1 (vekt 10%) +5V. Rb Out. (Ron)
|
|
|
- Birger Bakke
- 6 år siden
- Visninger:
Transkript
1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN240Digitalsystemkonstruksjon Eksamensdag: 12. desember 1995 Tid foreksamen: Oppgavesettet erpå7sider. Vedlegg: Tillatte hjelpemidler: Ingen Ingen Kontroller atoppgavesettet erkomplett før du begynner å besvare spørsmålene. 1 (vekt 10%) En enkelnmosinverterkantegnes somiguren nedenfor. +5V Rb Out In (Ron) Vi gjør en statisk betraktning og ønsker en støymargin på 1V.Vi forenkler ogantaratnmos-transistoren harenpå- motstand (Ron) nårinngangen er høy. Videre antar vi at det ikke trekkes noe strøm eksternt på utgangen (ingen ohmsk belastning). Når inngangen er lav, kan vi anta at Ron er uendelig stor. (Fortsettesside2.)
2 Eksamen iin240,12.desember 1995 Side 2 1-a Hvis Rb = 1 kohm,hvilken verdi må Ron ikke overskride for at støymarginkravet skal overholdes. 1-b Eksemplet i a) tok for seg støymargin ved lav utgang. Er støymargin noe problem itilfellethøy utgang? Hvorfor/hvorfor ikke? 1-c Forklar kort hvordan man kan betrakte problemet på en annen måte enn å antaatnmos-transistoren harenpå-motstand vedhøyinngang. 1-d Strukturen somervistiforrigegurkanutvidessom vist nedenfor. +5V Rb out i0 i1 i2 im Denne koblingen kanbrukessom en myebrukt primitiv(multi-input). Hvilken? 1-e Ta utgangspunkt iguren ovenfor. Dersom en antar at kun en av inngangene (i0,im)er på av gangen,kan konseptet bli brukt som en 1-bits ROM.Lag en 3-bits ROM ved hjelp av detteprinsippet. ROM'enskalha8innganger ogskalprogrammeres med følgende3-bits ord: (Fortsettesside3.)
3 Eksamen iin240,12.desember 1995 Side 3 W2 W1 W0 i i i i i i i i f Den sammerom'enmedetbestemtinnhold kaniprinsippet brukestilnoe annet. Hva? 2 I mange parkeringshus får man et lite kort med magnetstripe når man kjører bilen inn. På kortet er tidspunktet for innkjøringen registrert.før man henter bilenigjen, måkortetputtesienbetalingsautomat somleseravmagnetstripen ogberegnerhvormyemanskylderforparkeringstiden. Etter at beløpet erbetalt,blirbetalingenregistrert påmagnetstripen ogman får kortet tilbake. Når man kjører ut av parkeringshuset, må man putte kortet i en nyautomatsomkontrollererparkeringsavgiften ogåpnerutkjøringsbommen dersom korrektavgifterbetalt.determulig åtrykkepåenknappforåfå igjen selve kortet for de som måtte trenge kortet som kvittering. Denne oppgaven gårutpååkonstruere entilstandsmaskin ogtilhørendelogikk for å styre automaten ved utkjøringsbommen. Nedenfor kommer først en beskrivelse av systemet slik det skal fungere, deretter en beskrivelse av grenseaten mot øvrig elektronikk i systemet, og til slutt noen krav til gjennomføringenavtodeloppgaver. Kundenputterkortetienkortlesersomnnerutomkorrektparkeringstider betalt. Dersom parkeringstiden ikke er betalt, returneres kortet til kunden. Dersom parkeringstiden er betalt, åpnes bommen.når bilen har kjørt forbi bommen, lukkesden.itidenfrabommeneråpen tilbilenharkjørt forbi, kan kunden trykkepåenknappforåfåparkeringskortet tilbake. Dersom detikkeskjer,kasterautomaten parkeringskortet ieninnvendig boksnår bommen lukkes. Tilstandsmaskinen som kontrollerer systemet,har grenseater mot tre elektroniskeenheter: bomåpneren,utkjøringsføleren ogkortleseren. Disse periferenheteneerferdigkonstruerteogomfattesikkeavdenneoppgaven. Ikonstruksjonen avtilstandsmaskinen måduimidlertidtahensyntilkommuni- (Fortsettesside4.)
