Heuristisk søk 1. Prinsipper og metoder

Størrelse: px
Begynne med side:

Download "Heuristisk søk 1. Prinsipper og metoder"

Transkript

1 Heuristisk søk Prinsipper og metoder

2 Oversikt Kombinatorisk optimering Lokalt søk og simulert størkning Populasjonsbasert søk

3 Traveling sales person (TSP) Tromsø Bergen Stavanger Trondheim Oppdal Oslo Byer Ruter >0 >0 7 0 Kristiansand

4 Kombinatorisk optimering Beste løsning - målfunksjon Diskrete løsninger Eksempler: Traveling sales person Permutasjon av nodene Minimum vertex cover Subsett av nodene Shortest superstring Permutasjon av strengene i et sett Mest deskriptive regulære uttrykk Parsetre

5 Minimum vertex cover Minste antall noder bundet til alle kanter

6 Målfunksjon og optimalisering Energilandskap som nyttig analogi Minimering av potensiell energi (mh) Smelting og størkning av materialer Krystallstruktur (Globalt optimum) Glass (Lokalt optimum)

7 Optimalisering Løsningsrom, C Målfunksjon (kostnad), c(.) Problem: min c( S * S C * )

8 Optimalisering - Løsningsskisse. Velg en tilstand som arbeidsløsning. Velg en nabotilstand. Sett nabotilstanden som ny arbeidsløsning. Gå til S C S N( S) = { S : S ~ S } S = S Hvordan definere naboskap (~)? Hvordan velge nabotilstand?

9 Minimal vertex cover Graf G=(V, E) Løsningsrom: Alle vertex covers Eks: V C Målfunksjon: c ( S) = Naboskap: S ~ S hvis S = S +- en node Max V naboløsninger S 6

10 Vertex cover gradient descent Hvordan velge nabotilstand?. Velg en tilstand S som arbeidsløsning. Velg en nabotilstand min c( S ) S N ( S ). Terminer med S hvis c(s) c(s ). Sett nabotilstanden som ny arbeidsløsning og gå til Løsning et lokalt minimum: c(s) c(s )

11 Vertex cover gradient descent som energilandskap

12 Forbedringer av gradient descent/hill climbing (GD/HC) Varianter i nabovalg Velg første nabotilstand c(s ) c(s) Velg tilfeldig nabotilstand c(s ) c(s) Prøv forskjellige starttilstander. Velg tilfeldig starttilstand. Kjør gradient descent. Ta vare på beste løsning Random-restart GD/HC

13 Hvordan unslippe lokale minima? ~ ~

14 Hvordan simulere tilstanden i et Statistisk mekanikk: Tilstand, S fysisk system? Energi til tilstand, E(S) Temperatur, T Gibbs-Boltzmann funksjonen: Sannsynlighet for å finne et fysisk system i tilstand S, P(S) P( S) ~ e E( S )/( kt )

15 Egenskaper ved Gibbs-Boltzmann funksjonen kt kt =00 =0 e E /(kt ) kt = kt = 0. E

16 Metropolis algoritmen simulerer fysisk system ved gitt temperatur. Velg en tilstand S som arbeidsløsning. Velg en tilfeldig nabotilstand S. if E(S ) E(S). Oppdater S S. else. ΔE = E(S ) - E(S). Oppdater S S med sannsynlighet. Gå til e ΔE /(kt ) Downhill GD/HC Uphill Ut av lokale minimum

17 Metropolis algoritmen har bias mot lavenergitilstander La andelen steg MA er i S i løpet av de t førstestegvære (t) Sett Da vil lim t f S Z ( t) = = Z S C e e Over lang tid vil Metropolis algoritmen bruke mest tid i lavenergitilstander f S E( S )/( kt ) E( S )/( kt )

18 Metropolis i praksis 6 ~ 6 ~ 6 ~ ~ 6 / / 6 6

19 - - 0 Energilandskap og temperatur Høy temperatur Lav temperatur kt kt =00 =0 E /(kt ) e kt = kt = 0. E

20 Energilandskap og temperatur Høy temperatur alle tilstander like sannsynlige Smeltet materiale Lav temperatur minimumstilstandene mest sannsynlige Krystallstruktur Rask endring fra høy til lav temperatur Stokastisk gradient descent Lokale minima Imperfekt krystallstruktur (eller glass)

