikk leksjon 11 Eulers metode. Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 11 Eulers metode Løsningsforslag Oppgave 1 Samanlikning med analytisk løsning y = 3 2 x y, y(0) = 1. a) Kandidat til løsning: y = e x3/2. Vi deriverer
Fasit eksamen Fys1000 vår 2009
Fasit eksamen Fys1000 vår 2009 Oppgave 1 a) Klossen A er påvirka av tre krefter: 1) Tyngda m A g som peker loddrett nedover. Denne er det lurt å dekomponere i en komponent m A g sinθ langs skråplanet nedover
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Midtveisksamen i: FYS1000 Eksamensdag: 21. mars 2013 Tid for eksamen: 15.00-17.00, 2 timer Oppgavesettet er på 5 sider Vedlegg: Formelark
Løsningsforslag til eksamen i FYS1000, 16/8 2013
Løsningsforslag til eksamen i FYS1000, 16/8 2013 Oppgave 1 a) Totalrefleksjon oppstår når lys går fra et medium med større brytningsindeks til et med mindre. Da vil brytningsvinkelen være større enn innfallsvinkelen,
Løsningsforslag til eksamen FY0001 Brukerkurs i fysikk Fredag 29. mai 2009
Løsningsforslag til eksamen FY000 Brukerkurs i fysikk Fredag 9. mai 009 Oppgave a) Newtons. lov, F = m a sier at kraft og akselerasjon alltid peker i samme retning. Derfor er A umulig. Alle de andre er
TFY4106 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 4. m 1 gl = 1 2 m 1v 2 1. = v 1 = 2gL
TFY46 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 4. Oppgave. a) Hastigheten v til kule like før kollisjonen finnes lettest ved å bruke energibevarelse: Riktig svar: C. m gl = 2 m v 2
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 00 Modellering og beregninger. Eksamensdag: Torsdag 6. desember 202. Tid for eksamen: 9:00 3:00. Oppgavesettet er på 8
EKSAMENSOPPGAVE. Adm.bygget, Aud.max. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: Fys-1002 Dato: 30. september 2016 Klokkeslett: 09.00-13.00 Sted: Tillatte hjelpemidler: Adm.bygget, Aud.max ü Kalkulator med tomt dataminne
Prøve i Matte 1000 BYFE DAFE 1000 Dato: 03. mars 2016 Hjelpemiddel: Kalkulator og formelark. Alle svar skal grunngis. Alle deloppgaver har lik vekt.
Prøve i Matte 1 BYFE DAFE 1 Dato: 3. mars 216 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. LØSNINGSFORSLAG Oppgave 1 Gitt matrisene A = [ 8 3 6 2 ] [ og
UNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 16 mars 2016 Tid for eksamen: 15:00 18:00 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark
Ukesoppgaver GEF1100
Ukesoppgaver GEF1100 uke 46, 2014 Oppgave 1 Figur 11.2 i læreboka (Atmosphere, Ocean and Climate Dynamics) viser leddene i energibalansen på havoverflaten (likning (11-5) i læreboka). a) Hvilke prosesser
Prosjekt 2 - Introduksjon til Vitenskapelige Beregninger
Prosjekt - Introduksjon til Vitenskapelige Beregninger Studentnr: 755, 759 og 7577 Mars 6 Oppgave Feltlinjene for en kvadrupol med positive punktladninger Q lang x-aksen i x = ±r og negative punktladninger
1. Finn egenverdiene og egenvektorene til matrisen A = 2 1 A =
Fasit MAT102 juni 2017 Oppgave 1 1. Finn egenverdiene og egenvektorene til matrisen ( ) 1 2 A = 2 1 Løsning: Egenverdiene er røttene til det karakteristiske polynom gitt ved determinanten av matrisen (
Oppgavesett nr.2 - GEF2200
Oppgavesett nr.2 - GEF2200 [email protected] 1 Oppgave 1 Definer begrepene monokomatisk... emissivitet absorptivitet reflektivitet transmissivitet Oppgave 4.15 Et ikke-sort legeme (A) antas å stråle
Oppgave 4. Med utgangspunkt i eksemplet gitt i oppgaveteksten er veien ikke lang til følgende kode i Matlab/Octave:
Oppgave 4 Med utgangspunkt i eksemplet gitt i oppgaveteksten er veien ikke lang til følgende kode i Matlab/Octave: 1 %% FY1005 / TFY4165, Oving 1, Oppgave 4, del 1 2 %% 3 %%R = gasskonstanten = 8.314 J/
Kap. 1 Fysiske størrelser og enheter
Fysikk for Fagskolen, Ekern og Guldahl samling (kapitler 1, 2, 3, 4, 6) Kap. 1 Fysiske størrelser og enheter Størrelse Symbol SI-enhet Andre enheter masse m kg (kilogram) g (gram) mg (milligram) tid t
Løsningsforslag: Gamle eksamner i GEO1030
Løsningsforslag: Gamle eksamner i GEO1030 Sara Blihner Deemer 8, 2016 Eksamen 2003 Oppgave 1 a Termoynamikkens første hovesetning: H: varme tilført/tatt ut av systemet. p: trykket. H = p α + v T (1) α:
UNIVERSITETET I OSLO
Side av 5 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK Eksamensdag: Onsdag. juni 2 Tid for eksamen: Kl. 9-3 Oppgavesettet er på 5 sider + formelark Tillatte hjelpemidler:
Kinematikk i to og tre dimensjoner
Kinematikk i to og tre dimensjoner 4.2.216 Innleveringsfrist oblig 1: Tirsdag, 9.eb. kl.18 Innlevering kun via: https://devilry.ifi.uio.no/ Devilry åpnes snart. YS-MEK 111 4.2.216 1 v [m/s] [m] Eksempel:
Regneøving 9. (Veiledning: Fredag 18. mars kl og mandag 21. mars kl )
Institutt for fysikk, NTNU TFY4165 og FY1005 Termisk fysikk, våren 011. Regneøving 9. (Veiledning: Fredag 18. mars kl. 1.15-14.00 og mandag 1. mars kl. 17.15-19.00.) Oppgave 1 Damptrykket for vann ved
Noen presiseringer mhp Diskret Fourier Transform. Relevant for oblig 1.
FYS2130 Våren 2008 Noen presiseringer mhp Diskret Fourier Transform. Relevant for oblig 1. Vi har på forelesning gått gjennom foldingsfenomenet ved diskret Fourier transform, men ikke vært pinlig nøyaktige
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 6 juni 2017 Tid for eksamen: 14:30 18:30 (4 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark Tillatte
Løsningsforslag. Prøve i Matematikk 1000 BYFE DAFE 1000 Dato: 29. mai 2017 Hjelpemiddel: Kalkulator og formelark. Oppgave 1 Gitt matrisene.
Prøve i Matematikk BYFE DAFE Dato: 29. mai 27 Hjelpemiddel: Kalkulator og formelark Løsningsforslag Oppgave Gitt matrisene A = 2 2 B = [ 2 3 4 ] og C = Regn ut, om mulig, summene A + B, A + B T og A +
Oblig 3 i FYS mars 2009
Oblig 3 i FYS230 2. mars 2009 Innledning [Copyright 2009: D.S.Amundsen og A.I.Vistnes.] David Skålid Amundsen har laget hovedskissen til denne obligen i en sommerjobb han utførte for oss sommeren 2008.
GEO1030: Løsningsforslag kap. 5 og 6
GEO1030: Løsningsforslag kap. 5 og 6 Sara M. Blichner September 15, 2016 Kapittel 5 Critical thinking 1. Alkohol har lavere kokepunkt enn vann (78,4 C mot 100 C for vann) og dermed fordamper alkoholen
BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 4 Innleveringsfrist Fredag 11. mars 2016 Antall oppgaver: Løsningsforslag
Innlevering BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 4 Innleveringsfrist Fredag 11. mars 2016 Antall oppgaver: 10 + 1 Løsningsforslag 1 Hvilken av de to funksjonene vist i guren er den deriverte
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: Fys216 Eksamensdag: Tirsdag 8. desember 215 Tid for eksamen: 143 183 Oppgavesettet er på: 4 sider Vedlegg: ingen Tilatte hjelpemidler
Kortfattet løsningsforslag til ekstra prøveeksamen i MAT1100, høsten 2014
Kortfattet løsningsforslag til ekstra prøveeksamen i MAT, høsten 4 DEL Oppgave. 3 poeng Hvis f, y = ye y, er f y lik: A y 3 e y B y e y C e y ye y D e y y e y E e y ye y Riktig svar: D e y y e y Oppgave.
