Eksamen - INF 283 Maskinlæring

Størrelse: px
Begynne med side:

Download "Eksamen - INF 283 Maskinlæring"

Transkript

1 Eksamen - INF 283 Maskinlæring 23 feb Tid: 3 timer Eksamen inneholder 15 oppgaver, som vil bli vektet likt ved evaluering. 1

2 Table 1 attributt antall personer forsørget av låntaker månedlig inntekt annen gjeld lånebeløp termineringsgrunn datatype heltall reelt tall reelt tall reelt tall kategorisk: misligholdt eller innfridd Figure 1: Histogram over attributtverdier 1. En bank ønsker å benytte maskinlæring til å klassifisere lånetakere som høyrisiko lånetakere (stor sannsynlighet for mislighold) eller lavrisiko lånetakere (liten sannsynlighet for mislighold). Banken har en database over terminerte lån med informasjon om lånetaker for søknadstidspunkt, samt termineringsgrunn. Se tabell 1. Banken vurderer metoder som antar uavhengighet mellom variable, men er bekymret for at målattributten er betinget avhengig av de tre attributtene: inntekt, annen gjeld og lånebeløp, ettersom man kan forvente at en lånetaker med høy inntekt kan betjene en større total gjeld. (a) Foreslå en variabel som kan benyttes i stedet for inntekt, annen gjeld og lånebeløp, som er en funksjon av disse tre. Variabelen kan være kontinuerlig, du vil håndtere diskretisering i neste oppgave. (b) Anta at variabelen du har definert er kontinuerlig og fordelt som vist i Figur 1. Ut i fra dette, foreslå en kategorisk attributt som kan representere denne variabelen. (c) En naiv Bayes klassifikator beregner mest sannsynlig verdi for målattributt v NB, for tupler av attributtverdier a 1, a 2...a n, ved hjelp av uttrykket: v NB = argmax v V P (v) n P (a i v) hvor V er alle mulige verdier for målattributt, og alle sannsynligheter er estimert fra treningsdata. Anta at noen av de misligholdte lånene ikke har verdien 5 for attributten antall personer forsørget av låntaker, mens noen av de innfridde lånene har denne verdien for denne attributten. Forklar hvorfor dette er problematisk når de betingede sannsynlighetene estimeres, og foreslå en løsning. i=1 Page 2

3 2. En maskinlærer skal trenes til å klassifisere numeriske vektorer i to klasser. Den skal lære en vektor w og en skalar b, og klassifisere nye tilfeller, for eksempel x, til en av disse klassene basert på fortegnet til w x b. Anta at dette er implementert som en støttevektormaskin (support vector machine, SVM). Du kan anta den enklere formuleringen av SVM, uten slingringsmonn (slack variables), slik at en løsning minimerer 1 2 w 2, begrenset av y i ( w x i b) 1, hvor x i og y i er treningseksempler. y i betegner klassifikasjonen til x i som enten 1 eller 1. Husk også at induktive antagelser for en maskinlærer (inductive bias) kan være både hypoteseromsrestriksjoner (restriction bias), som definerer hvilke hypoteser som tillates av maskinlæreren, og hypotesepreferanser (preference bias) som definerer hvilke tillatte hypoteser som foretrekkes. (a) Formulér hypoteseromsrestriksjonenene for denne maskinlæreren. definert i to dimensjoner ( w og x har nøyaktig to komponenter). Du kan anta at problemet er (b) Formulér hypotesepreferansene for denne maskinlæreren. Du kan anta at problemet er definert i to dimensjoner. (c) Trenigseksempler x, som tilfredsstiller y i ( w x i b) = 1 kalles støttevektorer (support vectors). Hvor sensitive er verdiene w og b til at treningseksempler som ikke er støttevektorer legges til eller taes bort fra treningssettet? Page 3