21 Simulert størkning for optimalisering Krystalldyrkning i praksis:. Smelt. Avkjøl langsomt Simulert størkning: Start Metropolis algoritmen på høy temp Reduser temperaturen som funksjon av iterasjonene (annealing schedule) T = τ (i)

22 Simulert størkning. Velg en tilstand S som arbeidsløsning. Velg en tilfeldig nabotilstand S. Oppdater temperaturen. if E(S ) E(S). Oppdater S S. else. ΔE = E(S ) - E(S). Oppdater S S med sannsynlighet 6. Gå til e ΔE /(kt ) Downhill GD/HC Uphill Ut av lokale minimum

23 Simulert størkning konvergerer mot globalt optimum Langsom størkning gir globalt optimum T τ 0 ( i) = log( + i) Suboptimal størkning brukes i praksis τ ( i) = T g, g < 0 i 0 g = g = 0.9 log

24 Simulert størkning og TSP N byer i kvadrat med sidelengder N / Gjennomsnittelig avstand til nærmeste nabo uavhengig av N Gjennomsnittelig steglengde α uavhengig av N Heuristikk Gå til nærmeste by gir α = O(ln(N)) α. (i gjennomsnitt) Simulert størkning Tilstand S: Permutasjon av {,, N}, S=s s N Naboskap: Reverser en del av turen S Eks: S = 6789,S = 6789;S = 6789

25 Simulert størkning og TSP T =. α =.067 T = 0.8 α =. T = 0. α =.0 T = 0.0 α = 0.789

26 Naboskap påvirker løsbarhet Naboskap i TSP Reverser en del av turen Reverser etterfølgende par Bytt to tilfeldige byer Resten 0 Energilandskap?

27 Energilandskap for naboskap Reverser en del av turen Resten Resten 0 ~

28 Energilandskap for naboskap Reverser etterfølgende par Resten Resten 0 ~

29 Energilandskap for naboskap Bytt to tilfeldige byer Resten Resten 0 ~

30 Gradient descent, metropolis og simulert størkning Algoritme:. Velg en tilstand som arbeidsløsning. Velg en nabotilstand. Sett nabotilstanden som ny arbeidsløsning. Gå til Gradient descent Velg bedre nabo Metropolis + Velg dårligere nabo avhengig av temperatur og endring i kostnad Simulert størkning + Senk temperaturen

31 Tabu-søk Hvordan hindre tilbakefall til suboptimale løsninger? Resten

32 Tabu-søk Hvordan hindre tilbakefall til suboptimale løsninger? Resten Husk tidligere tilstander! 0 Tabu-søk husker siste n tilstander 9 8 Velger alltid beste løsning i N(S) Minnet (Tabu-listen) hindrer sykler med maks n elementer 6 7

33 Elementer så langt Iterer over enkelttilstander basert på naboskap Gå til bedre tilstand Aksepter dårligere tilstand Husk/unngå tidligere tilstander Se på flere løsninger Hva med å iterere over multiple tilstander samtidig?

34 Populasjonsbaserte optimaliseringsmetoder. Velg et sett av tilstander som arbeidsløsning. Velg et sett av nabotilstander. Sett nabotilstandene som ny arbeidsløsning. Gå til { S}, S C { S }, S N( S) = { S : S ~ S } { S } = { S } Hvordan definere naboskap (~)? Hvordan velge nabotilstander?

35 Hvordan velge nabotilstander? Parallel random-restart GD/HC min S N ( S ) c( S ) Igjen: naturen som inspirasjonskilde Charles Darwin Evolusjon -> naturens optimaliseringsmetode

36 Evolusjon som optimalisering Konkurranse om begrensede ressurser Arvelige egenskaper i en populasjon Organismer får mer avkom enn ressursgrunnlag Avkom har varierende evner til å overleve og reprodusere -> Fitness Nyttige egenskaper har større sjanse for å føres videre

37 Evolusjon som optimaliseringsmetode Tilstandsbeskrivelse som arvelig egenskap -> gen Begrenset populasjonsstørrelse Overlevelsesevne gitt av målfunksjon -> fitness Viktig element mangler!