4 Eksamen iin240,12.desember 1995 Side 4 kasjonsgrensesnittet mot periferenhetene.ingen av signalene har tri-state. Kommunikasjonen med bomåpneren består bare av ett signal, og bommen holdes åpen så lenge linjen har logisk verdi 1.Utkjøringsføleren gir fra seg ett signal med logisk verdi 1 så lenge bilen passerer bomåpningen.kommunikasjonen medkortleserenervanskeligere.kortleserengirfraseg3signaler:kort ersattileseren, korrekt avgift erbetalt, ogreturknappen ertrykketpå. De to første signalene settes til logisk verdi 1 samtidig dersom korrekt avgift er betalt,ogdeholdesaktivesålengekorteterileseren.dersombetalingenikke erkorrekt, ersignaletforkorrektavgiftlogisk 0.Signalet frareturknappen er logisk 1 så lenge noen holder knappen inne. Kortleseren mottar 2 signaler fra tilstandsmaskinen: returner kortet,og kast kortet.disse signalene må ha en varighet på minst 70 nanosekunder for at kortleseren skal utføre kommandoen. Mekanikken ikortleseren brukernaturligvis noe tid pååfjernekortet, og det vil derfor også gå noe tid før signalene om at kort står i leseren og at avgifteventuelterbetalt,blirlogisk 0. Oppgaven har to deloppgaver somgriper inn i hverandre.sett deg inn i begge deloppgavene før du begynner på løsningen. Forklar omhyggelig ideene og prinsippene bakløsningene dine.dersom du nnerdetvanskelig åløse deler avoppgavene, kanduselvdenere betingelsersom du nnernødvendige for å komme videre.forklar disse nøye. 2-a (vekt 15%) I beskrivelsen av grenseaten mellom tilstandsmaskinen og de tre periferenhetene bomåpneren,utkjøringsføleren og kortleseren framgår det at kommunikasjonen erasynkron(det eringenfellesklokke)ogatimpulsenesvarighet kan være svært varierende. Dette kan både skape problem for og stille krav tiltilstandsmaskinens oppførsel.diskuter problemetsgrad og natur forhvert enkelt av signalene som tilstandsmaskinen skal motta og avgi.forklar hvordan duvilløseproblemene, konstruer logikkenogtegnkretsskjema. 2-b (vekt 35%) Konstruer tilstandsmaskinen somutførerdenbeskrevnefunksjonen.maskinenskal være avmealy-type med positivt kant-triggete JKip-op. Systemklokken har en frekvens på 10 MHz.Lag ASM-diagram og tilstandstabell med utganger. Utledogforenkle ligningene for J- ogk-inngangene. Forenkle ligningene for systemets utganger (kan pues dersom ligningene blir kompliserte). Tegnkretsskjema. Dersom denkombinatoriske logikken idelerav systemetblirkomplisert,kan du symbolisere denmedbokserslikatkretsskjemaet bliroversiktlig. Skriv isåtilfelledentilhørendeboolske ligningen påhver boks. (Fortsettes side5.)
5 Eksamen iin240,12.desember 1995 Side 5 3 (vekt 30%) 3-a Hva erexhaustive testiforbindelse medtesting avkombinatoriskekretser. Gi eteksempel. Hvabegrenserbrukavexhaustive testing? 3-b Hvordan beregnes feildekkingsgrad? 3-c Ta utgangspunkt ikretsenunder. X1 G1 X2 X3 X4 G2 G3 G4 Z Bestemvedhjelpavkritisk-veianalysehvilkeavtestvektoreneX 1 X 2 X 3 X 4 = f0111; 1111; 1101; 1011g som detektererfeilenx 1 s-a-0. Visframgangsmåten steg for steg. 3-d Ta utgangspunkt ikretsenvistovenfor. Bruk metoden boolsk dieranse til å beregne testvektorer for hver av feilene X 3 s-a-0 og utgangen avg 2 s-a-1. Visframgangsmåten. 3-e Ta utgangspunkt iguren under. X1 X2 G1 G2 Z X3 Sett oppkomplettfeilmatriseforkretsen. (Fortsettesside6.)
