Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)

Like dokumenter
Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl.

Slope-Intercept Formula

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5)

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with.

TFY4170 Fysikk 2 Justin Wells

Graphs similar to strongly regular graphs

SVM and Complementary Slackness

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ.

Moving Objects. We need to move our objects in 3D space.

Databases 1. Extended Relational Algebra

Endelig ikke-røyker for Kvinner! (Norwegian Edition)

Stationary Phase Monte Carlo Methods

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F.

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

UNIVERSITETET I OSLO

Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX)

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2

Dynamic Programming Longest Common Subsequence. Class 27

Trigonometric Substitution

Verifiable Secret-Sharing Schemes

Oppgave 1. Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk EKSAMEN I: MNFFY 245 INNFØRING I KVANTEMEKANIKK

Exam in Quantum Mechanics (phys201), 2010, Allowed: Calculator, standard formula book and up to 5 pages of own handwritten notes.

Neural Network. Sensors Sorter

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

Emneevaluering GEOV272 V17

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO

Generalization of age-structured models in theory and practice

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes

5 E Lesson: Solving Monohybrid Punnett Squares with Coding

GEF2200 Atmosfærefysikk 2017

STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD

Ma Flerdimensjonal Analyse Øving 1

Ma Flerdimensjonal Analyse Øving 11

EKSAMENSOPPGAVE I SØK 1002 INNFØRING I MIKROØKONOMISK ANALYSE

Ringvorlesung Biophysik 2016

GEOV219. Hvilket semester er du på? Hva er ditt kjønn? Er du...? Er du...? - Annet postbachelor phd

Last ned Norwegian mountains - Per Roger Lauritzen. Last ned

TMA4245 Statistikk. Øving nummer 12, blokk II Løsningsskisse. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Continuity. Subtopics

Second Order ODE's (2P) Young Won Lim 7/1/14

ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt)

EKSAMEN I FAG TTT4110 Informasjons- og signalteori. Norsk tekst på oddetalls-sider. (English text on even numbered pages.)

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Christmas in the round A Holiday Prism for Band. Preview Only

HONSEL process monitoring

Hvordan føre reiseregninger i Unit4 Business World Forfatter:

Den som gjør godt, er av Gud (Multilingual Edition)

Eksamen i FY3452 GRAVITASJON OG KOSMOLOGI Lørdag 19. mai :00 13:00

Cylindrical roller bearings

KROPPEN LEDER STRØM. Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal.

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Quantitative Spectroscopy Quantitative Spectroscopy 2 - Algorithms

OPPA European Social Fund Prague & EU: We invest in your future.

Molare forsterkningsbetingelser

Emnedesign for læring: Et systemperspektiv

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

Exercise 1: Phase Splitter DC Operation

Gol Statlige Mottak. Modul 7. Ekteskapsloven

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK og FY2045 Kvantefysikk Tirsdag 13. desember 2005 kl

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

EKSAMENSOPPGAVE I FAG TKP 4105

Prosjektet Digital kontaktinformasjon og fullmakter for virksomheter Digital contact information and mandates for entities

Call function of two parameters

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Cylindrical roller bearings

Eksamen i FY3466 KVANTEFELTTEORI II Tirsdag 20. mai :00 13:00

Utvikling av skills for å møte fremtidens behov. Janicke Rasmussen, PhD Dean Master Tel

OPPA European Social Fund Prague & EU: We invest in your future.

How Bridges Work Sgrad 2001

Sitronelement. Materiell: Sitroner Galvaniserte spiker Blank kobbertråd. Press inn i sitronen en galvanisert spiker og en kobbertråd.

Perpetuum (im)mobile

PATIENCE TÅLMODIGHET. Is the ability to wait for something. Det trenger vi når vi må vente på noe

C13 Kokstad. Svar på spørsmål til kvalifikasjonsfasen. Answers to question in the pre-qualification phase For English: See page 4 and forward

Last ned Roald Amundsen - Hans Olav Thyvold. Last ned. Last ned e-bok ny norsk Roald Amundsen Gratis boken Pdf, ibook, Kindle, Txt, Doc, Mobi

Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen

Of all the places in the world, I love to stay at Grandma Genia and

PSi Apollo. Technical Presentation

Kunnskapsinfrastruktur for forskningsdata i Norge

Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

GYRO MED SYKKELHJUL. Forsøk å tippe og vri på hjulet. Hva kjenner du? Hvorfor oppfører hjulet seg slik, og hva er egentlig en gyro?

Ph.d-utdanningen. Harmonisering av krav i Norden

Administrasjon av postnummersystemet i Norge Post code administration in Norway. Frode Wold, Norway Post Nordic Address Forum, Iceland 5-6.