38 Genetisk variasjon Avkom ikke nøyaktig kopi Mutasjoner (endring av individs arvestoff) Rekombinasjon (kombinasjon av to individs arvestoff) Crossover punkt Crossover punkt

39 Genetisk variasjon definerer naboskap Eks: TSP Arvestoff (tilstand) Nodepermutasjon Mutasjon (naboskap) Segmentreversjon Crossover/rekombinasjon (naboskap) Behold noderekkefølge fram til crossoverpunkt fra foreldre Bruk noderekkefølge for gjenværende noder fra foreldre S = 6789 S = 7689 S = 6789 S = 9876 S = 9876

40 Seleksjon definerer valg av naboer Overlevelsesevne gitt av målfunksjon Velg n løsninger (individ) proporsjonalt med løsningskvalitet (fitness) Velg n individ ved å velge beste individ fra n tilfeldige undergrupper

41 Evolusjonær algoritme. Lag en startpopulasjon {S 0 } = n (tilfeldig). Selekter n individ {S } fra {S i } (med tilbakelegging). Lag ny generasjon {S i+ } ved å rekombinere og mutere {S }. Gå til

42 Varianter av evolusjonære algoritmer Genetiske algoritmer Genom -> Strenger Parameteroptimalisering Genetisk programmering Genom -> Symbolske uttrykk Optimale deskriptive uttrykk

43 Heuristisk søk og optimalisering Basisalgoritme Velg en tilstand som arbeidsløsning Velg en nabotilstand Sett nabotilstanden som ny arbeidsløsning Gå til

44 Heuristisk søk og optimalisering Valg av nabotilstand viktig Definisjon av nabolag Valg av tilstand i nabolaget Resten No free lunch Alle metaheuristikker er i gjennomsnitt like gode Ytelse og valg av nabotilstand henger sammen

45 Pragmatiske løsninger

Oversikt. Heuristisk søk 1. Kombinatorisk optimering Lokalt søk og simulert størkning Populasjonsbasert søk. Prinsipper og metoder

Oversikt. Heuristisk søk 1. Kombinatorisk optimering Lokalt søk og simulert størkning Populasjonsbasert søk. Prinsipper og metoder Oversikt Heuristisk søk Kombinatorisk optimering Lokalt søk og simulert størkning Populasjonsbasert søk Prinsipper og metoder Pål Sætrom Traveling sales person (TSP) Kombinatorisk optimering Trondheim

Detaljer

Oversikt. Branch-and-bound. Hvordan løse NP-hard kombinatorisk optimering? Eks: Eksakt Min Vertex cover. Mulige løsninger representert som søketre

Oversikt. Branch-and-bound. Hvordan løse NP-hard kombinatorisk optimering? Eks: Eksakt Min Vertex cover. Mulige løsninger representert som søketre Oversikt Branch-and-bound Pål ætrom Branch and bound Prinsipper Min Vertex cover B & B eksempler Median string TP Hvordan løse NP-hard kombinatorisk optimering? Kombinatorisk opt. Løsningsrom, C Målfunksjon

Detaljer

INF-MAT 5380 - Geir Hasle - Leksjon 3 2

INF-MAT 5380 - Geir Hasle - Leksjon 3 2 Leksjon 3 !"#$ Eksempler på DOP Alternative representasjoner Definisjon nabolag, -operator Lokalsøk Definisjon lokalt optimum Eksakt nabolag Prosedyre for lokalsøk Traversering av nabolagsgraf Kommentarer,

Detaljer

Løsningsforslag: Deloppgave om heuristiske søkemetoder, ALGKON 2003, kontinuasjonseksamen

Løsningsforslag: Deloppgave om heuristiske søkemetoder, ALGKON 2003, kontinuasjonseksamen Løsningsforslag: Deloppgave om heuristiske søkemetoder, ALGKON 2003, kontinuasjonseksamen 1. september 2003 Deloppgave a I denne oppgaven skal vi ta for oss isomorfismer mellom grafer. To grafer G og H

Detaljer

Heuristiske søkemetoder II

Heuristiske søkemetoder II Heuristiske søkemetoder II Lars Aurdal Intervensjonssenteret [email protected] 4. september 23 Plan Hva er en heuristisk søkealgoritme? Hvorfor heuristiske søkealgoritmer framfor tilbakenøsting?

Detaljer

Heuristiske søkemetoder I: Simulert størkning og tabu-søk

Heuristiske søkemetoder I: Simulert størkning og tabu-søk Heuristiske søkemetoder I: Simulert størkning og tabu-søk Lars Aurdal Norsk regnesentral [email protected] Heuristiske søkemetoder I:Simulert størkning ogtabu-søk p.1/141 Hva er tema for disse forelesningene?