6 Eksamen iin240,12.desember 1995 Side 6 3-f Ta utgangspunkt iguren over. Identiserallegrupperavekvivalentefeil,alledominerendeogdominertefeil, samtalleessensielletestvektorer.finnetminimaltsettmedtestvektorersom detektereralleenklelåst-tilfeil(ssf). 3-g Ta utgangspunkt iguren overogscoap-algoritmen. Finn kombinatorisk 0-og1-kontrollerbarhetsamtkombinatorisk observerbarhet for samtlige noder i kretsen. 3-h Ta utgangspunkt ikretsenunder. Q1 Q2 Q3 CLK Bestem sekvensen og om registeret er av typen maksimal sekvenslengde LFSR. 3-i Med utgangspunkt ideloppgave 3-eog3-h, antaatetlfsrbenyttessom kompakterer som vist i guren under. X1 X2 G1 G2 Z Q1 Q2 Q3 X3 CLK (Fortsettes side7.)
7 Eksamen iin240,12.desember 1995 Side 7 Anta videreatdenkombinatoriske kretsentilføresenexhaustive testsekvens X 1 X 2 X 3 = f000; 001;::::; 110; 111g og atresponsen somframtrerpå Zkompakteres iregisteret.avgjør omdetnnesenklelåst-til-feil (SSF)i denkombinatoriske kretsensom ikke vildetekteres iresulterende signatur i kompakteringsregisteret underdetgitteinngangspåtrykk. 4 (vekt 10%) 4-a Utled det boolske uttrykket for CARRY for en full-adder.reduser det mest mulig. Lønner detsegåbrukekarnaugh-diagram? 4-b Vis atsum kan uttrykkesvedabcienfull-adder. 4-c Beskriv karakteristiske fordeler ogulemper for: IRippleAdder II Pipelined Adder III Carry-Lookahead Adder 4-d I Carry-Lookahead Adder brukes de boolske funksjonene P og G. Hva står disse benevnelsene for og hva uttrykkes de ved(som funksjon av de to delleddeneaogb). 4-e C2 i en Carry-Lookahead Adder kan uttrykkes som: C2=G2+P2G1+P2P1G0+P2P1P0CI CI erherførstecarryinn til adderen. Faktoriser dette uttrykket på en praktisk måte og lag funksjonen ved hjelp avnmoslogikk alaguren ioppgave 1.Hint:Hermådubådestable transistorer oppåhverandreogsettedeiparallell.
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1400 Digital teknologi Eksamensdag: 5. desember 2005 Tid for eksamen: 9-12 Vedlegg: Tillatte hjelpemidler: Oppgavesettet er
UNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1400 Eksamensdag: Fredag 3. desember Tid for eksamen: kl. 14:30-18:30 (4 timer). Oppgavesettet er på side(r) 7 sider
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO et matematisk-naturvitenskapelige fakultet Eksamen i: INF1400 igital teknologi Eksamensdag: 3. desember 2008 Tid for eksamen: 14:30 17:30 Oppgavesettet er på 5 sider Vedlegg: 1 Tillatte
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i INF 1411 Introduksjon til elektroniske systemer Eksamensdag: 30. mai 2010 Tid for eksamen: 3 timer Oppgavesettet er på
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1411 Introduksjon til elektroniske systemer Eksamensdag: 1. juni 2015 Tid for eksamen: 4 timer Oppgavesettet er på 5 sider
Det matematisk-naturvitenskapelige fakultet
Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1400 Eksamensdag: 5/12-2006 Tid for eksamen: 15:30 18:30 Oppgavesettet er på: 5 sider Vedlegg: Ingen Tillatte hjelpemidler:
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF3400 Digital mikroelektronikk Eksamensdag: 10. juni 2011 Tid for eksamen: 9.00 13.00 Oppgavesettet er på 5 sider. Vedlegg:
UNIVERSITETET I OSLO
Eksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet INF1400 Digital teknologi Eksamensdag: 29. november 2011 Tid for eksamen: Vedlegg: Tillatte hjelpemidler: Oppgavesettet er på
F = a bc + abc + ab c + a b c
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 240 Digital Systemkonstruksjon Eksamensdag: 8. desember 1998 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 5 sider. Vedlegg:
Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK
NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon aglig kontakt under eksamen: Ragnar Hergum 73 59 20 23 / 920 87 172 Bjørn B. Larsen 73 59 44 93 / 902 08 317
MAX MIN RESET. 7 Data Inn Data Ut. Load
