η = 2x 1 + x 2 + x 3 x 1 + x 2 + x 3 + 2x 4 3 x x 3 4 2x 1 + x 3 + 5x 4 1 w 1 =3 x 1 x 2 x 3 2x 4 w 2 =4 x 1 x 3 w 3 =1 2x 1 x 3 5x 4
|
|
- Ragna Arntzen
- 8 år siden
- Visninger:
Transkript
1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MA-IN-ST 233 Konveksitet og optimering Eksamensdag: 31. mai 2000 Tid for eksamen: Oppgavesettet er på 5 sider. Vedlegg: Tillatte hjelpemidler: Ingen Alle trykte og skrevne. Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Oppgavesettet består av 8 spørsmål med tilnærmet samme vekt. LØSNINGSFORSLAG. Oppgave 1 Diverse spørsmål Avgjør om følgende påstander er sanne eller gale, og begrunn svaret. 1-a Det nnes et LP problem med tilhørende dualt problem slik at begge disse problemene har tillatte løsninger og ubegrenset verdi. Løsning: Galt. Anta (P) er et maksimeringsproblem. Da vil enhver tillatt løsning i (D) (som altså eksisterer) gir opphav til en øvre skranke på den optimale verdien i (P). Men da kan jo ikke (P) være ubegrenset (dvs. ha tillatte løsninger med vilkårlig stor verdi på objektivfunksjonen). 1-b La p 1,...,p r IR n og anta at x og y er konveks kombinasjoner av p 1,...,p r. Anta at z er en konveks kombinasjon av x og y. Da er z også en konveks kombinasjon av p 1,...,p r. (Fortsettes på side 2.)
2 Eksamen i MA-IN-ST 233, 31. mai 2000 Side 2 Løsning: Sant. La S = {p 1,...,p r } så da er x, y conv(s). Dermed ligger z, som er en konveks kombinasjon av x og y, også i conv(s) idet dette er en konveks mengde. Så da må z være en konveks kombinasjon av p 1,...,p r. Alternativt: Har x = j λ jp j og y = j λ j p j for passende λ j,λ j 0 med j λ j = j λ j =1. Videre er z =(1 µ)x+µyfor passende µ [0, 1]. Så da blir z =(1 µ) j λ jp j +µ j λ j p j = j ((1 µ)λ j + µλ j )p j som er en konveks kombinasjon av p 1,...,p r idet vektene er ikkenegative og har sum 1. 1-c La P være et begrenset polyeder i IR n og la f : P IR være en konveks funksjon. Da vil f ha et maksimumspunkt (over P ) som er et hjørne i P. Løsning: Sant. Siden P er begrenset polyeder er P også en polytop (se Hovedteoremet for polyedre, Theorem og Cor ), si P = conv({p 1,...,p r }) der p 1,...,p r er hjørnene i P. Dener nå f := max j r f(p j ). Hvis x P kan vi skrive x = r j=1 λ jp j for passende ikkenegative koesienter λ j med sum 1. Siden f er konveks gir Jensens ulikhet (Th.5.2.2) at f(x) =f( j λ j p j ) j λ j f(p j ) j λ j f =f j λ j =f. ser vi at f har et maksi- Men idet det ns minst en j slik at f(p j ) = f mumspunkt over P som er et hjørne i P. Oppgave 2 LP 2-a Løs følgende LP problem med simpleksmetoden: maksimer 2x 1 + x 2 + x 3 forutsatt at x 1 + x 2 + x 3 + 2x 4 3 x x 3 4 2x 1 + x 3 + 5x 4 1 x 1,x 2,x 3,x 4 0. Er det en entydig optimal løsning? Begrunn svaret. Løsning: Slipper Fase I idet første basisliste er tillatt: η = 2x 1 + x 2 + x 3 w 1 =3 x 1 x 2 x 3 2x 4 w 2 =4 x 1 x 3 w 3 =1 2x 1 x 3 5x 4 Første pivotering: x 2 inn i basis og w 1 ut av basis. Resultat: η =3 + x 1 w 1 2x 4 x 2 =3 x 1 w 1 x 3 2x 4 w 2 =4 x 1 x 3 w 3 =1 2x 1 x 3 5x 4 (Fortsettes på side 3.)