Detaljer

INF-MAT-5380

INF-MAT-5380 INF-MAT-5380 http://www.uio.no/studier/emner/matnat/ifi/inf-mat5380/ Leksjon 3 Leksjon 2 - Oppsummering Eksempler på DOP Alternative formuleringer Definisjon nabolag, -operator Lokalsøk Definisjon lokalt

Detaljer

LØSNINGSFORSLAG ØVING 2 - APPROKSIMERING AV TSP

LØSNINGSFORSLAG ØVING 2 - APPROKSIMERING AV TSP LØSNINGSFORSLAG ØVING 2 - APPROKSIMERING AV TSP Approksimering av Travling Salesman Problem er her illustrert vha. en genetisk algoritme (GA). Den grunnlegge metaforen for en genetisk algoritme er evolusjon

Detaljer

Avsluttende eksamen i TDT4125 Algoritmekonstruksjon, videregående kurs

Avsluttende eksamen i TDT4125 Algoritmekonstruksjon, videregående kurs TDT4125 2010-06-03 Kand-nr: 1/5 Avsluttende eksamen i TDT4125 Algoritmekonstruksjon, videregående kurs Eksamensdato 3. juni 2010 Eksamenstid 0900 1300 Sensurdato 24. juni Språk/målform Bokmål Kontakt under

Detaljer

NP-komplett, hva nå?

NP-komplett, hva nå? NP-komplett, hva nå? Anta vi har klart å vise at problemet vårt er NP-komplett eller NP-hardt. Hva betyr det? Såfremt P NP (de fleste tror det) har ikke problemet noen polynomisk algoritme. Hva skal vi

Detaljer

INF-MAT-5380 http://www.uio.no/studier/emner/matnat/ifi/inf-mat5380/

INF-MAT-5380 http://www.uio.no/studier/emner/matnat/ifi/inf-mat5380/ INF-MAT-5380 http://www.uio.no/studier/emner/matnat/ifi/inf-mat5380/ Leksjon 8 Diskrete optimeringsproblemer (DOP) Finnes overalt operasjonsanalyse kunstig intelligens mønstergjenkjenning geometri økonomi

Detaljer

IN2010: Forelesning 11. Kombinatorisk søking Beregnbarhet og kompleksitet

IN2010: Forelesning 11. Kombinatorisk søking Beregnbarhet og kompleksitet IN2010: Forelesning 11 Kombinatorisk søking Beregnbarhet og kompleksitet KOMBINATORISK SØKING Oversikt Generering av permutasjoner Lett: Sekvens-generering Vanskelig: Alle tallene må være forskjellige

Detaljer

Discrete Optimization Methods in Maritime and Road-based Transportation

Discrete Optimization Methods in Maritime and Road-based Transportation Discrete Optimization Methods in Maritime and Road-based Transportation Forskningsprosjekt med støtte fra Norges Forskningsråd Samarbeidspartnere Norges Teknisk-Naturvitenskapelige Universitet Institutt

Detaljer

INF-MAT-5380

INF-MAT-5380 INF-MAT-5380 http://www.uio.no/studier/emner/matnat/ifi/inf-mat5380/ Leksjon 5 Leksjon 4 - Oversikt Tabusøk INF-MAT 5380 - Geir Hasle - Leksjon 5 2 Tabusøk - Sammendrag Inspirert fra matematisk optimering

Detaljer

Genetiske interaksjoner villfisk-oppdrettsfisk

Genetiske interaksjoner villfisk-oppdrettsfisk Genetiske interaksjoner villfisk-oppdrettsfisk Jørgen Ødegård og Celeste Jacq Nofima AHA Oppstartkonferanse Leikanger, april 2011 Rømming av oppdrettslaks - trusselbilde Oppdrettsfisk kan rømme og krysse

Detaljer

Korteste vei problemet (seksjon 15.3)

Korteste vei problemet (seksjon 15.3) Korteste vei problemet (seksjon 15.3) Skal studere et grunnleggende kombinatorisk problem, men først: En (rettet) vandring i en rettet graf D = (V, E) er en følge P = (v 0, e 1, v 1, e 2,..., e k, v k

Detaljer

NP-kompletthet. «Hvordan gjøre noe lett for å vise at noe annet er vanskelig»