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 240 çç Digital Systemkonstruksjon Eksamensdag: 6. desember 2000 Tid for eksamen: 9.00 ç 15.00 Oppgavesettet er p 5 sider. Vedlegg:
UNIVERSITETET I OSLO
UNIVRSITTT I OSLO et matematisk-naturvitenskapelige fakultet ksamen i: IN3400 igital mikroelektronikk ksamensdag: 1. juni 013 Tid for eksamen: 09.00 13.00 Oppgavesettet er på 6 sider. Vedlegg: Ingen Tillatte
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1411 Eksamensdag: mandag 3.juni 2013 Tid for eksamen: 14.30-18.30 Oppgavesettet er på 6 sider Vedlegg: Ingen Tillatte
Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK
Side 1 av 12 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 20 23 / 920 87 172 Bjørn B. Larsen 73 59 44
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1411 Introduksjon til elektroniske systemer Eksamensdag: 28. mai 2014 Tid for eksamen: 4 timer Oppgavesettet er på 6 sider
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1411 Elektroniske systemer Eksamensdag: 4. juni 2012 Tid for eksamen: 14:30 18:30 Oppgavesettet er på 5 sider Vedlegg: Ingen
Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK
NORGES TEKNISKNATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon aglig kontakt under eksamen: Ragnar Hergum 73 59 20 23 / 920 87 72 Bjørn B. Larsen 73 59 93 / 902 08 37 i emne
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: mai 2002 IN 155 Digital Signalbehandling Tid for eksamen: 6. mai 9.00 21. mai 12.00 Oppgavesettet er på 5 sider.
UNIVERSITETET I OSLO
UNIVRSITTT I OSLO et matematisk-naturvitenskapelige fakultet ksamen i: INF400 igital mikroelektronikk ksamensdag: 11. juni 2008 Tid for eksamen: Oppgavesettet er på 5 sider. Vedlegg: Ingen Tillatte hjelpemidler:
Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Lørdag 5. juni Tid kl. 09:00 13:00. Digital sensorveiledning
5.juni 2 Digital sensorveiledning 4.6.2 Side av 4 BOKMÅL NORGES TEKNISKNATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon aglig kontakt under eksamen: Bjørn B. Larsen 73 59 44
Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK
Side av 9 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 2 23 / 92 87 72 Bjørn B. Larsen 73 59 44 93 Kontinuasjonseksamen
Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK
NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon aglig kontakt under eksamen: Ragnar Hergum 73 59 20 23 / 920 87 172 Bjørn B. Larsen 73 59 44 93 / 902 08 317
4 kombinatorisk logikk, løsning
4 kombinatorisk logikk, løsning 1) Legg sammen følgende binærtall uten å konvertere til desimaltall: a. 1101 + 1001 = 10110 b. 0011 + 1111 = 10010 c. 11010101 + 001011 = 11100000 d. 1110100 + 0001011 =
Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK
NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Bjørn B. Larsen 73 59 44 93 / 902 08 317 (Digitaldel) Peter Svensson 73 59 05
EKSAMEN Emnekode: ITD13012
EKSAMEN Emnekode: ITD13012 Dato: 29.11.2017 Hjelpemidler: To (2) A4-ark (fire sider) med egne notater. HIØ-kalkulator som kan lånes under eksamen. Emnenavn: Datateknikk Eksamenstid: 3 timer Faglærer: Robert
Høgskoleni østfold EKSAMEN. Dato: Eksamenstid: kl til kl. 1200
Høgskoleni østfold EKSAMEN Emnekode: ITD13012 Emne: Datateknikk Dato: 3.12.2014 Eksamenstid: kl. 0900 til kl. 1200 Hjelpemidler: to A4-ark (fire sider) med egne notater "ikke-kommuniserende" kalkulator
INF1400. Tilstandsmaskin
INF4 Tilstandsmaskin Hovedpunkter Tilstandsmaskin Tilstandstabell Tilstandsdiagram Analyse av D-flip-flop tilstandsmaskin Reduksjon av antall tilstander Tilordning av tilstandskoder Designprosedyre for
Dagens tema. Dagens temaer hentes fra kapittel 3 i læreboken. Repetisjon, design av digitale kretser. Kort om 2-komplements form
Dagens tema Dagens temaer hentes fra kapittel 3 i læreboken Repetisjon, design av digitale kretser Kort om 2-komplements form Binær addisjon/subtraksjon Aritmetisk-logisk enhet (ALU) Demo av Digital Works
UNIVERSITETET I OSLO.
UNIVERSITETET I OSLO. Det matematisk - naturvitenskapelige fakultet. Eksamen i : FY-IN 204 Eksamensdag : 2 september 1998 (utsatt grunnet streik V-98) Tid for eksamen : l.0900-1500 Oppgavesettet er på
Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Fredag 25. mai Tid. Kl LØSNINGSFORSLAG
Side 1 av 17 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 20 23 / 920 87 172 Bjørn B. Larsen 73 59 44
Dagens temaer. Dagens temaer er hentet fra P&P kapittel 3. Motivet for å bruke binær representasjon. Boolsk algebra: Definisjoner og regler
Dagens temaer Dagens temaer er hentet fra P&P kapittel 3 Motivet for å bruke binær representasjon Boolsk algebra: Definisjoner og regler Kombinatorisk logikk Eksempler på byggeblokker 05.09.2003 INF 103
EKSAMEN (Del 1, høsten 2015)
EKSAMEN (Del 1, høsten 2015) Emnekode: ITD13012 Emne: Datateknikk Dato: 02.12.2015 Eksamenstid: kl 0900 til kl 1200 Hjelpemidler: Faglærer: to A4-ark (fire sider) med egne notater Robert Roppestad "ikke-kommuniserende"
1 Vekt 15% 1-a. 1-b. 1-c. 1-d
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN240Digitalsystemkonstruksjon Eksamensdag: 13. desember 1994 Tidforeksamen: 9.0015.00 Oppgavesettet erpå5sider. Vedlegg: Ingen
Universitetet i Agder. Fakultet for teknologi og realfag E K S A M E N. Elektriske kretser og PLS-programmering
Universitetet i Agder Fakultet for teknologi og realfag E K S A M E N Emnekode: Emnenavn: MAS218 Elektriske kretser og PLS-programmering Dato: 6. desember 2016 Varighet: 0900 1300 Antall sider inkl. forside
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 29. mars 2007 Tid for eksamen: 09.00 2.00 Oppgavesettet er på 5 sider. Vedlegg: INF 3470 / INF 4470 Digital Signalbehandling
Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK Fredag 6. aug 2004 Tid. Kl
Side 1 av 11 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Oppgave 1 (20%) a) Gitt kretsen i Figur 1. Faglig kontakt under eksamen: Spenningen over kondensato
IN1020. Sekvensiell Logikk
IN12 Sekvensiell Logikk Hovedpunkter Definisjoner Portforsinkelse Praktiske Eksempler Latch SR D Flip-Flop D JK T Tilstandsmaskiner Tilstandsdiagrammer og tilstandstabeller Omid Mirmotahari 2 Definisjoner
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 28. november 2014 Tid for eksamen: 08.15 12.15 Oppgavesettet er på 6 sider. Vedlegg: Tillatte hjelpemidler: INF1080
Forelesning 7. Tilstandsmaskin
Forelesning 7 Tilstandsmaskin Hovedpunkter Tilstandsmaskin Tilstandstabell Tilstandsdiagram Analyse av D flip-flop basert tilstandsmaskin Reduksjon av antall tilstander Tilordning av tilstandskoder Designprosedyre
Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK Fredag 21. mai 2004 Tid. Kl
Side av NORGES TEKNSK- NATURVTENSKAPLGE UNVERSTET nstitutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Øystein Ellingsson tlf. 95373 Eksamen i emne TFE4 DGTALTEKNKK MED KRETSTEKNKK
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Kandidatnr Eksamen i INF1000 Grunnkurs i objektorientert programmering Eksamensdag: Onsdag 10. juni 2009 Tid for eksamen: 9.00 12.00 Oppgavesettet
Løsningsforslag INF1400 H04
Løsningsforslag INF1400 H04 Oppgave 1 Sannhetstabell og forenkling av Boolske uttrykk (vekt 18%) I figuren til høyre er det vist en sannhetstabell med 4 variable A, B, C og D. Finn et forenklet Boolsk
INF1400. Kombinatorisk Logikk
INF4 Kombinatorisk Logikk Oversikt Binær addisjon Negative binære tall - 2 er komplement Binær subtraksjon Binær adder Halvadder Fulladder Flerbitsadder Carry propagation / carry lookahead Generell analyseprosedyre
EKSAMEN. Oppgavesettet består av 11 oppgaver med i alt 21 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye.
EKSAMEN Emnekode: ITF0705 Dato: 6. desember 03 Emne: Matematikk for IT Eksamenstid: kl 09.00 til kl 3.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt. Faglærer:
NY EKSAMEN Emnekode: ITD13012
NY EKSAMEN Emnekode: ITD13012 Dato: 30.05.2018 Hjelpemidler: To (2) A4-ark (fire sider) med egne notater. HIØ-kalkulator som kan lånes under eksamen. Emnenavn: Datateknikk (deleksamen 1) Eksamenstid: 3
UNIVERSITETET I OSLO.
UNIVERSITETET I OSLO. Det matematisk - naturvitenskapelige fakultet. Eksamen i : FYS1210 - Elektronikk med prosjektoppgaver Eksamensdag : 6. juni 2012 Tid for eksamen : 09:00 (3 timer) Oppgavesettet er
Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK
Side av 2 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 2 23 / 92 87 72 Bjørn B. Larsen 73 59 44 93 / 92
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 11 Modellering og beregninger Eksamensdag: Mandag 1 Desember 218 Tid for eksamen: 9: 13: Oppgavesettet er på 5 sider
Eksamensoppgave i TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK
3.juni 2 Side av 2 Med LF. Institutt for elektronikk og telekommunikasjon Eksamensoppgave i TFE4 DIGITALTEKNIKK MED KRETSTEKNIKK Faglig kontakt under eksamen: Ragnar Hergum - tlf. 73 59 2 23 / 92 87 72
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Kalkulus og lineær algebra Eksamensdag: Lørdag 25. Mai 29. Tid for eksamen: :5 4:5. Oppgavesettet er på 7 sider. Vedlegg:
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF Logiske metoder for informatikk Eksamensdag:. desember Tid for eksamen:.. Oppgavesettet er på sider. Vedlegg: Ingen Tillatte
Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK
5.juni 2010 Side 1 av 17 NORGES TEKNISK- BOKMÅL NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Bjørn B. Larsen 73 59 44 93 / 902 08 317 (Digitaldel)
INF2270. Sekvensiell Logikk
INF227 Sekvensiell Logikk Hovedpunkter Definisjoner Portforsinkelse Shift register Praktiske Eksempler Latch SR D Flip-Flop D JK T Tilstandsmaskiner Tilstandsdiagrammer Reduksjon av tilstand Ubrukte tilstander
EKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK
Side 1 av 13 INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON EKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK Faglig kontakt: Peter Svensson (1 3.5) / Kjetil Svarstad (3.6 4) Tlf.: 995 72 470 / 458 54 333
INF1400. Tilstandsmaskin
INF4 Tilstandsmaskin Hovedpunkter Tilstandsmaskin Tilstandstabell Tilstandsdiagram Analyse av D-flip-flop tilstandsmaskin Reduksjon av antall tilstander Tilordning av tilstandskoder Designprosedyre for
EKSAMEN. Oppgavesettet består av 9 oppgaver med i alt 21 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye.
EKSAMEN Emnekode: ITF0705 Dato:. desember 00 Emne: Matematikk for IT Eksamenstid: kl 09.00 til kl 3.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Faglærer: Christian F Heide Eksamensoppgaven:
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2810 Eksamensdag: 5. juni, 2014 Tid for eksamen: 14:30 (4 timer) Oppgavesettet er på 4 sider. Vedlegg: Ingen Tillatte hjelpemidler:
EKSAMEN Løsningsforslag Emne: Fysikk og datateknikk
Emnekode: ITD006 EKSAMEN Løsningsforslag Emne: Fysikk og datateknikk Dato: 09. Mai 006 Eksamenstid: kl 9:00 til kl :00 Hjelpemidler: 4 sider (A4) ( ark) med egne notater. Kalkulator. Gruppebesvarelse,
LØSNINGSFORSLAG 2006
LØSNINGSFORSLAG 2006 Side 1 Oppgave 1), vekt 12.5% 1a) Bruk Karnaughdiagram for å forenkle følgende funksjon: Y = a b c d + a b c d + a b cd + a bc d + a bc d + ab c d + ab cd ab cd 00 01 11 10 00 1 1
Kommentarer til Eksamen IM005 - V02
Kommentarer til Eksamen IM005 - V02 Følgende oppgaver er aktuelle innenfor dagens pensum: Oppgave 1a,d,e,f,h,i Oppgave 2a,b,c Oppgave 3 Oppgave 4a,c,d I Oppgavene 1f,h,i skal det stå enkel graf (simple
EKSAMEN (Del 1, høsten 2014)
EKSAMEN (Del 1, høsten 2014) Emnekode: ITD13012 Emne: Datateknikk Dato: 03.12.2014 Eksamenstid: kl 0900 til kl 1200 Hjelpemidler: to A4-ark (fire sider) med egne notater "ikke-kommuniserende" kalkulator
INF1400. Kombinatorisk Logikk
INF1400 Kombinatorisk Logikk Hva lærte vi forrige uke? www.socrative.com Student login Omid Mirmotahari 1 Læringsutbytte Kunnskapsmål: Kunnskap om hvordan addisjon og subtraksjon for binære tall gjøres
Dagens temaer. temaer hentes fra kapittel 3 i Computer Organisation. av sekvensielle kretser. and Architecture. Tilstandsdiagram.
Dagens temaer 1 Dagens Sekvensiell temaer hentes fra kapittel 3 i Computer Organisation and Architecture logikk Flip-flop er Design av sekvensielle kretser Tilstandsdiagram Tellere og registre Sekvensiell
Repetisjon digital-teknikk. teknikk,, INF2270
Repetisjon digital-teknikk teknikk,, INF227 Grovt sett kan digital-teknikk-delen fordeles i tre: Boolsk algebra og digitale kretser Arkitektur (Von Neuman, etc.) Ytelse (Pipelineling, cache, hukommelse,
UNIVERSITETET I OSLO.
UNIVERSITETET I OSLO. Det matematisk - naturvitenskapelige fakultet. Eksamen i : FYS1210 - Elektronikk med prosjektoppgaver Eksamensdag : 1. juni 2011 Tid for eksamen : 09:00 (3 timer) Oppgavesettet er
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk - naturvitenskapelige fakultet Eksamen i : FYS1210 - Elektronikk med prosjektoppgaver Eksamensdag : Tirsdag 7. juni 2016 Tid for eksamen : 09:00 12:00 (3 timer) Oppgavesettet
Eksamen iin115, 14. mai 1998 Side 2 Oppgave 1 15 % Du skal skrive en prosedyre lagalle som i en global character array S(1:n) genererer alle sekvenser
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 115 Algoritmer og datastrukturer Eksamensdag: 14. mai 1998 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 8 sider. Vedlegg:
Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK
.juni 20 Side av 9 NORGES TEKNISK- BOKMÅL NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Bjørn B. Larsen 73 59 44 93 / 902 08 37 (Digitaldel)
Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Fredag 25. mai Tid. Kl LØSNINGSFORSLAG
Side av 7 NORGES TEKNISKNATURITENSKAPLIGE UNIERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 7 59 2 2 / 92 87 72 Bjørn B. Larsen 7 59 44 9 Eksamen i emne
Dagens temaer. Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture. Sekvensiell logikk. Flip-flop er
Dagens temaer Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture Sekvensiell logikk Flip-flop er Design av sekvensielle kretser Tilstandsdiagram Tellere og registre INF2270 1/19
UNIVERSITETET I OSLO.
UNIVESITETET I OSLO. Det matematisk - naturvitenskapelige fakultet. Eksamen i : FYS204 Eksamensdag : 11 juni 1996. Tid for eksamen : Kl.0900-1500 Oppgavesettet er på 5 sider. Vedlegg : 4 stk. logaritmepapir
Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK
NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 20 23 / 920 87 172 Bjørn B. Larsen 73 59 44 93 / 902 08 317
UNIVERSITETET I OSLO
1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : IN 115 Eksamensdag : Lørdag 20 mai, 2000 Tid for eksamen : 09.00-15.00 Oppgavesettet er på : 5 sider Vedlegg : Intet. Tillatte
Høgskoleni østfold EKSAMEN. Emnekode: Emne: ITD13012 Datateknikk (deleksamen 1, høstsemesteret) Dato: Eksamenstid: kl til kl.
Høgskoleni østfold EKSAMEN Emnekode: Emne: ITD13012 Datateknikk (deleksamen 1, høstsemesteret) Dato: 02.12.2015 Eksamenstid: kl. 0900 til kl. 1200 Hjelpemidler: Faglærer: to A4-ark (fire sider) med egne
Løsningsforslag i digitalteknikkoppgaver INF2270 uke 5 (29/1-4/2 2006)
Løsningsforslag i digitalteknikkoppgaver INF2270 uke 5 (29/1-4/2 2006) Oppgave 1) Bør kunne løses rett fram, likevel: a) E = abcd + a'bc + acd + bcd: cd 00 01 11 10 ab 00 01 1 1 11 1 10 1 De variablene
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 2. juni 2006 Tid for eksamen: 09.00 12.00 Oppgavesettet er på 5 sider. Vedlegg: INF-MAT 3370/INF-MAT 4370 Lineær
Fys 3270/4270 høsten Laboppgave 2: Grunnleggende VHDL programmering. Styring av testkortets IO enheter.
Fys 3270/4270 høsten 2004 Laboppgave 2: Grunnleggende VHDL programmering. Styring av testkortets IO enheter. Innledning. Målet med denne laboppgaven er at dere skal lære å lage enkle hardware beskrivelser
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1411 Eksamensdag: mandag 3.juni 2013 Tid for eksamen: 14.30-18.30 Oppgavesettet er på 6 sider Vedlegg: Ingen Tillatte
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1120 Elektromagnetisme Eksamensdag: 10. oktober 2016 Tid for eksamen: 10.00 13.00 Oppgavesettet er på 8 sider. Vedlegg: Tillatte
Eksamen iin115 og IN110, 15. mai 1997 Side 2 Oppgave 1 Trær 55 % Vi skal i denne oppgaven se på en form for søkestrukturer som er spesielt godt egnet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 115 og IN110 Algoritmer og datastrukturer Eksamensdag: 15. mai 1997 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 8 sider.
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT-INF 1100 Modellering og beregninger. Eksamensdag: Onsdag 12. oktober 2016. Tid for eksamen: 15:00 17:00. Oppgavesettet
Oppgave 1. Sekvenser (20%)
Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I BERGEN Eksamen i emnet I 20 - Algoritmer, datastrukturer og programmering Mandag 2.Mai 200, kl. 09-5. Ingen hjelpemidler tillatt. Oppgavesettet
Oppgave 1 JK-flip-flop (Total vekt 20%)
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 147 Program- og maskinvare Eksamensdag: 12. mai 1997 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 6 sider. Vedlegg: Tillatte
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1010 Objektorientert programmering Eksamensdag: 6. juni 2013 Tid for eksamen: 09.00 15.00 Oppgavesettet er på 5 sider. Vedlegg:
UNIVERSITETET I OSLO.
UNIVERSITETET I OSLO. Det matematisk - naturvitenskapelige fakultet. Eksamen i : FY-IN 204 / FY108 Eksamensdag : 16 juni 2003 Tid for eksamen : Kl.0900-1500 Oppgavesettet er på 5 sider. Vedlegg : Logaritmepapir
LØSNINGSFORSLAG KRETSDEL
NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 20 23 / 920 87 172 Bjørn B. Larsen 73 59 44 93 / 902 08 317
ALGORITMER OG DATASTRUKTURER
Stud. nr: Side 1 av 6 NTNU Norges teknisk-naturvitenskapelige universitet BOKMÅL Fakultet for informasjonsteknologi matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap AVSLUTTENDE