FYS1120 Elektromagnetisme, Oppgavesett 4
FYS1120 Elektromagnetisme, Oppgavesett 4 20. september 2016 I FYS1120-undervisningen legger vi mer vekt på matematikk og numeriske metoder enn det oppgavene i læreboka gjør. Det gjelder også oppgavene
Obligatorisk oppgave nr 3 FYS Lars Kristian Henriksen UiO
Obligatorisk oppgave nr 3 FYS-13 Lars Kristian Henriksen UiO 11. februar 15 Diskusjonsoppgaver 1 Fjerde ordens Runge-Kutta fungerer ofte bedre enn Euler fordi den tar for seg flere punkter og stigningstall
4 KONSENTRASJON 4.1 INNLEDNING
4 KONSENTRASJON 4.1 INNLEDNING 1 Terminologi En løsning er tidligere definert som en homogen blanding av rene stoffer (kap. 1). Vi tenker vanligvis på en løsning som flytende, dvs. at et eller annet stoff
Løsningsforslag til Eksamen i MAT111
Universitetet i Bergen Matematisk institutt Bergen, 9. desember 25. Bokmål Løsningsforslag til Eksamen i MAT Mandag 9. desember 25, kl. 9-. Dette er kun et løsningsforslag. Oppgave a) Betrakt de to komplekse
Fasit for eksamen i MEK1100 torsdag 13. desember 2007 Hvert delspørsmål honoreres med poengsum fra 0 til 10 (10 for perfekt svar).
Fasit for eksamen i MEK torsdag 3. desember 27 Hvert delspørsmål honoreres med poengsum fra til ( for perfekt svar). Oppgave Vi har gitt to vektorfelt i kartesiske koordinater (x,y,z) A = yi+coszj +xy
GEF Løsningsforslag til oppgaver fra kapittel 6
GEF1100 - Løsningsforslag til oppgaver fra kapittel 6 [email protected] Oppgave 1 a) Hva er forskjellen mellom Lagrangesk og Eulersk representasjon av en væskebevegelse? Gi et eksempel på hver av
UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Obligatorisk innlevering 3 i emnet MAT111, høsten 2016
UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Obligatorisk innlevering 3 i emnet MAT, høsten 206 Innleveringsfrist: Mandag 2. november 206, kl. 4, i Infosenterskranken i inngangsetasjen
Elektrisk potensial/potensiell energi
Elektrisk potensial/potensiell energi. Figuren viser et uniformt elektrisk felt E heltrukne linjer. Langs hvilken stiplet linje endrer potensialet seg ikke? A. B. C. 3 D. 4 E. Det endrer seg langs alle
Oppgavesett nr.5 - GEF2200
Oppgavesett nr.5 - GEF2200 [email protected] Oppgave 1 a) Den turbulente vertikalfluksen av følbar varme (Q H ) i grenselaget i atmosfæren foregår ofte ved turbulente virvler. Hvilke to hovedmekanismer
Regneoppgaver AST 1010, vår 2017
Regneoppgaver AST 1010, vår 2017 (Sist oppdatert: 09.03.2017) OBS: Ikke få panikk om du ikke får til oppgavene med en gang, eller om du står helt fast: I forelesningsnotatene 1 finner du regneeksempler.
TMA4100 Matematikk 1 Høst 2014
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4 Matematikk Høst 4 Løsningsforslag Øving 5.7.4 Vi observerer at både y = cos πx 4 og y = x er like funksjoner. Det vil si
Kapittel 5 Skydannelse og Nedbør
Kapittel 5 Skydannelse og Nedbør Asgeir Sorteberg Geofysisk Institutt, UiB Typer termodynamiske prosesser Vi skiller mellom to type termodynamiske prosesser i meteorologi. Adiabatiske prosesser: Ingen
Q = π 4 D2 V = π 4 (0.1)2 0.5 m 3 /s = m 3 /s = 3.93 l/s Pa
35 Løsning C.1 Q π 4 D2 V π 4 (0.1)2 0.5 m 3 /s 0.00393 m 3 /s 3.93 l/s G gsρ vann Q 9.81 1.26 998 0.00393 N/s 0.0484 kn/s ṁ G/g 48.4/9.81 kg/s 4.94 kg/s Løsning C.2 Omregning til absolutt trykk: p abs
FYS1120 Elektromagnetisme
Det matematisk-naturvitenskapelige fakultet Universitetet i Oslo FYS112 Elektromagnetisme Løsningsforslag til ukesoppgave 2 Oppgave 1 a) Gauss lov sier at den elektriske fluksen Φ er lik den totale ladningen