NP-kompletthet. «Hvordan gjøre noe lett for å vise at noe annet er vanskelig» NP-kompletthet «Hvordan gjøre noe lett for å vise at noe annet er vanskelig» Gjennomgang Øving 12, maks flyt Oppskrift på et NPkomplett problem 1. Vise at problemet er veldig lett å sjekke 2. Vise at problemet

Detaljer

Mer om Markov modeller

Mer om Markov modeller Høyere ordens Markov modeller Mer om Markov modeller p h mnr = Pr( Y j+ 3 = ah Y j+ 2 = am, Y j+ 1 = an, Y j = a : r For en k-te ordens Markov modell som modellerer en DNA prosess vil det være 3*4 k mulige

Detaljer

Genetiske interaksjoner mellom vill og oppdrettet laks

Genetiske interaksjoner mellom vill og oppdrettet laks Genetiske interaksjoner mellom vill og oppdrettet laks Céleste Jacq, Jørgen Ødegård, Hans B. Bentsen og Bjarne Gjerde Havforskermøtet 2011 Trondheim Rømming av oppdrettslaks - trusselbilde Oppdrettsfisk

Detaljer

TMA4140 Diskret Matematikk Høst 2016

TMA4140 Diskret Matematikk Høst 2016 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4140 Diskret Matematikk Høst 2016 Seksjon 10.2 18 La G = (V,E) være en enkel graf med V 2. Ettersom G er enkel er de mulige

Detaljer

Data-avhengige trianguleringer

Data-avhengige trianguleringer Data-avhengige trianguleringer Øyvind Hjelle [email protected], +47 67 82 82 75 Simula Research Laboratory, www.simula.no October 5, 2009 Definition (Data-avhengig triangulering) En triangulering (P),

Detaljer

FLERVALGSOPPGAVER EVOLUSJON

FLERVALGSOPPGAVER EVOLUSJON FLERVALGSOPPGAVER EVOLUSJON FLERVALGSOPPGAVER FRA EKSAMEN I BIOLOGI 2 V2008 - V2011 Disse flervalgsoppgavene er hentet fra eksamen i Biologi 2 del 1. Det er fire (eller fem) svaralternativer i hver oppgave,

Detaljer

Maks Flyt og NPkompletthet

Maks Flyt og NPkompletthet Maks Flyt og NPkompletthet Flyt - Intro Mange av oppgavene om flyt handler om å se at Dette kan vi løse som et flytproblem. Resten er som regel kortsvarsoppgaver, og går på grunnleggende forståelse av

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Institutt for datateknikk og informasjonsvitenskap Eksamensoppgave i TDT0 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Telefon 98 5 99 Eksamensdato 7. desember, 06 Eksamenstid

Detaljer

Løsningsforslag ST2301 Øving 11

Løsningsforslag ST2301 Øving 11 Løsningsforslag ST230 Øving Kapittel 6 Exercise I en diploid populasjon i Wright-Fisher-modellen, hvor mange generasjoner tar det før 90% av heterozygotene er tapt? Antar at det er N individer i populasjonen

Detaljer

Kulturell seleksjon. Hva er det og innebærer det et eget prinsipp for seleksjon?

Kulturell seleksjon. Hva er det og innebærer det et eget prinsipp for seleksjon? Kulturell seleksjon Hva er det og innebærer det et eget prinsipp for seleksjon? 1 Abstract Mange atferdsanalytikere snakker i dag om seleksjon på tre nivåer. Den mest grunnleggende form for seleksjon er

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 13: Dynamisk programmering (Ifi, UiO) INF2220 H2017, forelesning 13 1 / 30 Dagens plan Dynamisk

Detaljer

A study of different matching heuristics. Hovedfagspresentasjon Jan Kasper Martinsen

A study of different matching heuristics. Hovedfagspresentasjon Jan Kasper Martinsen A study of different matching heuristics Hovedfagspresentasjon Jan Kasper Martinsen ([email protected]) Terminologi: Graf teori En graf består av et sett med noder Nodene er tilknyttet hverandre ved hjelp

Detaljer

GRAFER. Korteste vei i en vektet graf uten negative kanter. Korteste vei, en-til-alle, for: Minimale spenntrær