NO X -chemistry modeling for coal/biomass CFD

UNIVERSITETET I OSLO

TMA4245 Statistikk Eksamen 9. desember 2013

TMA4329 Intro til vitensk. beregn. V2017

Demografisk og økonomisk bærekraft av pensionsreformer i Norge, Sverige og Tyskland

The exam consists of 2 problems. Both must be answered. English

Eksamensoppgave i PSY3100 Forskningsmetode - Kvantitativ

1 Aksiomatisk definisjon av vanlige tallsystemer

Medisinsk statistikk, KLH3004 Dmf, NTNU Styrke- og utvalgsberegning

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Transkript:

by Simin Feng, Herbert G. Winful Opt. Lett. 26, 485-487 (2001) http://smos.sogang.ac.r April 18, 2014

Introduction What is the Gouy phase shift? For Gaussian beam or TEM 00 mode, ( w 0 r 2 E(r, z) = E 0 w(z) exp w(z) 2 iz i r 2 ) 2R(z) + iφ G(z) (1) Along its propagation direction, a Gaussian beam acquires a phase shift which differs from that for a plane wave with the same optical frequency. This difference is called the Gouy phase shift, named after L. G. Gouy who first discovered this phenomenon. φ G (z) = arctan(z/z R ) (2) where z R = πw0 2 /λ is the Rayleigh length and z = 0 corresponds to the position of the beam waist.

Discovered more than a century ago - but where is it from? L. G. Gouy Although Gouy made his discovery more than 100 years ago, efforts are still being made to provide a simple and satisfying physical interpretation of this phase anomaly. In this letter, the authors provide a simple intuitive explanation of the physical origin of the Gouy phase shift.

Derivation - for Gaussian beam Consider a monochromatic wave of frequency ω and wavenumber = ω/c along z direction. If it is an infinite plane wave, the momentum has no transverse components. A finite beam, however, consists transverse components of momentum. The wavenumber can be written as: 2 = 2 x + 2 y + 2 z (3) Since the wave-vector components are finitely spread, it is appropriate to deal with expectation values (or simply averages) defined by: ξ = ξ f (ξ) 2 dξ f (ξ) 2 dξ (4) where f (ξ) is the distribution of the variable ξ

Derivation - for Gaussian beam The effective axial propagation constant can be defined as z = 2 z = 2 x 2 y (5) which is associated with the overall propagation phase φ(z) through z = φ(z)/ z. By integrating with respect to z we get φ(z) = z 1 z { x 2 + y 2 }dz (6) Here the first term stands for phase evolution of infinite plane wave, and the second gives rise to the Gouy phase shift φ G = 1 z { x 2 + y 2 }dz (7)

Derivation - for Gaussian beam φ G = 1 z { 2 x + 2 y }dz (8) Hence, the Gouy shift is due to the transverse momentum spread. It can be well formulated since we now transverse distribution exactly. For Gaussian beam, transverse distribution is given by: 2 1 f (x, y) = [ π w(z) exp x 2 + y 2 ] w 2 (z) [ ( ) ] 2 Here w 2 (z) = w0 2 1 + z z R is beam radius and w 0 is the minimum spot size at z = 0. The Rayleigh length z R is defined by z R = πw 2 0 /λ (9)

Derivation - for Gaussian beam The distribution of transverse wavevector components is given by the Fourier transform. F ( x, y ) = 1 2π 1 1 = 2π 3 w(z) = w(z) [ exp 2π f (x, y)e ix x e iy y dxdy (10) w 2 (z) (x 2 + y 2 ) 4 exp [ x 2 + y 2 w 2 (z) ] ] e ix x e iy y dxdy We can see this is also Gaussian and centered about x = y = 0. And both of the distribution are normalized such that f (x, y)dxdy = F ( x, y )d x d y = 1

Derivation - for Gaussian beam Now, we have 2 x = = x 2 = w 2 (z) 2π x 2 F ( x, y ) 2 d x d y w 2 [ (z) 2π exp w 2 (z) 2 [ x 2 exp w 2 ] (z) x 2 d x 2 = 1 w 2 (z) = 2 y ] (x 2 + y 2 ) d x d y [ exp w 2 (z) y 2 2 ] d y The Gouy phase shift for the Gaussian beam is then: φ G = 1 z { x 2 + y 2 }dz = 2 z 1 w 2 (z) dz = arctan(z/z R) (11)

Generalization - for higher-order transverse modes We now show that our equation predicts the phase anomaly not only for fundamental Gaussian beams but also for higher-order transverse modes and hence is valid for arbitrary field distributions. One complete set of transverse modes is described by Hermite-Gaussian beams. [ ] [ ] 2 2x 2y f mn (x, y) = C mn w(z) Θ m Θ n w(z) w(z) (12) where Θ( m (ξ) = H m (ξ) ) exp( ξ 2 /2) is the Hermite-Gaussian of mth order and 1/2 C mn = is normalization coefficient. 1 π2 m+n m!n!

Generalization - for higher-order transverse modes The Fourier transform of Hermite-Gaussian distribution is [ ] [ ] F mn ( x, y ) = ( i) m+n w(z) w(z)x w(z)y C mn Θ m Θ n 2 2 2 (13) Utilizing the recursion relation H n+1 2ξH n + 2nH n 1 = 0 for the Hermite polynomials, one can derive the expectation values. x 2 mn = 2 ( w 2 m + 1 ) (z) 2 y 2 mn = 2 ( w 2 n + 1 ) (z) 2 Hence, Gouy shift for TEM mn modes are formulated by: φ G,mn (z) = (m + n + 1) arctan(z/z R ) (14)

Conclusion A general expression and physical explanation of the Gouy phase shift is discussed, by showing that the Gouy phase can be derived from the transverse momenta. Gouy shift of finite beams stems from transverse spatial confinement, which consequently causes transverse momentum component. This approach is valid for higher transverse modes, as well as for fundamental transverse (Gaussian) mode.