3 Eksamen i MA-IN-ST 233, 31. mai 2000 Side 3 Andre pivotering: x 1 inn i basis og w 3 ut av basis. Resultat: η =7/2 (1/2)w 3 w 1 (1/2)x 3 (9/2)x 4 x 2 =5/2 + (1/2)w 3 w 1 (1/2)x 3 + (9/2)x 4 w 2 =7/2 + (1/2)w 3 (1/2)x 3 + (5/2)x 4 x 1 =1/2 (1/2)w 3 (1/2)x 3 (5/2)x 4 Denne basislisten er optimal. Optimal løsning er x 1 = 1/2, x 2 = 5/2, w 2 =7/2og alle andre variable er null. Optimal verdi er 7/2. Det nnes ingen andre optimale løsninger fordi alle koesientene foran ikkebasisvariable er (strengt) negative. (Enhver annen tillatt løsning fremkommer ved å øke minst en ikkebasisvariabel og da blir verdien på objektivfunksjonen lavere.) 2-b Betrakt et LP problem max {c T x : Ax b} der alle komponenter i b er positive. Anta at problemet har følgende egenskap: når problemet løses med simpleksalgoritmen så er det aldri alternative valg for utgående basisvariabel. Forklar hvorfor sirkling ikke kan nne sted i et slikt problem (uansett hvilken pivoteringsregel vi bruker). Løsning: Siden alle komponenter i b er positive trenger vi ikke Fase I av simpleksmetoden; første basisliste med basisløsning x = b er tillatt og ikkedegenerert (alle basisvariable er positive). Vi starter så simpleksalgoritmen og velger en ikkebasisvariabel x j som ved pivotering skal inn i basis. Siden basisvariablene er ikkedegenerert kan vi øke x j til en viss maksimal verdi θ>0.ved antagelsen blir da nøyaktig en basisvariabel null (ellers ville det vært alternative valg for utgående variabel). Så alle de andre basisvariablene er positive og dette gjelder også den nye basisvariabelen x j. Pivoteringen er altså ikkedegenert og vi har fått en ny basisløsning som er ikkedegenerert. Samme konklusjon gjelder da også for alle de neste pivoteringene (av samme grunn). Vi kan da ikke få sirkling (idet objektivfunksjonen avtar strengt i hver iterasjon). Oppgave 3 Konveksitet Dener funksjonen f :IR 2 IR ved 3-a f(x 1,x 2 )=4x 2 1+x 2 2+2x 1 x 2 6x 1 3x 2. Vis at [ f er en] konveks funksjon. (Hint: Vis at f(x) =x T Ax + b t x der 4 1 A =, b 1 1 T =[ 6, 3] og studer egenskaper ved A.) Løsning: f er en kvadratisk funksjon med Hessematrise A. Siden A er positiv semidenitt er f konveks (Theorem 5.3.3, karakterisering via Hessematrisen). Man kan vise at A er positiv semidenitt på ere måter. Mulighet 1: x T Ax =4x x 1x 2 +x 2 2 =3x2 1 +x2 1 +2x 1x 2 +x 2 2 =3x2 1 +(x 1+x 2 ) 2 0for alle x 1,x 2.(Faktisk er A positiv denitt.) Mulighet 2: beregne egenverdiene og se at begge er positive. Et tredje alternativ er å observere at A er symmetrisk og diagonal dominant noe som medfører at A er positiv semidenitt (nevnt på forelesning). (Fortsettes på side 4.)
4 Eksamen i MA-IN-ST 233, 31. mai 2000 Side 4 3-b Løs optimeringsproblemet under. Finn optimal verdi og alle optimale løsninger. minimer f(x 1,x 2 ) forutsatt at (i) x 1 + x 2 2, (ii) x 1 + x 2 0, (iii) x 1,x 2 0. Løsning: La C være mengden av tillatte løsninger som da blir en polytop i planet med hjørner (0, 0), (2, 0) og (1, 1) (trekant). Gradienten til f er f(x) = (8x 1 +2x 2 6,2x 1 +2x 2 3). Vi nner derfor at eneste stasjonære punkt for f er z := (1/2, 1) (har løst f(x) =0). Siden z C er det klart at det indre av C ikke inneholder noen optimal løsning av problemet (dette sees f.eks. ut fra KKT betingelsene). Altså er det nok å lete etter optimale løsninger på randen av C og denne består av tre deler L 1, L 2 og L 3 som hver er et linjesegment. Finner derfor minimum av f over hver L i. (En alternativ metode er å anvende KKT teoremet direkte og gjennomføre en drøfting ut fra hvilke ulikheter som er aktive og bruke KKT betingelsene; dette blir nokså likt metoden vi her bruker. Merk at man da må bemerke at svak Slater betingelse holder her.) 1. Tilfellet x L 1 gitt ved 0 x 1 2 og x 2 =0. Da er f(x) =4x 2 1 6x 1 ; konvekst annengradspolynom. Minimumspunkt for denne funksjonen (av en variabel) er x 1 =3/4(løsning av 8x 1 6=0). Så minimumspunkt for f over L 1 er (3/4, 0) med tilhørende minimumsverdi f 1 =0. 2. Tilfellet x L 2 gitt ved 1 x 1 2 og x 2 =2 x 1. Da er f(x) = 3x 2 1 3x 1 2;konvekst annengradspolynom. Minimumspunkt for denne funksjonen (av envariabel) er x 1 =1/2(løsning av 6x 1 3=0) som ligger utenfor denisjonsområdet [1, 2]. Så det er klart at minimumspunkt for f over L 2 er (1, 1) (svarer til venstre endepunkt av denisjonsområdet [1, 2] for x 1 ). Tilhørende minimumsverdi er f 2 = Tilfellet x L 3 gitt ved x2 = x 1 og 0 x 1 1. Daerf(x)=7x 2 1 9x 1;konvekst annengradspolynom. Minimumspunkt er x 1 =9/14. Så minimumspunkt for f over L 3 blir dermed (9/14, 9/14) med tilhørende minimumsverdi f 3 = 81/28. Konklusjon: siden f 3 er minst, har vi at eneste minimumspunkt for f over C er x =(9/14, 9/14) og tilhørende minimumsverdi er 81/28. 3-c La n være et positivt heltall der n 10 og dener polyedret P IR n+1 ved P = {x IR n+1 : 0 x 1, n x j +5x n+1 9} j=1 der 0 (1) erenvektor av lengde n+1 med bare nuller (enere). Beskriv mengden av alle hjørner i polyedret P og begrunn svaret. Løsning: La x være et hjørne. Dener N := {1,...,n}. Bruker resultatet at hjørne = ekstempunkt. La J = {j n +1:0<x j <1}.Påstand: J 1. Bevis for påstand: Anta motsatt at 0 <x i <1og 0 <x j <1, der i j. Hvis i, j n, ser vi at x 1 := x + ɛ(e i e j ) og x 2 := x ɛ(e i e j ) begge ligger i P og oppfyller x =(1/2)x 1 +(1/2)x 2 ; dette strider mot at x er ekstempunkt. Tilsvarende, hvis f.eks. i n og j = n+1 kan vi denere x 1 := x+ɛ(5e i e j ) og (Fortsettes på side 5.)
5 Eksamen i MA-IN-ST 233, 31. mai 2000 Side 5 x 2 := x ɛ(5e i e j ) og igjen er x =(1/2)x 1 +(1/2)x 2 som gir en motsigelse. Dette viser påstanden. Vi har da to muligheter. Mulighet 1. J =. Da er hver komponent i x lik 0 eller 1, så det ns en mengde S {1,...,n+1} slik at x j =1for j S og x j =0ellers. Idet x oppfyller ulikheten n j=1 x j +5x n+1 x j 9 må S oppfylle kravet : ( ) hvis n +1 S er S 5og hvis n +1 S er S 9. Mulighet 2. J =1,siJ = {k}.damå( ) n j=1 x j +5x n+1 =9for ellers ville vi igjen (som over) utlede noe som strider mot ekstrempunktegenskapen. Må ha at k = n +1.Fordi: hvis k n ville vi få fra ( ) at x k er et heltall (idet de andre komponentene er 0 eller 1) som strider mot at 0 <x k <1(husk at k J). Altså er k = n +1.Daerx j lik 0 eller 1 for alle j n så bare x n+1 er fraksjonell. Da har vi, for passende S N at x j =1for j S og x j =0for j N \ S. Dermed nner vi x n+1 ut fra likningen ( ) så x n+1 =(9 S )/5og siden 0 <x n+1 < 1 må vi da ha at 5 S 8. Alle disse løsningene vi har funnet er faktisk også ekstrempunkt. Fordi: vi kan for hver slik x se på x =(1/2)x 1 +(1/2)x 2 der x 1, x 2 P og observere at for hver komponent ix som er 0 (hhv. 1) må tilsvarende komponenter i x 1 og x 1 også være 0 (hhv. 1) (fordi alle komponenter ligger mellom 0 og 1). Ekstrempunkter er derfor (der χ S er vektoren med komponenter x j =1for j S og x j =0for j S): (i) χ S der S {1,...,n+1}oppfyller ( ), og (ii) (χ S,x n+1 ) der S N, 5 S 8og x n+1 =(9 S )/5. En alternativ metode er å bruke denisjonen av hjørne og se på n lineært uavhendige ulikheter i denisjonen av P som settes til likhet. I starten observerer man da at vi ikke kan sette både x j 0 og x j 1 til likhet samtidig. Deretter nner man løsninger som må sjekkes for om de ligger i P som over. Geir Dahl
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 2. juni 2006 Tid for eksamen: 09.00 12.00 Oppgavesettet er på 5 sider. Vedlegg: INF-MAT 3370/INF-MAT 4370 Lineær
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF-MAT 3370 Lineær optimering Eksamensdag: 3. juni 2008 Tid for eksamen: 14.30 17.30 Oppgavesettet er på 5 sider. Vedlegg: Ingen
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF-MAT 3370 Lineær optimering Eksamensdag: 1. juni 2010 Tid for eksamen: 09.00 12.00 Oppgavesettet er på 5 sider. Vedlegg: Ingen
DetaljerLP. Leksjon 2. Kapittel 2: simpleksmetoden, forts. initialisering to faser ubegrenset løsning geometri
LP. Leksjon 2. Kapittel 2: simpleksmetoden, forts. initialisering to faser ubegrenset løsning geometri 1 / 16 Repetisjon LP problem tillatt løsning, optimal løsning basisliste basis, basisvariable og ikkebasisvariable
DetaljerLP. Leksjon 3. Kapittel 3: degenerasjon.
LP. Leksjon 3. Kapittel 3: degenerasjon. degenerasjon eksempel på sirkling den leksikografiske metoden andre pivoteringsregler fundamentaleoremet i LP 1 / 23 Repetisjon simpleksalgoritmen: sekvens av pivoteringer
DetaljerLP. Leksjon 5. Kapittel 5: dualitetsteori. motivasjon det duale problemet svak og sterk dualitet det duale til LP problemer på andre former
LP. Leksjon 5 Kapittel 5: dualitetsteori motivasjon det duale problemet svak og sterk dualitet det duale til LP problemer på andre former 1 / 26 Motivasjon Til ethvert LP problem (P) er det knyttet et
DetaljerKapittel 2: simpleksmetoden, forts.
LP. Leksjon 2 Kapittel 2: simpleksmetoden, forts. initialisering to faser ubegrenset løsning geometri LP. Leksjon 2: #1 of 14 Repetisjon LP problem tillatt løsning, optimal løsning basisliste basis, basisvariable
DetaljerKapittel 5: dualitetsteori
LP Leksjon 5 Kapittel 5: dualitetsteori motivasjon det duale problemet svak og sterk dualitet det duale til LP problemer på andre former LP Leksjon 5: #1 of 17 Motivasjon Til ethvert LP problem (P) er
DetaljerLP. Leksjon 6: Kap. 6: simpleksmetoden i matriseform, og Seksjon 7.1: følsomhetsanalyse
LP. Leksjon 6: Kap. 6: simpleksmetoden i matriseform, og Seksjon 7.1: følsomhetsanalyse matrisenotasjon simpleksalgoritmen i matrisenotasjon eksempel negativ transponert egenskap: bevis følsomhetsanalyse
DetaljerLP. Leksjon 1. Kapittel 1 og 2: eksempel og simpleksmetoden
LP. Leksjon 1. Kapittel 1 og 2: eksempel og simpleksmetoden Dette emnet gir en innføring i lineær optimering og tilgrensende felt. hva er LP (lin.opt.=lin.programmering) mer generelt: matematisk optimering
DetaljerKapittel 3: degenerasjon.
LP. Leksjon 3 Kapittel 3: degenerasjon. degenerasjon eksempel på sirkling den leksikografiske metoden andre pivoteringsregler fundamentaleoremet i LP LP. Leksjon 3: #1 of 15 Repetisjon simpleksalgoritmen:
DetaljerKapittel 1 og 2: eksempel og simpleksmetoden
LP. Leksjon 1 Kapittel 1 og 2: eksempel og simpleksmetoden et eksempel fra produksjonsplanlegging simpleksalgoritmen, noen begreper algoritmen LP. Leksjon 1: #1 of 14 Eksempel: produksjonsplanlegging Produkter:
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Kalkulus og lineær algebra Eksamensdag: Lørdag 25. Mai 29. Tid for eksamen: :5 4:5. Oppgavesettet er på 7 sider. Vedlegg:
DetaljerLP. Leksjon 4. Kapittel 4: effektivitet av simpleksmetoden
LP. Leksjon 4 Kapittel 4: effektivitet av simpleksmetoden hvordan måle effektivitet? verste tilfelle analyse, Klee-Minty kuben gjennomsnittsanalyse og i praksis 1 / 18 Status Hvor langt er vi kommet i
DetaljerLP. Leksjon 9: Kapittel 13: Nettverk strøm problemer, forts.2
LP. Leksjon 9: Kapittel 13: Nettverk strøm problemer, forts.2 Vi tar siste runde om (MKS): minimum kost nettverk strøm problemet. Skal oppsummere algoritmen. Se på noen detaljer. Noen kombinatorisk anvendelser
DetaljerLP. Leksjon 8: Kapittel 13: Nettverk strøm problemer, forts.1
LP. Leksjon 8: Kapittel 13: Nettverk strøm problemer, forts.1 Vi fortsetter studiet av (MKS): minimum kost nettverk strøm problemet. Har nå en algoritme for beregning av x for gitt spenntre T Skal forklare
DetaljerKapittel 4: effektivitet av simpleksmetoden
LP. Leksjon 4 Kapittel 4: effektivitet av simpleksmetoden hvordan måle effektivitet? verste tilfelle analyse, Klee-Minty kuben gjennomsnittsanalyse og i praksis LP. Leksjon 4: #1 of 14 Status Hvor langt
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Kalkulus og lineær algebra Eksamensdag: Onsdag 9 mai 9 Tid for eksamen: 4:3 8:3 Oppgavesettet er på 7 sider Vedlegg: Tillatte
DetaljerEKSAMEN I TMA4180 OPTIMERINGSTEORI
Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side av 4 Faglig kontakt under eksamen: Marte Pernille Hatlo 7359698 / 97537854 EKSAMEN I TMA48 OPTIMERINGSTEORI Fredag 2. juni
DetaljerLP. Kap. 17: indrepunktsmetoder
LP. Kap. 17: indrepunktsmetoder simpleksalgoritmen går langs randen av polyedret P av tillatte løsninger et alternativ er indrepunktsmetoder de finner en vei i det indre av P fram til en optimal løsning
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT111 Prøveeksamen Eksamensdag: 5. juni 21. Tid for eksamen: 1. 13.3. Oppgavesettet er på 9 sider. Vedlegg: Tillatte hjelpemidler:
Detaljery(x + y) xy(1) (x + y) 2 = x(x + y) xy(1) (x + y) 3
Løsning Øvingsoppgaver Funksjoner i ere variabler MET 1180 Matematikk April 017 Oppgave 1. (a) Vi har at f = 3 og f = +. Hessematrisen blir dermed 6 (b) Ved kvotientregelen har vi at f = f = og de andreordens
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: Eksamensdag: Torsdag 8. juni 07 Tid for eksamen: 09.00 3.00 Oppgavesettet er på 7 sider. Vedlegg: Tillatte hjelpemidler: MAT-INF360
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 0 Lineær algebra Eksamensdag: Mandag 0. desember 0 Tid for eksamen: 4.30 8.30. Oppgavesettet er på 7 sider. Vedlegg: Tillatte
DetaljerMA1201 Lineær algebra og geometri Høst 2017
Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag MA1201 Lineær algebra og geometri Høst 2017 Løsningsforslag Øving 1 Med forbehold om feil. Kontakt gjerne mads.sandoy@ntnu.no
DetaljerEksamen i TMA4180 Optimeringsteori Løsningsforslag.
Eksamen i TMA48 Optimeringsteori Løsningsforslag. Oppgave :. ordens betingelse for minima gir oss f(x) = [ 2x 2x 2 + 2 2x 2 2x 2 ] [ = som er oppfylt for når x 2 = x +. I dette punktet er [ ] 2 2 2 f(x)
DetaljerDet matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 227 Numerisk lineær algebra Eksamensdag: 5. desember 2001 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 5 sider. Vedlegg:
DetaljerLøsningsforslag MAT102 Vår 2018
Løsningsforslag MAT102 Vår 2018 Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT102 Tirsdag 12 juni 2018, kl 0900-1400 Oppgavesettet har fem oppgaver Hver deloppgave
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MoD200 Eksamensdag: 15. desember 2003 Tid for eksamen: 14.30 17.30 Oppgavesettet er på 5 sider. Vedlegg: Tillatte hjelpemidler:
DetaljerEKSAMEN I NUMERISK LINEÆR ALGEBRA (TMA4205)
Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side av 6 Faglig kontakt under eksamen: Navn: Brynjulf Owren 93064 EKSAMEN I NUMERISK LINEÆR ALGEBRA TMA405 Fredag 5 desember
DetaljerLP. Leksjon 7. Kapittel 13: Nettverk strøm problemer
LP. Leksjon 7. Kapittel 13: Nettverk strøm problemer Skal studere matematiske modeller for strøm i nettverk. Dette har anvendelser av typen fysiske nettverk: internet, vei, jernbane, fly, telekommunikasjon,
DetaljerNotater nr 9: oppsummering for uke 45-46
Notater nr 9: oppsummering for uke 45-46 Bøkene B (læreboken): Tor Gulliksen og Arne Hole, Matematikk i Praksis, 5. utgave. K (kompendium): Amir M. Hashemi, Brukerkurs i matematikk MAT, høsten. Oppsummering
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Lineær algebra Eksamensdag: Mandag,. desember 7. Tid for eksamen: 4. 8.. Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler:
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF Logiske metoder for informatikk Eksamensdag:. desember Tid for eksamen:.. Oppgavesettet er på sider. Vedlegg: Ingen Tillatte
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger del 1 Eksamensdag: Tirsdag 7. desember 2004 Tid for eksamen: 14:30 17:30 Oppgavesettet
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger. Eksamensdag: Torsdag 1. oktober 2005. Tid for eksamen: 9:00 11:00. Oppgavesettet er på
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 1120 Lineær algebra Eksamensdag: Mandag 5 desember 2016 Tid for eksamen: 09.00 13.00 Oppgavesettet er på 6 sider. Vedlegg:
DetaljerLøsning Eksamensrelevante oppgaver i ELE 3719 Matematikk Vektorer, matriser og lineær algebra Dato Februar Oppgave 1. (A) Vi leser av at
Løsning Eksamensrelevante oppgaver i ELE 379 Matematikk Vektorer, matriser og lineær algebra Dato Februar 05 Oppgave. (A) Vi leser av at A = 3 5, B = ( 0 5 ), C = 0 5 9 og har dermed at π x = Ax + BT =
DetaljerR: 0, , = 6000 D : 0, , = 4000 La v n = angi fordelingen etter n år (dvs. a b n stemmer for R og
EGENVERDIER FOR MATRISER a Motiverende eksempel En by i USA har 0000 innbyggere som stemmer ved valget hvert år. I dag stemmer 8000 for R og 000 for D. Hvert år går 30% fra R til D og 0% fra D til R. Hva
DetaljerDAFE ELFE Matematikk 1000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 26. mars 2015 Antall oppgaver: 10 + 3
Innlevering DAFE ELFE Matematikk HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 26. mars 2 Antall oppgaver: + 3 For hver av matrisene nedenfor nn den ekvivalente matrisen som er på redusert
DetaljerEksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag
Institutt for matematiske fag Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag Faglig kontakt under eksamen: Martin Strand Tlf: 970 7 848 Eksamensdato: 3. mai 014 Eksamenstid (fra
DetaljerMAT1120 Oppgaver til plenumsregningen torsdag 25/9
MAT1120 Oppgaver til plenumsregningen torsdag 25/9 Øyvind Ryan (oyvindry@i.uio.no) September 2008 Oppgaver fra 5.1 Denisjon av egenverdier, egenvektorer, egenrom. Teorem 1 s. 306: Egenverdiene til en triangulær
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger. Eksamensdag: Onsdag 12. oktober 2011. Tid for eksamen: 15:00 17:00. Oppgavesettet er
DetaljerSIF5030/75047 Optimeringsteori, 5 timer. Ingen hjelpemidler.
Oppgave1: SIF5/757 Optimeringsteori, 5 timer Ingen hjelpemidler. (a) Forklar hva som menes med en konveks funksjon, og argumentér for at alle minima til en konveks funksjon på en konveks mengde er globale
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT1100 Kalkulus Eksamensdag: Fredag 14. oktober 2016 Tid for eksamen: 13.00 15.00 Oppgavesettet er på 5 sider. Vedlegg: Svarark,
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 11 Modellering og beregninger. Eksamensdag: Torsdag 12. oktober 26. Tid for eksamen: 9: 11:. Oppgavesettet er på 8 sider.
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 1120 Lineær algebra Eksamensdag: 9. desember 2014. Tid for eksamen: 14.30 18.30. Oppgavesettet er på 6 sider. Vedlegg: Tillatte
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT-INF 1100 Modellering og beregninger. Eksamensdag: Onsdag 9. oktober 2013. Tid for eksamen: 15:00 17:00. Oppgavesettet
DetaljerOppgave 1. e rt = 120e. = 240 e
Løsning MET 803 Matematikk Dato 5. desember 05 kl 0900-00 Oppgave. (a) Dersom vi selger eiendommen etter t år, med t > 0, så er nåverdien av salgssummen med r = 0,0. Da får vi N(t) = V (t)e rt = 0 e e
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT1100 Kalkulus. Eksamensdag: Fredag 9. desember 011. Tid for eksamen: 09.00 1.00. Oppgavesettet er på 5 sider. Vedlegg: Tillatte
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT-INF 1100 Modellering og beregninger. Eksamensdag: Onsdag 12. oktober 2016. Tid for eksamen: 15:00 17:00. Oppgavesettet
Detaljer2 3 2 t der parameteren t kan være et vilkårlig reelt tall. i) Finn determinanten til M. M =
Oppgave a) Løs likningssystemet x + 3x + x 3 = x + x 3 = 0 3x + x + 3x 3 = 8 Svar: Rekkereduksjon av totalmatrisen gir 0 0 0 0 7 0 0 0 0 Det betyr at løsningen er gitt ved x +x 3 = 0, x = 7 og x 3 en fri
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT1100 Kalkulus Eksamensdag: Fredag 11. desember 2015 Tid for eksamen: 09.00 13.00. Oppgavesettet er på 5 sider. Vedlegg: Svarark,
DetaljerModerne optimering mer enn å derivere!!
Faglig pedagogisk dag 2000, 4. januar Moderne optimering mer enn å derivere!! Geir Dahl, Prof. matematikk, Matematisk inst. og Inst. for informatikk aksjer - eksempel på LP (lineær programmering) noen
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST0 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Torsdag 9. mai 994. Tid for eksamen: 09.00 5.00. Oppgavesettet
Detaljer= 3 11 = = 6 4 = 1.
MAT3000/4000 Eksamen V3 Løsningsforslag Oppgave [0 poeng] Sjekk at 3 er en kvadratisk rest i Z/(3) og finn løsningene av likningen x = 3 i Z/(3) (uten å lage en tabell for x ) Du får lov til å bruke at
DetaljerLØSNINGSFORSLAG EKSAMEN HØST 2012 I TIØ4120 OPERASJONSANALYSE, GRUNNKURS
LØSNINGSFORSLAG EKSAMEN HØST 2012 I TIØ4120 OPERASJONSANALYSE, GRUNNKURS Oppgave 1 a) La x 1, x 2 og x 3 være antall enheter produsert av henholdsvis lenestoler, skamler og kjøkkenstoler. Modellen blir
DetaljerEKSAMEN I NUMERISK LØSNING AV DIFFERENSIALLIGNINGER MED DIFFERANSEMETODER (TMA4212)
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 Faglig kontakt under eksamen: Navn: Brynjulf Owren (964) EKSAMEN I NUMERISK LØSNING AV DIFFERENSIALLIGNINGER MED DIFFERANSEMETODER
DetaljerUNIVERSITETET I OSLO. Løsningsforslag
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT00 Kalkulus Eksamensdag: Fredag 4. oktober 20 Tid for eksamen: 5.00 7.00 Oppgavesettet er på 8 sider. Vedlegg: Tillatte
DetaljerMA0002 Brukerkurs i matematikk B Vår 2014
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2014 Løsningsforslag Øving 10 Oppgaver fra boken: 10.6 : 1, 8, 9, 12, 19, 26, 29,, 4 Det
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT Kalkulus. Eksamensdag: Fredag 9. desember 2. Tid for eksamen: 9.. Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler:
DetaljerMET Matematikk for siviløkonomer
SENSORVEILEDNING - Skriftlig eksamen MET 11803 Matematikk for siviløkonomer Institutt for Samfunnsøkonomi Utlevering: 0.1.018 Kl. 09:00 Innlevering: 0.1.018 Kl. 14:00 For mer informasjon om formalia, se
DetaljerMA0002 Brukerkurs i matematikk B Vår 2016
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2016 Løsningsforslag Øving 11 Oppgaver fra boken: 10.6 : 1, 8, 9, 12, 19, 26, 29,, 4 Det
Detaljera) Matrisen I uv T har egenverdier 1, med multiplisitet n 1 og 1 v T u, med multiplisitet 1. Derfor er matrisen inverterbar når v T u 1.
Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Oppgave 1 a) Matrisen I uv T har egenverdier 1, med multiplisitet n 1 og 1 v T u, med multiplisitet 1. Derfor er
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Ny/Utsatt eksamen i: MAT1001 Matematikk 1 Eksamensdag: Torsdag 15 januar 2015 Tid for eksamen: 14:30 18:30 Oppgavesettet er på 5 sider Vedlegg:
Detaljerdg = ( g P0 u)ds = ( ) = 0
NTNU Institutt for matematiske fag TMA4105 Matematikk 2, øving 8, vår 2011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT00 Kalkulus Eksamensdag: Fredag 4. oktober 20 Tid for eksamen: 5.00 7.00 Oppgavesettet er på 5 sider. Vedlegg: Tillatte
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger. Eksamensdag: Fredag 7. januar 2005. Tid for eksamen: 14:30 17:30. Oppgavesettet er på
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF Modellering og beregninger. Eksamensdag: Fredag. oktober 28. Tid for eksamen: 5: 7:. Oppgavesettet er på 6 sider. Vedlegg:
Detaljer7.1 forts. Schur triangularisering og spektralteoremet
7.1 forts. Schur triangularisering og spektralteoremet Vi skal vise to svært sentrale resultat i lineær algebra. Spektralteoremet (Teorem 3 i Lay): dette sier bl.a. at reelle symmetriske matriser er ortogonalt
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Ny/utsatt eksamen i Eksamensdag: 9. august 2. Tid for eksamen: 9 2. Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler: MAT Kalkulus
DetaljerLO510D Lin.Alg. m/graf. anv. Våren 2005
TF Høgskolen i Sør Trøndelag Avdeling for informatikk og e læring LO5D Lin.Alg. m/graf. anv. Våren 5 Løsningsforslag Eksamen a) Setter α = og β = i ligningssystemet og gausseliminerer totalmatrisen til
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 11. juni 21. Tid for eksamen: 14.3 17.3. Oppgavesettet er på 7 sider. Vedlegg: Tillatte hjelpemidler: MAT111 Kalkulus
DetaljerSide 1 av 13. Svar til. EKSAMEN I EMNE TIØ4120 OPERASJONSANALYSE, GK Torsdag 2. desember 2010 Tid: kl Bokmål
Side av 3 NTNU Institutt for industriell økonomi og teknologiledelse Faggruppe for bedriftsøkonomi og optimering Faglig kontakt under eksamen: Navn: Bjørn Nygreen Tlf.: 958 55 997 / 93607) Svar til EKSAMEN
DetaljerLØSNINGSFORSLAG. Skriv følgende komplekse tall både på kartesisk form som a + bi og på polar form som re iθ (r 0 og 0 θ < 2π). a) 2 + 3i.
Innlevering DAFE ELFE Matematikk 000 HIOA Obligatorisk innlevering Innleveringsfrist Onsdag. februar 05 før forelesningen :30 Antall oppgaver: LØSNINGSFORSLAG Skriv følgende komplekse tall både på kartesisk
DetaljerMA0002 Brukerkurs i matematikk B Vår 2014
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA000 Brukerkurs i matematikk B Vår 04 Løsningsforslag. Eksamen 6. mai Løsning: Oppgave a) dy dx y y y )y ) : gy), så likevektsløsningene
DetaljerTMA4100 Matematikk 1, høst 2013
TMA4100 Matematikk 1, høst 2013 Teknostart forelesning 6 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Teknostart forelesning 6 Grenseverdier I dagens forelesning skal vi se på følgende: 1 En formell definisjon
DetaljerKøbenhavn 20 Stockholm
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 115 Algoritmer og datastrukturer Eksamensdag: 26. mai 2001 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 7 sider. Vedlegg:
DetaljerMAT-1004 Vårsemester 2017 Prøveeksamen
MAT-4 Vårsemester 7 Prøveeksamen Contents. Forord................................. OPPGAVE OPPGAVE OPPGAVE 7 4 OPPGAVE 8 OPPGAVE 6 OPPGAVE 7 OPPGAVE 8 OPPGAVE 9 Formatering av svarene 4 9. Rasjonale tall.............................
DetaljerUniversitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra
Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT2 - Lineær algebra Onsdag 29 mai, 20, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets
DetaljerMA0002 Brukerkurs i matematikk B. Eksamen 28. mai 2016 Løsningsforslag. Oppgave 1
MA000 Brukerkurs i matematikk B Eksamen 8. mai 06 Løsningsforslag Oppgave a) Viser at B = A ved å vise at AB = BA = I. Nedenfor er matrisemultiplikasjonen AB vist (du må vise at BA gir det samme). ( )
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 11 Modellering og beregninger. Eksamensdag: Mandag 6. desember 21. Tid for eksamen: 9: 13:. Oppgavesettet er på 5 sider.