GRAFER. Korteste vei i en vektet graf uten negative kanter. Korteste vei, en-til-alle, for: Minimale spenntrær IN Algoritmer og datastrukturer GRAER IN Algoritmer og datastrukturer Dagens plan: orteste vei, en-til-alle, for: ektet rettet graf uten negative kanter (apittel 9..) (Dijkstras algoritme) ektet rettet

Detaljer

Kontinuasjonseksamen i tdt4125 Algoritmekonstruksjon, videregående kurs

Kontinuasjonseksamen i tdt4125 Algoritmekonstruksjon, videregående kurs Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Side 1 av 7 Eksamenforfattere: Ole Edsberg Kvalitetskontroll: Magnus Lie Hetland Kontakter under eksamen:

Detaljer

IN Algoritmer og datastrukturer

IN Algoritmer og datastrukturer IN00 - Algoritmer og datastrukturer HØSTEN 08 Institutt for informatikk, Universitetet i Oslo Forelesning 5: Grafer II Ingrid Chieh Yu (Ifi, UiO) IN00 8.09.08 / Dagens plan: Korteste vei en-til-alle vektet

Detaljer

Prosjektoppgaver om diusjonsprosesser og diusjonstilnærmelse

Prosjektoppgaver om diusjonsprosesser og diusjonstilnærmelse Prosjektoppgaver om diusjonsprosesser og diusjonstilnærmelse February 13, 2006 I alle oppgavene skal det skrives litt om hva diusjonsprosesser er, hvilke spesielle resultater fra diusjonsteorien man skal

Detaljer

IN Algoritmer og datastrukturer

IN Algoritmer og datastrukturer IN010 - Algoritmer og datastrukturer HØSTEN 018 Institutt for informatikk, Universitetet i Oslo Forelesning 6: Grafer III Ingrid Chieh Yu (Ifi, UiO) IN010 0.10.018 1 / 0 Dagens plan: Dybde-først søk Biconnectivity

Detaljer

Prosjektoppgaver om diusjonsprosesser og diusjonstilnærmelse

Prosjektoppgaver om diusjonsprosesser og diusjonstilnærmelse Prosjektoppgaver om diusjonsprosesser og diusjonstilnærmelse February 22, 2007 I alle oppgavene skal det skrives litt om hva diusjonsprosesser er, hvilke spesielle resultater fra diusjonsteorien man skal

Detaljer

!!!" " # $ Leksjon 1

!!!  # $ Leksjon 1 !!!"" # $ Leksjon 1 %# Studenten skal etter seminaret ha en grunnleggende forståelse av hvordan moderne heuristiske metoder basert på lokalsøk og metaheuristikker kan brukes for å finne approksimerte løsninger

Detaljer

Populasjonsgenomikk på torsk -et verktøy for identifisering av viktige genomiske regioner for oppdrettsnæringen.

Populasjonsgenomikk på torsk -et verktøy for identifisering av viktige genomiske regioner for oppdrettsnæringen. Programkonferansen HAVBRUK 2012, Stavanger, 16.-18. april 2012 Populasjonsgenomikk på torsk -et verktøy for identifisering av viktige genomiske regioner for oppdrettsnæringen. Paul R. Berga, Bastiaan Stara,

Detaljer

UNIVERSITETET I AGDER

UNIVERSITETET I AGDER FAKULTET FOR TEKNOLOGI OG REALFAG EKSAMEN Emnekode: BI0105 Emnenavn: Genetikk og evolusjon Dato: 21. november 2011 Varighet: 2 timer Antall sider inkl. forside 8 Tillatte hjelpemidler: Kalkulator Merknader:

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf.!! 91851949 Eksamensdato! 15. august 2013 Eksamenstid (fra til)! 0900 1300 Hjelpemiddelkode D.

Detaljer

AVL MOT ILA. FHFs ILA workshop Borghild Hillestad April 2017

AVL MOT ILA. FHFs ILA workshop Borghild Hillestad April 2017 AVL MOT ILA FHFs ILA workshop Borghild Hillestad April 2017 HVA BOR I GENOMET TIL EN ART? Det genetiske mangfoldet hos en art kan være enormt MENNESKER KAN STYRE GENETIKKEN I FLERE RETNINGER En negativ

Detaljer

LP. Leksjon 8: Kapittel 13: Nettverk strøm problemer, forts.1

LP. Leksjon 8: Kapittel 13: Nettverk strøm problemer, forts.1 LP. Leksjon 8: Kapittel 13: Nettverk strøm problemer, forts.1 Vi fortsetter studiet av (MKS): minimum kost nettverk strøm problemet. Har nå en algoritme for beregning av x for gitt spenntre T Skal forklare