Løsningsforslag til eksamen i SIF4072 KLASSISK FELTTEORI Onsdag 28. mai 2003
Norges teknisk naturvitenskapelige universitet NTNU Side 1 av 9 Institutt for fysikk Fakultet for naturvitenskap og teknologi Løsningsforslag til eksamen i SIF4072 KLASSISK FELTTEORI Onsdag 28. mai 2003
HØGSKOLEN I SØR-TRØNDELAG
HØGSKOLEN I SØR-TRØNDELAG AVDELING FOR MAT- OG MEDISINSK TEKNOLOGI Kandidatnr: Eksamensdato: 30.mai 2005 Varighet: Kl. 09.00-13.00 Fagnummer: Fagnavn: Klasse(r): FO140N Konserveringsteknologi 1N Studiepoeng:
EKSAMENSOPPGAVE. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: FYS-1002 Dato: 26. september 2017 Klokkeslett: 09.00-13.00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: ü Kalkulator med tomt dataminne
Kommentarer til eksempelinnleveringene
Kommentarer til eksempelinnleveringene Det er lagt ut 4 eksempelinnleveringer, en som er nesten perfekt og får 100 poeng uten opprunding. De andre 3 er kommentert i detalj her. Merk at tilbakemeldingene
Kapittel 4 Fuktighet, kondensasjon og skyer
Kapittel 4 Fuktighet, kondensasjon og skyer Asgeir Sorteberg Geofysisk Institutt, UiB Fuktighet Mengden vanndamp i atmosfæren kan betegnes på en rekke forskjellige måter. Masse vann per volum (vanndamptetthet,
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1000 Eksamensdag: 12. juni 2017 Tid for eksamen: 9.00-13.00, 4 timer Oppgavesettet er på 5 sider Vedlegg: Formelark (2 sider).
Prosjektoppgave FYS2130. Vår Innleveringsfrist: 09/ , 20 CEST
Prosjektoppgave FYS2130 Vår 2017 Innleveringsfrist: 09/05-2017, 20 CEST L. B. N. Clausen Om prosjektet og rapporten Vi ønsker at arbeidet med prosjektoppgaven gir deg økt forståelse og innsikt i et fenomen
MAT-INF 1100: Obligatorisk oppgave 1
13. september, 2018 MAT-INF 1100: Obligatorisk oppgave 1 Innleveringsfrist: 27/9-2018, kl. 14:30 i Devilry Obligatoriske oppgaver («obliger») er en sentral del av MAT-INF1100 og er utmerket trening i å
Løsningsforslag til øving 10
Oppgave 1 FY1005/TFY4165 Termisk fysikk. Institutt for fysikk, NTNU. Våren 2013. a) Fra forelesningene, kapittel 4.5, har vi Ved å benytte og kan dette omformes til Med den gitte tilstandsligningen finner
FYS2130 forelesning 1. februar 2013 Noen kommentarer til kapittel 3: Numeriske løsningsmetoder
FYS2130 forelesning 1. februar 2013 Noen kommentarer til kapittel 3: Numeriske løsningsmetoder Numerisk løsning av annen ordens differensialligning: 1. Kan skrive differensialligningen som en sum av to
Stivt legemers dynamikk
Stivt legemers dynamikk 5.04.05 FYS-MEK 0 5.04.05 Forelesning Tempoet i forelesningene er: Presentasjonene er klare og bra strukturert. Det er bra å vise utregninger på smart-board / tavle Diskusjonsspørsmålene
LØSNINGSFORSLAG TIL EKSAMEN I MA0001 BRUKERKURS A Tirsdag 14. desember 2010
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 LØSNINGSFORSLAG TIL EKSAMEN I MA1 BRUKERKURS A Tirsdag 14. desember 1 Oppgave 1 Ligningen kan skrives 4 ln x 3 ln
Inf109 Programmering for realister Uke 5. I denne leksjonen skal vi se på hvordan vi kan lage våre egne vinduer og hvordan vi bruker disse.
Inf109 Programmering for realister Uke 5 I denne leksjonen skal vi se på hvordan vi kan lage våre egne vinduer og hvordan vi bruker disse. Før du starter må du kopiere filen graphics.py fra http://www.ii.uib.no/~matthew/inf1092014
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS 1000 Eksamensdag: 11. juni 2012 Tid for eksamen: 09.00 13.00, 4 timer Oppgavesettet er på 5 sider inkludert forsiden Vedlegg:
