A) 4 B) 5 C) 6 D) 7 E) 10
|
|
|
- Eva Ingvaldsen
- 8 år siden
- Visninger:
Transkript
1 SETT 31 OPPGAVER FRA ABELS HJØRNE I DAGBLADET DAG 1 1. Vennene Alfred, Bodil og Carsten var på stranden og grillet pølser. Alfred spiste to pølser, Bodil spiste tre, og i gjennomsnitt spiste de fire pølser. Hvor mange pølser spiste Carsten? A) 4 B) 5 C) 6 D) 7 E) Tenk deg at jordkloden var en polert metallkule. Rundt ekvator trekker man en ståltråd, strammer til, og binder fast i endene, slik at tråden ligger tett inntil overflaten rundt hele ekvator. Så kutter vi tråden og gjør den 10 cm lengre. Nå vil det på enkelte steder være litt slakk i tråden. Vi plasserer tråden slik at den får samme høyde over ekvator alle steder. Vil det nå være nok plass mellom tråden og kula til at et vanlig spillkort ville få plass i mellom? 1. D. Hvis de tre vennene spiste fire pølser i gjennomsnitt, så må de til sammen ha spist 3 4 = 12 pølser. Siden Alfred og Bodil til sammen spiste 5 pølser, så må Carsten ha spist 12 5 = 7 pølser. 2. Ja. Sammenhengen mellom radius r og omkrets O av en sirkel er O = 2πr. Det betyr at når omkretsen øker med 10 cm, så vil radius øke med " 1,6 cm, og det er nok til at en hel kortstokk får plass i mellom. DAG 2 1. Hvor mange trekanter er det i denne figuren? A) 8 B) 12 C) 14 D) 16 E) Fem dyr - A, B, C, D og E - er enten ulver eller hunder. Hunder sier alltid sannheten, mens ulver alltid lyver. A sier at B er en hund. C sier at D er en ulv. E sier at A er en hund. B sier at C er en ulv. D sier at B og E er av forskjellig art. Hvor mange av de 5 dyrene er ulver? A) 1 B) 2 C) 3 D) 4 E) 5 1
2 1. D. Det er 8 små trekanter, 4 trekanter som er satt sammen av to små, og 4 trekanter som er satt sammen av fire små trekanter. Til sammen er det dermed = 16 trekanter i figuren. 2. D. Siden A sier at B er en hund, så er A og B like. (Hvis A er hund, så snakker A sant, og dermed er B en hund. Hvis A er ulv, så lyver A, og B er også ulv.) Tilsvarende, siden E sier at A er en hund, så er også E lik A og B. D sier at B og E er av forskjellig art. Dette er løgn, altså er D en ulv. Siden C sier at D er en ulv, så er C en hund, og siden B sier at C er en ulv, så er B en ulv. Altså er A, B, D og E ulver, mens C er en hund. DAG 3 1. Petter har 180 kroner i mynter. Han har kronestykker, femmere, tikroner og tjuekroner, og han har like mange av hver mynt. Hvor mange mynter har Petter? A) 15 B) 18 C) 20 D) 30 E) En bokhandel har opphørssalg, og selger ut alle bøkene til samme pris. Frode, Mary og Tina har henholdsvis 70, 96 og 135 kroner. Hver av dem kjøper så mange bøker som de har råd til. Etter handelen har alle like mye penger igjen. Hvor mange bøker kjøpte Frode, Mary og Tina til sammen? (Anta at hver bok koster et heltallig antall kroner, og at prisen var mer enn 1 krone.) A) 12 B) 18 C) 20 D) 22 E) C. Hvis han har en av hver mynt, så har han = 36 kroner. Siden 180 = 5 36, så har Petter fem av hver mynt, til sammen 20 mynter. 2. D. Anta at hver bok koster x kroner. Hvis Frode, Mary og Tina kjøpte henholdsvis F, M og T bøker, så sier oppgaven at 70 = Fx + r, 96 = Mx + r og 135 = Tx + r, der r er antall kroner hver av dem har igjen etter handelen. Hvis vi trekker den første likningen fra den andre, får vi 26 = M F x, og trekker vi den første fra den tredje, får vi 65 = T F x. Altså er både 26 og 65 delelige med x. Men den eneste felles faktor til 26 og 65 som er større enn 1, er 13. Altså koster hver bok 13 kroner. Frode fikk kjøpt 5 bøker, Mary 7 bøker og Tina 10 bøker. Til sammen kjøpte de = 22 bøker (og de hadde igjen 5 kroner hver etterpå). 2
3 DAG 4 1. De to diagonalene i firkanten står vinkelrett på hverandre. Hvis begge diagonalene er 4 cm lange, hva er da arealet av firkanten? A) 6 cm 2 B) 8 cm 2 C) 12 cm 2 D) 16 cm 2 E) 4 2 cm 2 2. Er tallet et primtall? 1. B. Del firkanten i to trekanter langs en av diagonalene. De to trekantene har begge denne diagonalen som grunnlinje, og deler av den andre diagonalen som høyde. Summen av arealene av de to trekantene er dermed produktet av de to diagonalene delt på 2, altså 4 = 8 cm2. 2. Nei. Konjugatsetningen sier at a b = (a + b)(a b). Vårt tall kan dermed skrives = = = DAG 5 1. I et bakeri er prisen på fire boller det samme som antall boller man får for 36 kroner. Hvor mye koster en bolle? A) 2 kr B) 3 kr C) 4 kr D) 6 kr E) 9 kr 2. Er det mulig å finne fire påfølgende heltall slik summen er delelig på 4? 1. B. Hvis en bolle koster x kroner, så sier oppgaven at 4x = ". Dette kan skrives om til x = 9, og vi får at x = Nei. Hvis det minste av de fire tallene er x, så er summen x + x x x + 3 = 4x + 6. Fjerdedelen av dette er x +, og det er ikke et heltall. 3
4 DAG 6 1. I en butikk koster en loff 3 kroner mer enn et vanlig brød. Hvis tre loff koster dobbelt så mye som to brød, hva koster da et brød og en loff til sammen? A) 14 kr B) 18 kr C) 21 kr D) 27 kr E) 28 kr 2. Hvis du kaster kron og mynt 5 ganger, hva er sannsynligheten for at du får minst to kast på rad der mynten viser samme side opp? A) B) C) D) " " E) " " 1. C. Anta at et brød koster x kroner. Da koster en loff x + 3 kroner og vi har likningen 3 x + 3 = 4x. Løser vi denne likningen, får vi x = 9. Altså koster et brød 9 kroner, og en loff 12 kroner. Til sammen koster et brød og en loff 21 kroner. 2. D. La oss regne ut sannsynligheten for det motsatte, nemlig at mynten viser annenhver gang kron og mynt. La oss si at det første kastet blir kron (argumentet blir det samme om du antar at det første kastet er mynt). Det andre kastet blir da mynt med sannsynlighet. Det tredje kastet blir kron med sannsynlighet. Det fjerde kastet blir mynt med sannsynlighet, og det det femte kastet blir kron med sannsynlighet. Sannsynligheten for å få kron og mynt annenhver gang er dermed = ", og sannsyligheten for å få minst to like på rad blir 1 " = " ". DAG 7 1. Hvor mange av heltallene mellom 100 og 200 er delelige med 6? A) 6 B) 12 C) 16 D) 17 E) Fire gutter kjøpte en båt for 6000 kroner. Den første gutten betalte halvparten så mye som de andre til sammen. Den andre gutten betalte en tredjedel av det de andre betalte til sammen, og den tredje gutten betalte en fjerdedel av det de andre betalte til sammen. Hvor mye betalte den fjerde gutten? A) 500 kr B) 800 kr C) 1100 kr D) 1200 kr E) 1300 kr 1. D. Det minste slike heltall er 102 = 17 6, mens det største er 198 = Dermed er det = 161 slike heltall som er større enn 102, og totalt blir det 17 tall mellom 100 og 200 som er delelige med 6. 4
5 2. E. Hvis den første gutten betalte x kroner, så betalte de andre 6000 x kroner til sammen. Siden x = (6000 x), får vi 3x = 6000, og dermed x = Hvis den andre gutten betalte y kroner, får vi y = 6000 y, 4y = 6000 og dermed y = Og hvis den tredje gutten betalte z kroner, får vi tilsvarende 5z = 6000 og z = De tre første guttene betalte til sammen = 4700 kroner, så den fjerde gutten må ha betalt = 1300 kroner. 5
A)8 B) 10 C) 14 D) 20 E) Sidekantene i en terning økes med 20%. Hvor mye øker terningens volum? A) 20 % B) 44 % C) 56,2 % D) 60 % E) 72,8 %
SETT 29 OPPGAVER FRA ABELS HJØRNE I DAGBLADET DAG 1 1. Per er i butikken for å kjøpe frukt. En appelsin koster 3 kroner, en banan koster 2 kroner, og et eple koster 1 krone. Per skal kjøpe for nøyaktig
OPPGAVER FRA ABELS HJØRNE I DAGBLADET SETT 15 DAG 1 DAG Hvilken av følgende volumer er det samme som en halv liter?
SETT 15 OPPGAVER FRA ABELS HJØRNE I DAGBLADET DAG 1 1. Hvilken av følgende volumer er det samme som en halv liter? A) 50 cm 3 B) 500 cm 3 C) 0,5 m 3 D) 0,05 m 3 E) 0,005 m 3 2. Familien Hansen og familien
oppgaver fra abels hjørne i dagbladet
oppgaver fra abels hjørne i dagbladet sett 45 dag 1 1. På et bord står to beholdere som begge inneholder litt vann. Uansett hvilken beholder du velger, og så heller halvparten av innholdet over i den andre
1. Hvis Knut er dobbelt så gammel som Per, Per er dobbelt så gammel som Henrik, og Henrik er 9 år yngre enn Knut, hvor gammel er da Per?
SETT 1 OPPGAVER FRA ABELS HJØRNE I DAGBLADET DAG 1 1. Hvis Knut er dobbelt så gammel som Per, Per er dobbelt så gammel som Henrik, og Henrik er 9 år yngre enn Knut, hvor gammel er da Per? 3. 2. En bro
1. Per og Kari kaster hver sin terning. Hva er sannsynligheten for at Karis terning viser mer enn Pers? A) 1/6 B) 1/3 C) 1/2 D) 3/8 E) 5/12
SETT 28 OPPGAVER FRA ABELS HJØRNE I DAGBLADET DAG 1 1. Per og Kari kaster hver sin terning. Hva er sannsynligheten for at Karis terning viser mer enn Pers? A) 1/6 B) 1/3 C) 1/2 D) 3/8 E) 5/12 2. Hvis summen
OPPGAVER FRA ABELS HJØRNE I DAGBLADET SETT 11 DAG 1 DAG 2
SETT 11 OPPGAVER FRA ABELS HJØRNE I DAGBLADET DAG 1 1. En kake ble delt mellom tre barn. Den ene fikk av kaka, den andre fikk av kaka, mens den tredje fikk resten. Hvor stor del av kaka fikk det tredje
Plassere positive og negative tall på tallinjen KOPIERINGSORIGINAL 2.1. Navn: KAPITTEL 2 Tall og tallforståelse. Oppgave 4a. Oppgave 4b.
KOPIERINGSORIGINAL 2.1 KAPITTEL 2 Tall og tallforståelse Plassere positive og negative tall på tallinjen Navn: Oppgave 4a 0 1 Oppgave 4b 40 0 40 Oppgave 4c 20 0 20 Oppgave 5a 6 3 0 1 4 Oppgave 5b 2 1 0
OPPGAVER FRA ABELS HJØRNE I DAGBLADET SETT 27 DAG 1 DAG 2
SETT 27 OPPGAVER FRA ABELS HJØRNE I DAGBLADET DAG 1 1. På figuren er de to små sirklene like store. Hva er forholdet mellom arealene av det skraverte og det ikkeskraverte området? A) 1:1 B) 1:2 C) 3:4
oppgaver fra abels hjørne i dagbladet
oppgaver fra abels hjørne i dagbladet sett 43 dag 1 1. Line-Marie strikker et lilla skjerf. Skjerfet er 80 masker bredt, og det tar 1 sekund å strikke en maske. Det går 3 rader per centimeter, og skjerfet
A) 20 B) 20,5 C) 21 D) 22,5 E) En sirkel og et kvadrat har samme omkrets. Hva er da forholdet mellom sirkelens areal og kvadrates areal?
SETT 8 OPPGAVER FRA ABELS HJØRNE I DAGBLADET DAG 1 1. Tidlig en morgen starter en snegle på bakken og klatrer oppover en 12 meter høy stolpe. Hver dag kryper den 2 meter oppover, men om natten sklir den
oppgaver fra abels hjørne i dagbladet
oppgaver fra abels hjørne i dagbladet sett 41 dag 1 1. Erik jobber som salgsmedarbeider ved et teater. En dag brukte han hele arbeidsdagen på å ringe til firmaer for å tilby spesialavtaler. Han begynte
A) 1,5 kg B) 2 kg C) 2,33 kg D) 2,5 kg E) 3 kg
SETT 24 OPPGAVER FRA ABELS HJØRNE I DAGBLADET DAG 1 1. På et museum ligger det tre steiner. Til sammen veier steinene 5 kg, og den tyngste veier to tredjedeler så mye som de to andre til sammen. Hvor mye
1P eksamen høsten Løsningsforslag
1P eksamen høsten 2017 - Løsningsforslag Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (2 poeng) En vare koster 640 kroner. Butikkeieren
A) 3 B) 6 C) 12 D) 27 E) 54
SETT 20 OPPGAVER FRA ABELS HJØRNE I DAGBLADET DAG 1 1. En maur befinner seg ved hjørnet av en terning. På det diagonalt motsatte hjørnet er det en liten bit sukker som mauren har veldig lyst på. Mauren
A) 12 B) 13 C) 14 D) 15 E) 16
SETT 21 OPPGAVER FRA ABELS HJØRNE I DAGBLADET DAG 1 1. En bonde skal sette opp et gjerde rundt et trekantet område med sider 20 m, 20 m og 30 m. Han planlegger å sette opp stolper med 5 meters avstand
2P, Modellering Quiz fasit. Test, 3 Modellering
Test, 3 Modellering Innhold 3.1 Lineære modeller og lineær regresjon... 3. Modell for svingetiden til en pendel... 8 3.3 Potensfunksjon som modell... 8 3.4 Eksponentialfunksjon som modell... 18 3.5 Polynomfunksjoner
1. En murstein veier 3 kg pluss en halv murstein. Hvor mye veier en murstein? A) 4,5 kg B) 6 kg C) 7,5 kg D) 9 kg E) Umulig å avgjøre
OPPGAVER FRA ABELS HJØRNE I DAGBLADET SETT 2 DAG 1 1. En murstein veier 3 kg pluss en halv murstein. Hvor mye veier en murstein? A) 4,5 kg B) 6 kg C) 7,5 kg D) 9 kg E) Umulig å avgjøre 2. Dersom det tresifrede
DAG 2 1. Hans og Grete er til sammen 63 år. Hans er dobbelt så gammel som det Grete var da Hans var så gammel som Grete er nå. Hvor gammel er Hans?
SETT 12 OPPGAVER FRA ABELS HJØRNE I DAGBLADET DAG 1 1. Hvilket av følgende tall er delelig med 9? A) 309 B) 456 C) 696 D) 783 E) 939 2. To esker inneholder to røde og to hvite kuler hver. Vi tar en tilfeldig
oppgaver fra abels hjørne i dagbladet
oppgaver fra abels hjørne i dagbladet sett 37 dag 1 1. Dersom vi dobler et bestemt tall, og så trekker fra tre, får vi tre mer enn halvparten av det tallet vi begynte med. Hvilket tall begynte vi med?
A) 6 B) 8 C) 10 D) 13 E) 16
SETT 34 OPPGAVER FRA ABELS HJØRNE I DAGBLADET DAG 1 1. På en tavle står det skrevet to tall. Det første tallet er 2 større enn det andre, mens det dobbelte av det andre tallet er 2 større enn det første.
oppgaver fra abels hjørne i dagbladet
oppgaver fra abels hjørne i dagbladet sett 38 dag 1 1. På en hylle står det tre bøker. Den første boken er like tykk som de to andre til sammen. Den andre boken er på 150 sider, mens den tredje boken er
Niels Henrik Abels matematikkonkurranse Løsninger
Niels Henrik Abels matematikkonkurranse 20 202 Løsninger Finale 8 mars 202 Oppgave a (i) Om Berit veksler to femkroner og en tjuekrone til tre tikroner, og så to femkroner og tre tikroner til to tjuekroner,
OPPGAVER FRA ABELS HJØRNE I DAGBLADET
OPPGAVER FRA ABELS HJØRNE I DAGBLADET SETT 18 DAG 1 1. Arne, Birger og Christian har i gjennomsnitt 100 kroner. Arne har like mye som Birger og Christian til sammen. Hvor mye har Arne? A) 100 kr B) 150
oppgaver fra abels hjørne i dagbladet
oppgaver fra abels hjørne i dagbladet sett 6 dag 1 1. Hva er arealet av figuren? A)32 B) 35 C) 41 D) 44 E) 47 2. Sofie bruker 30 sekunder på å gå opp en rulletrapp som er ute av drift. Når rulletrappen
A)4 B) 6 C) 12 D) 24 E) 64
SETT 29 OPPGAVER FRA ABELS HJØRNE I DAGBLADET DAG 1 1. Nils abonnerer på Aftenposten, og en morgen består avisen av fire deler. Hvis Nils leser en del av gangen, i hvor mange forskjellige rekkefølger kan
A) 13 B) 15 C) 18 D) 23 E) 24
SETT 35 OPPGAVER FRA ABELS HJØRNE I DAGBLADET DAG 1 1. En digital klokke viser tiden i timer og minutter. Av og til er klokkeslettet det samme om man leser det baklengs, for eksempel klokken 02:20 eller
DEL 1 Uten hjelpemidler
Eksamen MAT1013 Matematikk 1T Høsten 2013 DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 7,5 10 4,0 10 12 4 Oppgave 2 (4 poeng) Siv har fire blå og seks svarte bukser
Niels Henrik Abels matematikkonkurranse Første runde
Niels Henrik Abels matematikkonkurranse 8. november 2018 (bokmål) Ikke bla om før læreren sier fra! Abelkonkurransens første runde består av 20 flervalgsoppgaver som skal løses i løpet av 100 minutter.
JULETENTAMEN, 9. KLASSE, 2015. FASIT
JULETENTAMEN, 9. KLASSE, 2015. FASIT DELPRØVE 1. OPPGAVE 1.1: 367 + 254 = 621 c: 67. 88 536 536 = 5896 e: 18,4-9,06 = 9,34 24,8 + 7,53 = 32,33 d: 3,2 : 0,8 = 32 : 8 = 4 32 f: 12 2. 5 2 = 12 2. 25 = 12
Matematisk julekalender for trinn, 2010
Matematisk julekalender for 8. - 10. trinn, 2010 Årets julekalender for 8.-10. trinn består av 9 enkeltstående. Oppgavene kan løses uavhengig av hverandre, og alle svar tilsvarer en bokstav. Bokstavene
Kapittel 5. Areal, omkrets, volum og overflate
Kapittel 5. Areal, omkrets, volum og overflate Mål for kapittel 5: Kompetansemål Mål for opplæringen er at eleven skal kunne løse problem som gjelder lengde, vinkel, areal og volum Læringsmål Etter at
oppgaver fra abels hjørne i dagbladet
oppgaver fra abels hjørne i dagbladet sett 44 dag 1 1. Et lykkehjul er inndelt i 30 like store sektorer. En av sektorene er merket med 7 kr, to er merket med 4 kr, tre er merket 3 kr og fire er merket
oppgaver fra abels hjørne i dagbladet
oppgaver fra abels hjørne i dagbladet sett 42 dag 1 1. Line og Heidi er to søstre. I fjor var Line 1 cm lavere enn gjennomsnittet av de to, mens i år er hun 1 cm høyere enn gjennomsnittet. Til sammen har
Lærerveiledning. Oppgave 1. Hva er arealet av det grå området i figuren? Tips til veiledning:
Oppgave 1 Hva er arealet av det grå området i figuren? A 3 B 5 C 6 D 9 E 1 Hva slags geometriske figurer er det grå området er sammensatt av? Finn grå områder som er like store. Tenke dere de mørke bitene
ENT3R. Oppgavehefte. Basert på tidligere eksamener for 10. klasse. Tommy Odland 2/4/2014
ENT3R Oppgavehefte Basert på tidligere eksamener for 10. klasse Tommy Odland 2/4/2014 Dette er et oppgavehefte med oppgaver inspirert fra tidligere eksamener for 10. klassinger. Målet er at heftet skal
Oppgaver i matematikk 19-åringer, spesialistene
Oppgaver i matematikk 19-åringer, spesialistene I TIMSS 95 var elever i siste klasse på videregående skole den eldste populasjonen som ble testet. I matematikk ble det laget to oppgavetyper: en for elever
Fasit. Grunnbok. Kapittel 4. Bokmål
Fasit 9 Grunnbok Kapittel 4 Bokmål Kapittel 4 Areal og omkrets 4.1 Alle unntatt C kan være riktige. 4.2 250 cm (= 2,50 m) langt kantebånd 4.3 3 m 4.4 a b 4 c 4 : 1 d e 9. Forhold 9 : 1 f s 2 g s 2 : 1
Kengurukonkurransen 2017
2017 «Et sprang inn i matematikken» Cadet (9. 10. trinn) Løsninger og registreringsskjema Dette heftet inneholder: Fasit og korte løsningsforslag Registreringsskjema Fasit med korte kommentarer Mange matematiske
Faktor terminprøve i matematikk for 10. trinn
Faktor terminprøve i matematikk for 10. trinn Høsten 201 Bokmål Navn: Gruppe: Prøveinformasjon Prøvetid: Hjelpemidler på Del 1 og 2: Framgangsmåte og forklaring: 5 timer totalt. Del 1 og Del 2 blir utdelt
Del 1 Skal leveres seinest etter 2 timer. Maks: 50 poeng
Del 1 Skal leveres seinest etter 2 timer. Maks: 50 poeng Hjelpemidler: Skrivesaker, passer, linjal og gradskive (vinkelmåler) 1 p Oppgave 1.1 Regn ut. a) = b) 5 + 5 + 5 + 5 = 2 p Oppgave 1.2 Regn ut. Skriv
Niels Henrik Abels matematikkonkurranse 2014 2015
Niels Henrik Abels matematikkonkurranse 204 205 Første runde. november 204 Ikke bla om før læreren sier fra! Abelkonkurransens første runde består av 20 flervalgsoppgaver som skal løses i løpet av 00 minutter.
Matematikk GS3 Temaer våren 2013 DEL 1: GEOMETRI. 1. Måleenheter. 1.1 Lengdeenheter. 1.2 Arealenheter. Eksempel 1: Gjør om 5 m til dm, cm og mm
Matematikk GS3 Temaer våren 2013 DEL 1: GEOMETRI 1. Måleenheter 1.1 Lengdeenheter Eksempel 1: Gjør om 5 m til dm, cm og mm m dm 5 m = 5 10 dm = 50 dm m cm 5 m = 5 10 10 cm = 5 10 2 cm = 500 cm m mm 5 m
Niels Henrik Abels matematikkonkurranse 2009 2010
okmål Niels Henrik bels matematikkonkurranse 009 00 Første runde. november 009 Ikke bla om før læreren sier fra! belkonkurransens første runde består av 0 flervalgsoppgaver som skal løses i løpet av 00
DEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) En vare koster 640 kroner. Butikkeieren vurderer å sette opp prisen med 10 % eller 15 %. a) Hvor mye vil varen koste dersom prisen settes opp med 10 %? b) Hvor
Lærerveiledning. Oppgave 1. Et rektangel har sidelengder 15 cm og 9 cm. Tina klipper bort et kvadrat i hvert hjørne. Hvert kvadrat har omkrets 8 cm.
Oppgave 1 Et rektangel har sidelengder 15 cm og 9 cm. Tina klipper bort et kvadrat i hvert hjørne. Hvert kvadrat har omkrets 8 cm. Hva er omkretsen til den nye figuren? A 32 cm B 40 cm C 48 cm D 56 cm
oppgaver fra abels hjørne i dagbladet
oppgaver fra abels hjørne i dagbladet sett 8 dag 1 1. Tidlig en morgen starter en snegle på bakken og klatrer oppover en 12 meter høy stolpe. Hver dag kryper den 2 meter oppover, men om natten sklir den
KappAbel 2010/11 Oppgaver 2. runde - Bokmål
Regler for poenggivning på oppgavene (i henhold til konkurransereglene) : Riktig svar gir 5 poeng. Galt svar gir 0 poeng Ubesvart oppgave gir 1 poeng. NB: På oppgavene 2 og 5 gis 5 poeng for 2 korrekte
oppgaver fra abels hjørne i dagbladet
oppgaver fra abels hjørne i dagbladet sett 9 dag 1 1. Kjetil og Øystein skal kjøre fra Stavanger til Oslo i hver sin bil. Kjetil starter først og holder en konstant fart på 75 km/t. Øystein starter en
A )169 B) 182 C) 196 D) 256 E) 364
SETT 19 OPPGAVER FRA ABELS HJØRNE I DAGBLADET DAG 1 1. En mor har to barn. Minst ett av barna er gutt. Hva er sannsynligheten for at begge barna er gutter? (Vi antar at barna ikke er tvillinger, og at
INNHOLD SAMMENDRAG GEOMETRI
INNHOLD GEOMETRI... 3 LINJE, STRÅLE OG LINJESTYKKE... 3 VINKEL... 3 STUMP, SPISS OG RETT VINKEL... 3 TOPPVINKLER... 4 NABOVINKLER... 4 SAMSVARENDE VINKLER... 4 OPPREISE EN NORMAL FRA ET PUNKT PÅ EN LINJE...
1P eksamen høsten 2017
1P eksamen høsten 2017 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (2 poeng) En vare koster 640 kroner. Butikkeieren vurderer å sette opp
A) 12 B) 14 C) 16 D) 18 E) 20
SETT 25 OPPGAVER FRA ABELS HJØRNE I DAGBLADET DAG 1 1. Et fotballag spilte 26 kamper i en serie, og fikk til sammen 43 poeng. Det ble gitt tre poeng for seier, ett for uavgjort og null for tap. Laget tapte
Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold
1 Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold 1 Regning med positive og negative tall 2 Regnerekkefølge og parenteser 3 Potenser 4 Algebra 5 Brøkregning 6 Ligninger 7 Ulikheter
Hovedområder og kompetansemål fra kunnskapsløftet:
Lærerveiledning: Passer for: Varighet: Geometriske morsomheter 8. 10. trinn 90 minutter Geometriske morsomheter er et skoleprogram der elevene får trening i å definere figurer ved hjelp av geometriske
Øvingshefte. Geometri
Øvingshefte Matematikk Ungdomstrinn/VGS Geometri Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk U-trinn/VGS Geometri 1 Geometri Seksjon 1 Oppgave 1.1 Finn omkrets (O)
Matematiske utfordringer
Matematiske utfordringer Tommy Odland Sist oppdatert: 31. juli 2016 Sammendrag Dette heftet inneholder utfordrende problemer for elever i ungdomsskolen og videregående skole. Problemene er av varierende
Kapittel 4. Algebra. Mål for kapittel 4: Kompetansemål. Mål for opplæringen er at eleven skal kunne
Kapittel 4. Algebra Mål for kapittel 4: Kompetansemål Mål for opplæringen er at eleven skal kunne gjøre overslag over svar, regne praktiske oppgaver, med og uten digitale verktøy, presentere resultatene
Kengurukonkurransen 2019
2019 «Et sprang inn i matematikken» Benjamin (6. 8. trinn) Løsninger og registreringsskjema Dette heftet inneholder: Fasit og korte løsningsforslag Registreringsskjema Fasit med korte kommentarer Mange
Eksamen 1T våren 2015 løsning
Eksamen T våren 05 løsning Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave ( poeng) Regn ut og skriv svaret på standardform 5 7,5 0 0,003
Oppgaver der du bruker regneark Forslag på oppgaver: 8.trinn
Oppgave 1: Lotte har satt opp utstyr som hun kan måle nedbørsmengden med. Hun målte nedbøren hver dag en uke i april. Resultatet av målingene ser du nedenfor. Ukedag Nedbør (mm) Søndag 10 Mandag 15 Tirsdag
Fasit til øvingshefte
Fasit til øvingshefte Matematikk Ungdomstrinn/VGS Geometri Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren fasit Matematikk U-trinn/VGS Geometri 1 Geometri Seksjon 1 Oppgave 1.1 Finn omkrets
Eksamen 1T våren 2015
Eksamen T våren 05 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave ( poeng) Regn ut og skriv svaret på standardform 5 7,5 0 0,003 Oppgave
Terminprøve i matematikk for 9. trinn 2015 Bokmål
Terminprøve i matematikk for 9. trinn 2015 Bokmål Navn: Klasse: Prøveinformasjon Prøvetid: Kl 08.15 11.20 Hjelpemidler på Del 1 og 2: På Del 1 kan du bruke vanlige skrivesaker, passer, linjal med centimetermål
oppgaver fra abels hjørne i dagbladet
oppgaver fra abels hjørne i dagbladet sett 4 dag 1 1. Hvor mange av de ett hundre første positive heltallene, 1, 2, 3,, 99, 100, er delelig med 2, 3, 4 og 5? A)0 B) 1 C) 2 D) 3 E) 4 2. Ett tusen terninger
Lærerveiledning. Oppgave 1. Tallene på figuren viser omkretsen av hver av de fire små trekantene. Hva er omkretsen av den store trekanten?
Oppgave 1 Tallene på figuren viser omkretsen av hver av de fire små trekantene. Hva er omkretsen av den store trekanten? A 43 B 59 C 55 D 67 E 91 Hvilke linjestykker er en del av omkretsen til den store
6: Trigonometri. Formlikhet bør kanskje repeteres. Og Pytagoras læresetning. Se nettsidene! Oppgaver Innhold Dato
Plan for hele året: - Kapittel 7: Mars - Kapittel 8: Mars/april 6: Trigonometri - Repetisjon: April/mai - Økter, prøver, prosjekter: Mai - juni Ordet geometri betyr egentlig jord- (geos) måling (metri).
OPPGAVER FRA ABELS HJØRNE I DAGBLADET
OPPGAVER FRA ABELS HJØRNE I DAGBLADET SETT 33 DAG 1 1. Jon skal ha pølsegrillfest i hagen. I butikken finnes det bare 7-pakninger med grillpølser, 10-pakninger med lomper og 12-pakninger med pølsebrød.
Matematisk julekalender for trinn, 2014
Matematisk julekalender for 8.-10. trinn, 2014 Årets julekalender for 8.-10. trinn består av 9 enkeltstående oppgaver som kan løses uavhengig av hverandre. Alle oppgavene har flere svaralternativer, hvorav
Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold
1 Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold 1 Regning med positive og negative tall 2 Regnerekkefølge og parenteser 3 Potenser 4 Algebra 5 Brøkregning 6 Ligninger 7 Ulikheter
Eksamen MAT1013 Matematikk 1T Va ren 2014
Eksamen MAT1013 Matematikk 1T Va ren 2014 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 2,510 3,010 15 5 Oppgave 2 (2 poeng) Regn ut og skriv svaret så enkelt som mulig 1 2 0 1 3 2 9 6 4
Lag et bilde av geometriske figurer, du også!
Lag et bilde av geometriske figurer, du også! 6 Geometri 1 MÅL I dette kapitlet skal du lære om firkanter trekanter sammensatte figurer sirkler KOPIERINGSORIGINALER 6.1 Tangram 6.4 Felles problemløsing
Eksamen. Fag: AA6516 Matematikk 2MX. Eksamensdato: 7. desember 2005. Vidaregåande kurs I / Videregående kurs I
Eksamen Fag: AA6516 Matematikk 2MX Eksamensdato: 7. desember 2005 Vidaregåande kurs I / Videregående kurs I Studieretning: Allmenne, økonomiske og administrative fag Privatistar/Privatister Oppgåva ligg
Øvingshefte. Geometri
Øvingshefte Matematikk Mellomtrinn Geometri Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk Mellomtrinn Geometri 1 Geometri Seksjon 1 Oppgave 1.1 Fargelegg a) 4 ruter
Niels Henrik Abels matematikkonkurranse 2012 2013
okmål Niels Henrik bels matematikkonkurranse 2012 201 Første runde 8. november 2012 Ikke bla om før læreren sier fra! belkonkurransens første runde består av 20 flervalgsoppgaver som skal løses i løpet
Niels Henrik Abels matematikkonkurranse 2013 2014. Løsninger
Niels Henrik Abels matematikkonkurranse 0 04. Løsninger Første runde 7. november 0 Oppgave. Siden er et primtall, vil bare potenser av gå opp i 0. Altså,,,,..., 0 i alt tall........................................
Hvor mange hundekjeks?
Mattenøtter 2 Innledning Her finner du et lite knippe mattenøtter som passer for elever på videregående nivå. Nøttene har noe ulik vanskelighetsgrad, og er sortert fra lettere til mer krevende. Tidsbruk
oppgaver fra abels hjørne i dagbladet
oppgaver fra abels hjørne i dagbladet sett 40 dag 1 1. En vare koster 70 kroner. Hva vil varen koste dersom prisen økes med 1000 %? A) 140 kr B) 700 kr C) 707 kr D) 770 kr E) 70000 kr 2. Per er vaktmester
Husk at løsningsforslag er bare forslag, og at det går an å tenke og løse oppgavene på mange ulike måter. Det er imidlertid kun ett riktig svar.
Fasit med tips og kommentarer Julekalender 2018. 5. -7. trinn Nivå 1 og nivå 2. De letteste oppgavene kommer først. Alle oppgavene egner seg for samarbeid der elevene diskuterer egne løsningsforslag. Tips
OPPGAVER FRA ABELS HJØRNE DAGBLADET
OPPGAVER FRA ABELS HJØRNE DAGBLADET SETT 3 DAG 1 1. I en klasse med 30 elever var det 12 som drev med orientering, mens 17 spilte på fotballag. 5 av elevene gjorde begge deler. Hvor mange av de 30 drev
Kul geometri - overflateareal og volum av kuler
Kul geometri - overflateareal og volum av kuler Helmer Aslaksen Institutt for lærerutdanning og skoleforskning/matematisk institutt Universitetet i Oslo [email protected] www.math.nus.edu.sg/aslaksen/
1P kapittel 3 Geometri Løsninger til innlæringsoppgavene
1P kapittel Geometri Løsninger til innlæringsoppgavene.1 a 10 mm = 10 1 mm = 10 0,1 cm = 1 cm Bredden av A4-arket er 1 cm. 9800 m = 9800 1 m = 9800 0,001 km = 9,8 km Anne løp 9,8 km. c 60 km = 60 1 km
Matematisk julekalender for trinn, 2012
Matematisk julekalender for 1.-4. trinn, 2012 Årets julekalender for 1. 4. trinn består av ni oppgaver. Alle oppgavene er laget i tre utgaver; lett, middels og vanskelig (merket med hhv. L, M og V). Alle
2. Hvis antall epler man år for 45 kroner er det samme som antall kroner man må betale for 80 epler, hvor mye koster da 20 epler?
SETT 16 OPPGAVER FRA ABELS HJØRNE I DAGBLADET DAG 1 1. Supermann jakter på Superskurk. Supermann kan fly 5 km per minutt, mens Superskurk kan fly 3 km per minutt. Superskurk er bare 1 km unna sitt sikre
Kul geometri - overflateareal og volum av kuler
Kul geometri - overflateareal og volum av kuler Helmer Aslaksen Institutt for lærerutdanning og skoleforskning/matematisk institutt Universitetet i Oslo [email protected] www.math.nus.edu.sg/aslaksen/
Eksamen 1P våren 2011
Eksamen 1P våren 011 Del 1: Uten hjelpemidler Oppgave 1 a) Når kursen på islandske kroner er 5,5, svarer 500 ISK til 5, 5 kr 500 = 6, 5 kr 100 b) Hvis vi setter kursen på islandske kroner til 5, blir omregningen
Fasit til øvingshefte
Fasit til øvingshefte Matematikk Mellomtrinn Geometri Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren fasit Matematikk Mellomtrinn Geometri 1 Geometri Seksjon 1 Oppgave 1.1 Fargelegg a) 4 ruter
1 Primtall og divisorer
Oppgaver 1 Primtall og divisorer KATEGORI 1 1.1 Primtallsfaktorisering Oppgave 1.110 Bruk lommeregneren til å finne ut om tallet er et primtall. a) 47 b) 61 c) 143 Oppgave 1.111 Finn ut ved hjelp av tverrsummen
Kengurukonkurransen 2019
2019 «Et sprang inn i matematikken» Ecolier (4. 5. trinn) Løsninger og registreringsskjema Dette heftet inneholder: Fasit og korte løsningsforslag Registreringsskjema Fasit med korte kommentarer Mange
Eksamen MAT 1011 Matematikk 1P Høsten 2013
Eksamen MAT 1011 Matematikk 1P Høsten 01 Oppgave 1 (1 poeng) Per har lest 150 sider i en bok. Dette er 0 % av sidene i boka. Hvor mange sider er det i boka? Går «veien om 1»: 150 1% 5 0 100% 5 100 500
Eksamen REA 3022 Høsten 2012
Eksamen REA 0 Høsten 01 Del 1 Uten hjelpemidler Oppgave 1 (5 poeng) Deriver funksjonene a) f x x 1 f '( x) x 1 f ' x 8x b) g x x x 1 g( x) x x 1 1 1 g( x) x x x x 1 g x x x x c) hx x e h x x e x e x x
-!4%-!4)++5.$%23 +%,3%.
6EDLEGG -!4%-!4)++5.$%23 +%,3%. Dette er en undersøkelse om forkunnskaper hos nye studenter. Den blir gjennomført ved alle universiteter og høgskoler i Norge. Ansvarlig for undersøkelsen er Norsk Matematikkråd.
99 matematikkspørsma l
99 matematikkspørsma l TALL 1. Hva er et tall? Et tall er symbol for en mengde. Et tall forteller om antallet i en mengde. 5 sauer eller 5 epler eller 5.. 2. Hvilket siffer står på eneplassen i tallet
Eksamen MAT 1011 Matematikk 1P Våren 2013
Eksamen MAT 1011 Matematikk 1P Våren 01 Oppgave 1 ( poeng) Hilde skal kjøpe L melk,5 kg poteter 0,5 kg ost 00 g kokt skinke Gjør et overslag og finn ut omtrent hvor mye hun må betale. L melk:14,95 kr 15
Geometriske morsomheter trinn 90 minutter
Lærerveiledning Passer for: Varighet: Geometriske morsomheter 8. 10. trinn 90 minutter Geometriske morsomheter er et skoleprogram hvor elevene får trening i å definere figurer ved hjelp av geometriske
Punktene A, B, C og D ligger på linje med innbyrdes avstander AB = 3, BC = 6, CD = 8 og DE = 4.
Oppgave Punktene A, B, C og D ligger på linje med innbyrdes avstander AB =, BC = 6, CD = 8 og DE =. Hva er minste mulige verdi for AE? A 0 B C D E 5 Tegn! Start med å tegne ei lang rett linje, plasser