Detaljer

Evolusjonens tvangstrøyer

Evolusjonens tvangstrøyer Evolusjonens tvangstrøyer Kjetil Lysne Voje Universitetet i Oslo volusjon foregår hele tida! Evolusjon er lett! Tre nødvendige ingredienser Variasjon Seleksjon Arvbarhet Tre nødvendige ingredienser

Detaljer

INF-MAT5370. Grafer og datastrukturer

INF-MAT5370. Grafer og datastrukturer INF-MAT5370 Grafer og datastrukturer Øyvind Hjelle [email protected], +47 67 82 82 75 Simula Research Laboratory, www.simula.no August 3, 2009 Innhold Kort om grafer Topologiske operatorer og operasjoner,

Detaljer

Heuristiske søkemetoder I

Heuristiske søkemetoder I Heuristiske søkemetoder I Lars Aurdal Intervensjonssenteret [email protected] 14. september 2003 Plan Hva slags søkemetoder snakker vi om? Kombinatoriske strukturer. Sett. Lister. Grafer. Søkealgoritmer

Detaljer

LEKSJON 4: BIOTEKNOLOGI HVORDAN VI BRUKER NATURENS EGNE MEKANISMER TIL VÅR FORDEL, OG UTFORDRINGENE SOM FØLGER MED

LEKSJON 4: BIOTEKNOLOGI HVORDAN VI BRUKER NATURENS EGNE MEKANISMER TIL VÅR FORDEL, OG UTFORDRINGENE SOM FØLGER MED LEKSJON 4: BIOTEKNOLOGI HVORDAN VI BRUKER NATURENS EGNE MEKANISMER TIL VÅR FORDEL, OG UTFORDRINGENE SOM FØLGER MED KOMPETANSEMÅL Forklarebegrepene krysning og genmodifisering, og hvordan bioteknologi brukes

Detaljer

Søk i tilstandsrom. Backtracking (Kap. 10) Branch-and-bound (Kap. 10) Iterativ fordypning. Dijkstras korteste sti-algoritme A*-søk (Kap.

Søk i tilstandsrom. Backtracking (Kap. 10) Branch-and-bound (Kap. 10) Iterativ fordypning. Dijkstras korteste sti-algoritme A*-søk (Kap. Søk i tilstandsrom Backtracking (Kap. 10) DFS i tilstandsrommet. Trenger lite lagerplass. Branch-and-bound (Kap. 10) BFS Trenger mye plass: må lagre alle noder som er «sett» men ikke studert. Kan også

Detaljer

Søking i strenger. Prefiks-søking Naiv algoritme Knuth-Morris-Pratt-algoritmen Suffiks-søking Boyer-Moore-algoritmen Hash-basert Karp-Rabin-algoritmen

Søking i strenger. Prefiks-søking Naiv algoritme Knuth-Morris-Pratt-algoritmen Suffiks-søking Boyer-Moore-algoritmen Hash-basert Karp-Rabin-algoritmen Søking i strenger Vanlige søkealgoritmer (on-line-søk) Prefiks-søking Naiv algoritme Knuth-Morris-Pratt-algoritmen Suffiks-søking Boyer-Moore-algoritmen Hash-basert Karp-Rabin-algoritmen Indeksering av

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf. 91851949 Eksamensdato 7. desember 2013 Eksamenstid (fra til) 0900 1300 Hjelpemiddelkode Målform/språk

Detaljer

Biseksjonsmetoden. biseksjonsmetode. Den første og enkleste iterativ metode for ikke lineære likninger er den så kalt

Biseksjonsmetoden. biseksjonsmetode. Den første og enkleste iterativ metode for ikke lineære likninger er den så kalt Biseksjonsmetoden Den første og enkleste iterativ metode for ikke lineære likninger er den så kalt biseksjonsmetode. Gitt en intervall [a, b] hvor f skifter fortegn, vi halverer [a, b] = [a, b + a 2 ]

Detaljer

Løsningsforslag øving 12, ST1301

Løsningsforslag øving 12, ST1301 Løsningsforslag øving 12, ST1301 Oppgave 1 En to-utvalgs t-test forutsetter at observasjonene i hvert utvalg X 1 ; X 2 ; : : : ; X n og Y 1 ; Y 2 ; : : : ; Y m er uavhengige normalfordelte variable. Hvis