4 Figure 2 3. Problemet beskrevet i oppgave 2 kan også løses gjennom avviksminimering (error minimisation). For enkelhets skyld, anta en endimensjonal problemformulering. I det tilfeller kan w og x betraktes som skalare verdier, med w konstant. Da må kun b bestemmes. Anta at gradientminimering (gradient descent) skal benyttes. Vi vil da starte med et tilfeldig valg av verdi for b. For hver iterasjon vil b så tilegnes en ny verdi i henhold til: ( N ) b b + η b E( x i) i=1 hvor η er læringsraten (learning rate), x i er et treningseksempel, N er antall treningseksempler og E er avviksfunksjonen (error function). (a) Foreslå en definisjon for avviksfunksjonen E. Du kan la y i betegne korrekt klassifisering (1 eller 1) som før, og p i kan betegne klassifiseringen beregnet av maskinlæreren. (b) Anta at avviksgrafen (error surface) for dette endimensjonale klassifikasjonsproblemet er som vist i Figur 2. Forklar hvordan den tilfeldige verdien valgt for b før minimering, påvirker den endelige verdien bestemt av maskinlæreren. (c) Forklar hvorfor løsningen som ville blitt bestemt av en SVM (oppgave 2) kan forventes å generalisere bedre enn den bestemt av gradientminimering, for tilfellet illustrert i Figur 2. Page 4

5 Figure 3 A B 4. (a) Figur 3 illustrerer et avgjørelsestre (decision tree). For hver node estimeres informativitet (information gain) for attributten assosiert til noden. Forklar hvorfor et slikt estimat har høyere usikkerhet for node B enn for node A. (b) Når avviksbeskjæring (reduced error pruning) benyttes for å unngå overtrening (overfitting) av et avgjørelsestre, blir noder iterativt tatt vekk fra treet dersom dette øker nøyaktigheten målt over et valideringssett. Dette gjentas inntil et stoppkriterie inntreffer. Hva er dette stoppkriteriet? (c) Forklar hvorvidt nøyaktigheten estimert fra valideringssettet som ble brukt til avviksbeskjæring er et forventningsrett (unbiased) estimat på nøyaktigheten til treet over usette tilfeller. Page 5

6 5. I belønningslæring (reinforcement learning) benyttes ofte en teknikk kalt Q-læring. Målfunksjonen, Q(s, a) relaterer en tilstand (state) s, og en handling (action) a, til maksimal kumulativ belønning som kan oppnås fra s, om man utfører a som første handling. For enhver tilstand kan Q derfor brukes til å velge en optimal handling med hensyn på en kumulativ belønningsfunksjon. En slik funksjon er forsinkelsesjustert kumulativ belønning (discounted cumulative reward) V : V (s t ) γ i r i+1 i=0 hvor s t er tilstanden hvor første handling er utført, r 1 er belønning gitt for første handling, r 2 er belønningen for andre handling, og så videre. γ er en faktor mellom 0 og 1. Algoritmen for Q-læring estimerer Q for hver mulige kombinasjon av tilstand og handling. Dette estimatet kaller vi ˆQ(s, a). For hver iterasjon av algoritmen blir følgende steg utført: I Velg en handling a, og utfør denne. II Motta belønning r. III Observér ny tilstand s IV Oppdatér ˆQ(s, a). (a) Gi regelen for å bestemme oppdatert verdi av ˆQ(s, a) i steg IV i algoritmen over, når forsinkelsesjustert kumulativ belønning benyttes. (b) Funksjonen for forsinkelsesjustert kumulativ belønning definerer en agent som foretrekker en serie handlinger som gir tidlig belønning (belønning etter få handlinger). Definér en alternativ kumulativ belønningsfunksjon som vekter alle de neste h handlingene likt og ignorerer senere handlinger. (c) I steg I i algoritmen kan en handling velges tilfeldig med ulik sannsynlighet for forskjellige handlinger i henhold til: P (a i s) = k ˆQ(s,a i) j k ˆQ(s,a j) hvor P (a i s) er sannsynligheten for å velge handling a i i tilstand s og k > 0 er en konstant. Forklar hensikten med parameteren k. Page 6

Eksamen i TDT Oppgaver. Ruben Spaans. December 6, 2012

Eksamen i TDT Oppgaver. Ruben Spaans. December 6, 2012 Eksamen i TDT4173 Ruben Spaans December 6, 2012 1 Oppgaver Oppgave 1. Dener hva et velformulert læringsproblem (well-posed learning problem) er. Svar Det betyr at læringen vil forbedres med erfaring for

Detaljer

Introduksjon til Algoritmeanalyse

Introduksjon til Algoritmeanalyse Introduksjon til Algoritmeanalyse 26. August, 2019 Institutt for Informatikk 1 Hvordan skal vi tenke i IN2010? Effektive løsninger Hvordan skalérer problemet og løsningen? 2 Terminologi Betegnelse Problem

Detaljer

Oppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom << >>. Oppgave 1

Oppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom << >>. Oppgave 1 ECON 0 EKSMEN 007 VÅR SENSORVEILEDNING Oppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom >. Oppgave. La begivenhetene BC,, være slik at og

Detaljer

EKSAMEN I FAG TMA4315 GENERALISERTE LINEÆRE MODELLER Torsdag 14. desember 2006 Tid: 09:0013:00

EKSAMEN I FAG TMA4315 GENERALISERTE LINEÆRE MODELLER Torsdag 14. desember 2006 Tid: 09:0013:00 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Bo Lindqvist, tlf. 975 89 418 EKSAMEN I FAG TMA4315 GENERALISERTE LINEÆRE MODELLER

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig

Detaljer

LP. Leksjon 9: Kapittel 13: Nettverk strøm problemer, forts.2

LP. Leksjon 9: Kapittel 13: Nettverk strøm problemer, forts.2 LP. Leksjon 9: Kapittel 13: Nettverk strøm problemer, forts.2 Vi tar siste runde om (MKS): minimum kost nettverk strøm problemet. Skal oppsummere algoritmen. Se på noen detaljer. Noen kombinatorisk anvendelser

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 Statistisk inferens: 8.1: Tilfeldig utvalg 9.1-9.3: Estimering Mette Langaas Foreleses uke 40, 2010 2 Utfordring Ved en bedrift produseres en elektrisk komponent. Komponenten må

Detaljer

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Analysere en observator for å finne ut noe om korresponderende

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK2100 - FASIT Eksamensdag: Torsdag 15. juni 2017. Tid for eksamen: 09.00 13.00. Oppgavesettet er på 5 sider. Vedlegg: Tillatte

Detaljer

Prøveeksamen STK2100 (fasit) - vår 2018

Prøveeksamen STK2100 (fasit) - vår 2018 Prøveeksamen STK2100 (fasit) - vår 2018 Geir Storvik Vår 2018 Oppgave 1 (a) Vi har at E = Y Ŷ =Xβ + ε X(XT X) 1 X T (Xβ + ε) =[I X(X T X) 1 X T ]ε Dette gir direkte at E[E] = 0. Vi får at kovariansmatrisen

Detaljer

EKSAMENSOPPGAVE. INF-1101 Datastrukturer og algoritmer. Adm.bygget, rom K1.04 og B154 Ingen

EKSAMENSOPPGAVE. INF-1101 Datastrukturer og algoritmer. Adm.bygget, rom K1.04 og B154 Ingen Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: Dato: 15.mai 2018 Klokkeslett: 09:00 13:00 Sted: Tillatte hjelpemidler: Adm.bygget, rom K1.04 og B154 Ingen Type innføringsark (rute/linje):

Detaljer

4.4 Koordinatsystemer

4.4 Koordinatsystemer 4.4 Koordinatsystemer Minner om at B = { b 1, b 2,..., b n } V kalles en basis for et vektorrom V dersom B er lineært uavhengig og B utspenner V. I samme vektorrom kan vi innføre ulike koordinatsystemer

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK Mandag 12. desember 2011

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK Mandag 12. desember 2011 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK Mandag 12. desember 2011 Oppgave 1 Oljeleting a) Siden P(A

Detaljer

Løsning eksamen desember 2017

Løsning eksamen desember 2017 Løsning eksamen desember 017 Oppgave 1 Innfører hendelsene D: enheten er defekt K: enheten blir kassert a i Disse sannsynlighetene kan leses ut av oppgaveteksten: P D = 0, 10 P K D = 0, 07 P K D = 0, 95

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 9, blokk II Oppgave 1 X er kontinuerlig fordelt med sannsynlighetstetthet f(x) = 2xe

Detaljer

Korteste vei problemet (seksjon 15.3)

Korteste vei problemet (seksjon 15.3) Korteste vei problemet (seksjon 15.3) Skal studere et grunnleggende kombinatorisk problem, men først: En (rettet) vandring i en rettet graf D = (V, E) er en følge P = (v 0, e 1, v 1, e 2,..., e k, v k

Detaljer

Sum to terninger forts. Eksempel: kast med to terninger. Sum to terninger forts. Kapittel 3. TMA4240 H2006: Eirik Mo

Sum to terninger forts. Eksempel: kast med to terninger. Sum to terninger forts. Kapittel 3. TMA4240 H2006: Eirik Mo 3 Sum to terninger forts. Kapittel 3 TMA4240 H200: Eirik Mo 2 3 4 5,,2,3,4,5, 2 2, 2,2 2,3 2,4 2,5 2, Andre 3 3, 3,2 3,3 3,4 3,5 3, terning 4 4, 4,2 4,3 4,4 4,5 4, 5 5, 5,2 5,3 5,4 5,5 5,,,2,3,4,5, Med

Detaljer

Bootstrapping og simulering Tilleggslitteratur for STK1100

Bootstrapping og simulering Tilleggslitteratur for STK1100 Bootstrapping og simulering Tilleggslitteratur for STK1100 Geir Storvik April 2014 (oppdatert April 2016) 1 Introduksjon Simulering av tilfeldige variable (stokastisk simulering) er et nyttig verktøy innenfor

Detaljer

Modellering av Customer Lifetime Value og hvordan bruke det Øystein Sørensen Data Scientist

Modellering av Customer Lifetime Value og hvordan bruke det Øystein Sørensen Data Scientist Modellering av Customer Lifetime Value og hvordan bruke det Øystein Sørensen Data Scientist Customer Lifetime Value (CLV) Diskontert nåverdi av hele det fremtidige kundeforholdet CLV for alle kunder gir

Detaljer

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Å analysere en utvalgsobservator for å trekke slutninger

Detaljer

KJ1042 Øving 5: Entalpi og entropi

KJ1042 Øving 5: Entalpi og entropi KJ1042 Øving 5: Entalpi og entropi Ove Øyås Sist endret: 17. mai 2011 Repetisjonsspørsmål 1. Hva er varmekapasitet og hva er forskjellen på C P og C? armekapasiteten til et stoff er en målbar fysisk størrelse

Detaljer

TDT4171 Metoder i kunstig intelligens

TDT4171 Metoder i kunstig intelligens Eksamensoppgave i TDT4171 Metoder i kunstig intelligens XX. Aug 2011, kl. 09:00-13:00 Oppgaven er utarbeidet av faglærer Keith Downing og kvalitetssikrer Pauline Haddow. Kontaktperson under eksamen er

Detaljer

Kapittel 1 og 2: eksempel og simpleksmetoden

Kapittel 1 og 2: eksempel og simpleksmetoden LP. Leksjon 1 Kapittel 1 og 2: eksempel og simpleksmetoden et eksempel fra produksjonsplanlegging simpleksalgoritmen, noen begreper algoritmen LP. Leksjon 1: #1 of 14 Eksempel: produksjonsplanlegging Produkter:

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON30 Statistikk UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 03.06.06 Sensur kunngjøres: 4.06.06 Tid for eksamen: kl. 09:00 :00 Oppgavesettet er på 5 sider Tillatte hjelpemidler:

Detaljer

SIF8010 ALGORITMER OG DATASTRUKTURER

SIF8010 ALGORITMER OG DATASTRUKTURER SIF8010 ALGORITMER OG DATASTRUKTURER KONTINUASJONSEKSAMEN, 1999; LØSNINGSFORSLAG Oppgave 1 (12%) Anta at du skal lage et støtteprogram som umiddelbart skal varsle om at et ord blir skrevet feil under inntasting

Detaljer

betyr begivenheten at det blir trukket en rød kule i første trekning og en hvit i andre, mens B1 B2

betyr begivenheten at det blir trukket en rød kule i første trekning og en hvit i andre, mens B1 B2 ECON30: EKSAMEN 06v SENSORVEILEDNING. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i

Detaljer

Eksempel: kast med to terninger

Eksempel: kast med to terninger Kapittel 3 TMA4245 V2007: Eirik Mo 2 Eksempel: kast med to terninger I et eksperiment kaster vi to terninger og registerer antall øyne på hver terning. Utfallsrom S={(,),(,2),(,3),...,(,), (2,),...,(2,),...,(,)}

Detaljer

Notat 4 - ST februar 2005

Notat 4 - ST februar 2005 Notat 4 - ST1301 8. februar 2005 1 While- og repeat-løkker Vi har tidligere sett på bruk av før-løkker. Slike løkker er hensiktsmessig å bruke når vi skal gjenta visse beregninger (løkke-kroppen) et antall

Detaljer

L12-Dataanalyse. Introduksjon. Nelson Aalen plott. Page 76 of Introduksjon til dataanalyse. Levetider og sensurerte tider

L12-Dataanalyse. Introduksjon. Nelson Aalen plott. Page 76 of Introduksjon til dataanalyse. Levetider og sensurerte tider Page 76 of 80 L12-Dataanalyse Introduksjon Introduksjon til dataanalyse Presentasjonen her fokuserer på dataanalyseteknikker med formål å estimere parametere (MTTF,, osv) i modeller vi benytter for vedlikeholdsoptimering

Detaljer

OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 6 SIDER MERKNADER: Alle deloppgaver vektlegges likt.

OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 6 SIDER MERKNADER: Alle deloppgaver vektlegges likt. EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir forlag) OPPGAVESETTET

Detaljer

EKSAMEN I TMA4300 BEREGNINGSKREVENDE STATISTIKK Torsdag 16 Mai, 2013

EKSAMEN I TMA4300 BEREGNINGSKREVENDE STATISTIKK Torsdag 16 Mai, 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 5 Kontakt: Jo Eidsvik 9747 EKSAMEN I TMA43 BEREGNINGSKREVENDE STATISTIKK Torsdag 6 Mai, 3 Tilatte hjelpemiddel: Gult

Detaljer

Kurs i automatisk skog kartlegging 5-7 september 2018

Kurs i automatisk skog kartlegging 5-7 september 2018 Kurs i automatisk skog kartlegging 5-7 september 2018 juni 2018 TerraNor har gleden av å invitere til kurs i bruken av ecognition Developer fra Trimble, verdens mest avanserte program for objekt analyse

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger. Eksamensdag: Mandag 5. desember 2011. Tid for eksamen: 9:00 13:00. Oppgavesettet er på

Detaljer

Klassisering. Insitutt for matematiske fag, NTNU 21. august Klassiseringsproblemet. Notat for TMA4240/TMA4245 Statistikk

Klassisering. Insitutt for matematiske fag, NTNU 21. august Klassiseringsproblemet. Notat for TMA4240/TMA4245 Statistikk Klassisering Notat for TMA4240/TMA4245 Statistikk Insitutt for matematiske fag, NTNU 21. august 2012 Innen maskinlæring studerer man algoritmer som tillater datamaskiner å utvikle atferd på grunnlag av

Detaljer

LP. Leksjon 1. Kapittel 1 og 2: eksempel og simpleksmetoden

LP. Leksjon 1. Kapittel 1 og 2: eksempel og simpleksmetoden LP. Leksjon 1. Kapittel 1 og 2: eksempel og simpleksmetoden Dette emnet gir en innføring i lineær optimering og tilgrensende felt. hva er LP (lin.opt.=lin.programmering) mer generelt: matematisk optimering

Detaljer

dg = ( g P0 u)ds = ( ) = 0

dg = ( g P0 u)ds = ( ) = 0 NTNU Institutt for matematiske fag TMA4105 Matematikk 2, øving 8, vår 2011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,

Detaljer

Norges Informasjonsteknologiske Høgskole

Norges Informasjonsteknologiske Høgskole Oppgavesettet består av 6 (seks) sider. Norges Informasjonsteknologiske Høgskole PG4200 Algoritmer og datastrukturer Side 1 av 6 Tillatte hjelpemidler: Ingen Varighet: 3 timer Dato: 6. august 2014 Fagansvarlig:

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Fra første forelesning: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av

Detaljer

Forelesning 1 mandag den 18. august

Forelesning 1 mandag den 18. august Forelesning 1 mandag den 18 august 11 Naturlige tall og heltall Definisjon 111 Et naturlig tall er et av tallene: 1,, Merknad 11 Legg spesielt merke til at i dette kurset teller vi ikke 0 iblant de naturlige

Detaljer

LP. Leksjon 8: Kapittel 13: Nettverk strøm problemer, forts.1

LP. Leksjon 8: Kapittel 13: Nettverk strøm problemer, forts.1 LP. Leksjon 8: Kapittel 13: Nettverk strøm problemer, forts.1 Vi fortsetter studiet av (MKS): minimum kost nettverk strøm problemet. Har nå en algoritme for beregning av x for gitt spenntre T Skal forklare

Detaljer

Oppgave 1. Det oppgis at dersom y ij er observasjon nummer j fra laboratorium i så er SSA = (y ij ȳ i ) 2 = 3.6080.

Oppgave 1. Det oppgis at dersom y ij er observasjon nummer j fra laboratorium i så er SSA = (y ij ȳ i ) 2 = 3.6080. EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 28. FEBRUAR 2005 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 4 OPPGAVER PÅ

Detaljer

Forelesning 2 torsdag den 21. august

Forelesning 2 torsdag den 21. august Forelesning 2 torsdag den 21 august 15 Flere eksempler på bevis ved induksjon Proposisjon 151 La n være et naturlig tall Da er 1 + 2 + 4 + + 2 n 1 = 2 n 1 Bevis Først sjekker vi om proposisjonen er sann

Detaljer

Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår

Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår Løsningsforslag ECON 130 Obligatorisk semesteroppgave 017 vår Andreas Myhre Oppgave 1 1. (i) Siden X og Z er uavhengige, vil den simultane fordelingen mellom X og Z kunne skrives som: f(x, z) = P(X = x

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 27: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo 4. mai 2010 (Sist oppdatert: 2010-05-04 14:11) Forelesning 27 MAT1030 Diskret Matematikk 4. mai 2010

Detaljer

EKSAMEN I FAG TMA4255 ANVENDT STATISTIKK

EKSAMEN I FAG TMA4255 ANVENDT STATISTIKK Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Bo Lindqvist Tlf. 975 89 418 BOKMÅL EKSAMEN I FAG TMA4255 ANVENDT STATISTIKK Onsdag

Detaljer

Utvalgsfordelinger. Utvalg er en tilfeldig mekanisme. Sannsynlighetsregning dreier seg om tilfeldige mekanismer.

Utvalgsfordelinger. Utvalg er en tilfeldig mekanisme. Sannsynlighetsregning dreier seg om tilfeldige mekanismer. Utvalgsfordelinger Vi har sett at utvalgsfordelinger til en statistikk (observator) er fordelingen av verdiene statistikken tar ved mange gjenttatte utvalg av samme størrelse fra samme populasjon. Utvalg

Detaljer

BESLUTNINGER UNDER USIKKERHET

BESLUTNINGER UNDER USIKKERHET 24. april 2002 Aanund Hylland: # BESLUTNINGER UNDER USIKKERHET Standard teori og kritikk av denne 1. Innledning En (individuell) beslutning under usikkerhet kan beskrives på følgende måte: Beslutningstakeren

Detaljer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 3. desember 2012 Eksamenstid 0900 1300 Sensurdato 3. januar 2013 Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST101 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Mandag 29. november 1993. Tid for eksamen: 09.00 15.00. Oppgavesettet

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

Generell informasjon om faget er tilgjengelig fra It s learning. 1 En kort oppsummering Adaptiv filtrering 2. 3 Prediksjon 4

Generell informasjon om faget er tilgjengelig fra It s learning. 1 En kort oppsummering Adaptiv filtrering 2. 3 Prediksjon 4 Stavanger, 13. august 2013 Det teknisknaturvitenskapelige fakultet ELE500 Signalbehandling, 2013. Generell informasjon om faget er tilgjengelig fra It s learning. Innhold 1 En kort oppsummering. 1 2 Adaptiv

Detaljer

(a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x].

(a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x]. FORMELSAMLING TIL STK2100 (Versjon Mai 2017) 1 Tapsfunksjoner (a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x]. (b)

Detaljer

EKSAMEN I NUMERISK LINEÆR ALGEBRA (TMA4205)

EKSAMEN I NUMERISK LINEÆR ALGEBRA (TMA4205) Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side av 6 Faglig kontakt under eksamen: Navn: Brynjulf Owren 93064 EKSAMEN I NUMERISK LINEÆR ALGEBRA TMA405 Fredag 5 desember

Detaljer

NITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 2013

NITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 2013 NITH PG00 Algoritmer og datastrukturer Løsningsforslag Eksamen.juni 0 Dette løsningsforslaget er til tider mer detaljert enn det man vil forvente av en eksamensbesvarelse. Det er altså ikke et eksempel

Detaljer

Prøveeksamen STK vår 2017

Prøveeksamen STK vår 2017 Prøveeksamen STK2100 - vår 2017 Geir Storvik Vår 2017 Oppgave 1 Anta en lineær regresjonsmodell p Y i = β 0 + β j x ij + ε i, j=1 ε i uif N(0, σ 2 ) Vi kan skrive denne modellen på vektor/matrise-form:

Detaljer

TMA4140 Diskret Matematikk Høst 2016

TMA4140 Diskret Matematikk Høst 2016 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4140 Diskret Matematikk Høst 2016 Seksjon 10.2 18 La G = (V,E) være en enkel graf med V 2. Ettersom G er enkel er de mulige

Detaljer

i x i

i x i TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 11, blokk II Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale

Detaljer

Eksamensoppgave i TMA4275 Levetidsanalyse

Eksamensoppgave i TMA4275 Levetidsanalyse Institutt for matematiske fag Eksamensoppgave i TMA4275 Levetidsanalyse Faglig kontakt under eksamen: Bo Lindqvist Tlf: 975 89 418 Eksamensdato: Lørdag 31. mai 2014 Eksamenstid (fra til): 09:00-13:00 Hjelpemiddelkode/Tillatte

Detaljer

LO118D Forelesning 2 (DM)

LO118D Forelesning 2 (DM) LO118D Forelesning 2 (DM) Kjøretidsanalyse, matematisk induksjon, rekursjon 22.08.2007 1 Kjøretidsanalyse 2 Matematisk induksjon 3 Rekursjon Kjøretidsanalyse Eksempel Finne antall kombinasjoner med minst

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 5 for-løkker

Matematikk Øvingsoppgaver i numerikk leksjon 5 for-løkker Matematikk 1000 Øvingsoppgaver i numerikk leksjon 5 for-løkker I dette settet skal vi introdusere for-løkker. Først vil vi bruke for-løkker til å regne ut summer. Vi skal også se på hvordan vi kan implementere

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Kapittel 7: Utvalgsfordeling Bo Lindqvist Institutt for matematiske fag 2 Fra kapittel 1: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg

Detaljer

IN2110 Obligatorisk innlevering 1a

IN2110 Obligatorisk innlevering 1a IN2110 Obligatorisk innlevering 1a Oppsett Leveres innen fredag 15. februar kl. 23.59 i Devilry. For IN2110 har vi laget et utviklingsmiljø for Python som inneholder programvare og data for de obligatoriske

Detaljer

Kapittel 4.4: Forventning og varians til stokastiske variable

Kapittel 4.4: Forventning og varians til stokastiske variable Kapittel 4.4: Forventning og varians til stokastiske variable Forventning og varians til stokastiske variable Histogrammer for observerte data: Sannsynlighets-histogrammer og tetthetskurver for stokastiske

Detaljer

LØSNINGSFORSLAG EKSAMEN HØST 2012 I TIØ4120 OPERASJONSANALYSE, GRUNNKURS

LØSNINGSFORSLAG EKSAMEN HØST 2012 I TIØ4120 OPERASJONSANALYSE, GRUNNKURS LØSNINGSFORSLAG EKSAMEN HØST 2012 I TIØ4120 OPERASJONSANALYSE, GRUNNKURS Oppgave 1 a) La x 1, x 2 og x 3 være antall enheter produsert av henholdsvis lenestoler, skamler og kjøkkenstoler. Modellen blir

Detaljer

Forskningsmetoder i menneske-maskin interaksjon

Forskningsmetoder i menneske-maskin interaksjon Forskningsmetoder i menneske-maskin interaksjon Kapittel 2- Eksperimentell forskning Oversikt Typer atferdsforskning Forskningshypoteser Grunnleggende om eksperimentell forskning Signifikanstesting Begrensninger

Detaljer

Diskrete sannsynlighetsfordelinger som histogram. Varians. Histogram og kumulativ sannsynlighet. Forventning (gjennomsnitt) (X=antall mynt i tre kast)

Diskrete sannsynlighetsfordelinger som histogram. Varians. Histogram og kumulativ sannsynlighet. Forventning (gjennomsnitt) (X=antall mynt i tre kast) Diskret sannsynlighetsfordeling (kap 1.1-1.6) Oversikt Utfallsrom (sample space) Sannsynlighetsfordeling Forventning (expectation), E(X), populasjonsgjennomsnitt Bruk av figurer og histogram Binomialfordelingen

Detaljer

Unik4590/Unik9590/TTK Mønstergjenkjenning

Unik4590/Unik9590/TTK Mønstergjenkjenning Sammendrag og eksempler Universitetssenteret på Kjeller Høsten 2016 (17. august 2016) Hva er mønstergjenkjenning? Formålet med mønstergjenkjenning Gjenkjenne objekter - tilordne objekter til én av flere

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK2120 Statistiske metoder og dataanalyse 2. Eksamensdag: Fredag 7. juni 2013. Tid for eksamen: 14.30 18.30. Oppgavesettet er

Detaljer

Mer om Markov modeller

Mer om Markov modeller Høyere ordens Markov modeller Mer om Markov modeller p h mnr = Pr( Y j+ 3 = ah Y j+ 2 = am, Y j+ 1 = an, Y j = a : r For en k-te ordens Markov modell som modellerer en DNA prosess vil det være 3*4 k mulige

Detaljer

Eksamensoppgave i TMA4295 Statistisk inferens

Eksamensoppgave i TMA4295 Statistisk inferens Institutt for matematiske fag Eksamensoppgave i TMA4295 Statistisk inferens Faglig kontakt under eksamen: Vaclav Slimacek Tlf: 942 96 313 Eksamensdato: Tirsdag 2. desember 2014 Eksamenstid (fra til): 09:00-13:00

Detaljer

Øvingsforelesning 7. Resten av kombinatorikk, litt modulusregning, rekurrenser og induksjon og MP13 eller MP18. TMA4140 Diskret Matematikk

Øvingsforelesning 7. Resten av kombinatorikk, litt modulusregning, rekurrenser og induksjon og MP13 eller MP18. TMA4140 Diskret Matematikk Resten av kombinatorikk, litt modulusregning, rekurrenser og induksjon og MP13 eller MP18 Øvingsforelesning 7 TMA4140 Diskret Matematikk 15. og 17. oktober 2018 Dagen i dag Generaliserte permutasjoner

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF3380 Parallellprogrammering for naturvitenskapelige problemer Eksamensdag: 14. juni 2016 Tid for eksamen: 9.00 13.00 Oppgavesettet

Detaljer

EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Lørdag 4. juni 2005 Tid: 09:00 13:00

EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Lørdag 4. juni 2005 Tid: 09:00 13:00 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Bo Lindqvist 975 89 418 EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Lørdag 4. juni 2005

Detaljer

Sensitivitet og kondisjonering

Sensitivitet og kondisjonering Sensitivitet og kondisjonering Gitt en lineær likningssystem Ax = b vi skal studere effekten av perturbasjoner av input data: 1/19 på output data: Man kan A, b x perturbere bare b perturbere b og A samtidig.

Detaljer