DetaljerEgenverdier og egenvektorer
Kapittel 9 Egenverdier og egenvektorer Det er ofte hensiktsmessig å tenke på en matrise ikke bare som en tabell med tall, men som en transformasjon av vektorer Hvis A er en m n-matrise, så gir A en transformasjon
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 9. desember 2010 Tid for eksamen: 09:00 13:00 Oppgavesettet er på 5 sider.
DetaljerEksamensoppgave i MA1201 Lineær algebra og geometri
Institutt for matematiske fag Eksamensoppgave i MA1201 Lineær algebra og geometri Faglig kontakt under eksamen: Steffen Oppermann Tlf: 9189 7712 Eksamensdato: 05.10.2016 Eksamenstid (fra til): 08:15 09:45
DetaljerUNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: mars 017 Tid for eksamen: 14:30 17:30 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger Eksamensdag: 12. desember 2003 Tid for eksamen: 9:00 12:00 Oppgavesettet er på 7 sider.
Detaljer3x + 2y 8, 2x + 4y 8.
Oppgave En møbelfabrikk produserer bord og stoler Produksjonen av møbler skjer i to avdelinger, avdeling I og avdeling II Alle møbler må innom både avdeling I og avdeling II Det å produsere et bord tar
Detaljer9 Lineærtransformasjoner TMA4110 høsten 2018
9 Lineærtransformasjoner MA4 høsten 8 I forrige kapittel begynte vi å formulere lineær algebra på en generell måte, ved å gi en abstrakt definisjon av vektorrom For å beskrive sammenhenger mellom forskjellige
DetaljerECON2200: Oppgaver til for plenumsregninger
University of Oslo / Department of Economics / Nils Framstad 9. mars 2011 ECON2200: Oppgaver til for plenumsregninger Revisjoner 9. mars 2011: Nye oppgavesett til 15. og 22. mars. Har benyttet sjansen
DetaljerUNIVERSITETET I OSLO
Eksamen i UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamensdag: Torsdag 9. juni, 2011 Tid for eksamen: 09.00 13.00 Oppgavesettet er på 5 sider. Vedlegg: Tillatte hjelpemidler: STK4400/STK9400
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: Eksamensdag: Mandag. mai Tid for eksamen: 9. 4. Oppgavesettet er på sider. Vedlegg: Tillatte hjelpemidler: MAT-INF36 Anvendelser
DetaljerLøsningsforslag AA6524/AA6526 Matematikk 3MX Elever/Privatister - 7. desember eksamensoppgaver.org
Løsningsforslag AA654/AA656 Matematikk 3MX Elever/Privatister - 7. desember 005 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis,
DetaljerMA0002 Brukerkurs i matematikk B Vår 2013
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2013 Løsningsforslag Øving 10 10.6.3 La f (x, y) = x 2 y 4x 2 4y der (x, y) R 2. Finn alle
DetaljerEksamensoppgave MAT juni 2010 (med løsningsforslag)
Eksamensoppgave MAT-4 juni (med løsningsforslag) Contents OPPGAVE OPPGAVE 4 OPPGAVE 5 4 OPPGAVE 6 5 Fasit 7 5 Oppgave 7 5 Oppgave 7 5 Oppgave 8 54 Oppgave 8 6 Løsningsforslag 9 6 Oppgave 9 6 Oppgave 6
DetaljerFasit til utvalgte oppgaver MAT1110, uka 13/4-16/4
Fasit til utvalgte oppgaver MAT0, uka /4-6/4 Øyvind Ryan oyvindry@i.uio.no April, 00 Oppgave 4.8. a Bytt om første og andre rad. b Legg til ganger rad til rad. c Bytt om første og andre rad. d Legg til
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST 202 Statistiske slutninger for den eksponentielle fordelingsklasse. Eksamensdag: Fredag 15. desember 1995. Tid for eksamen:
Detaljer12 Projeksjon TMA4110 høsten 2018
Projeksjon TMA0 høsten 08 En projeksjon er en lineærtransformasjon P som tilfredsstiller P x = P x for alle x Denne ligningen sier at intet nytt skjer om du benytter lineærtransformasjonen for andre gang,
Detaljer7 Egenverdier og egenvektorer TMA4110 høsten 2018
7 Egenverdier og egenvektorer TMA4 høsten 8 Det er ofte hensiktsmessig å tenke på en matrise ikke bare som en tabell med tall, men som en transformasjon av vektorer. Hvis A er en m n-matrise, så gir A
DetaljerEksamensoppgavehefte 1. MAT1012 Matematikk 2: Mer funksjonsteori i en og flere variabler
Eksamensoppgavehefte 1 MAT1012 Matematikk 2: Mer funksjonsteori i en og flere variabler Matematisk institutt, UiO, våren 2010 I dette heftet er det samlet et utvalg av tidligere eksamensoppgaver innenfor
Detaljer