Detaljer

Eksamen - INF 283 Maskinlæring

Eksamen - INF 283 Maskinlæring Eksamen - INF 283 Maskinlæring 23 feb. 2016 Tid: 3 timer Eksamen inneholder 15 oppgaver, som vil bli vektet likt ved evaluering. 1 Table 1 attributt antall personer forsørget av låntaker månedlig inntekt

Detaljer

Norsk informatikkolympiade runde

Norsk informatikkolympiade runde Norsk informatikkolympiade 2017 2018 1. runde Sponset av Uke 46, 2017 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.

Detaljer

Eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl

Eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl Student nr.: Side 1 av 7 Eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl 0900-1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 73 593442. Hjelpemidler: Alle kalkulatortyper

Detaljer

INF-MAT-5380

INF-MAT-5380 INF-MAT-5380 http://www.uio.no/studier/emner/matnat/ifi/inf-mat5380/ Leksjon 7 GA - Oppsummering Viktige karakteristika populasjon av løsninger domeneuavhengighet enkoding mangel på utnyttelse av struktur

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2016 Institutt for informatikk, Universitetet i Oslo Forelesning 6: Grafer II Ingrid Chieh Yu (Ifi, UiO) INF2220 28.09.2016 1 / 30 Dagens plan: Dijkstra fort.

Detaljer

Tilfeldig søk Simulert størkning Terskelakseptanseteknikker. INF-MAT Geir Hasle - Leksjon 4 2

Tilfeldig søk Simulert størkning Terskelakseptanseteknikker. INF-MAT Geir Hasle - Leksjon 4 2 Leksjon 4 !!"# Tilfeldig søk Simulert størkning Terskelakseptanseteknikker INF-MAT 5380 - Geir Hasle - Leksjon 4 2 $!"% Inspirert av statistisk mekanikk - nedkjøling Metaheuristikk lokalsøk tilfeldig nedstigning

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF0 - Algoritmer og datastrukturer HØSTEN 05 Institutt for informatikk, Universitetet i Oslo Forelesning 6: Grafer II Ingrid Chieh Yu (Ifi, UiO) INF0.09.05 / 8 Dagens plan: Minimale spenntrær Prim Kruskal

Detaljer

ALGORITMER OG DATASTRUKTURER

ALGORITMER OG DATASTRUKTURER Stud. nr: Side 1 av 6 NTNU Norges teknisk-naturvitenskapelige universitet BOKMÅL Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap LØSNINGSFORSLAG,

Detaljer

Kompleksitet og Beregnbarhet

Kompleksitet og Beregnbarhet Kompleksitet og Beregnbarhet 16. September, 2019 Institutt for Informatikk 1 Dagens plan Avgjørelsesproblemer. P EXPTIME NP Reduksjoner NP-kompletthet Uavgjørbarhet UNDECIDABLE DECIDABLE PSPACE NPC NP

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 11: Huffman-koding & Dynamisk programmering (Ifi, UiO) INF2220 H2015, forelesning 11 1 / 32 Dagens

Detaljer

Turingmaskiner.

Turingmaskiner. Turingmaskiner http://www.youtube.com/watch?v=e3kelemwfhy http://www.youtube.com/watch?v=cyw2ewoo6c4 Søking i strenger Vanlige søkealgoritmer (on-line-søk) Prefiks-søking Naiv algoritme Knuth-Morris-Pratt-algoritmen

Detaljer

INF Triangulering. Med sterk støtte fra Petter Kristiansen. Skal først se på et eksempel fra Google Earth

INF Triangulering. Med sterk støtte fra Petter Kristiansen. Skal først se på et eksempel fra Google Earth INF 4130 17. november 2011 Triangulering Stein Krogdahl Med sterk støtte fra Petter Kristiansen Skal først se på et eksempel fra Google Earth De bruker en underliggende triangulering av landskapet, men

Detaljer

Ikke lineære likninger

Ikke lineære likninger Ikke lineære likninger Opp til nå har vi studert lineære likninger og lineære likningsystemer. 1/19 Ax = b Ax b = 0. I en dimensjon, lineære likninger kan alltid løses ved hjelp av formler: ax + b = 0

Detaljer

Øvingsforelesning 2 - TDT4120. Grafer og hashing. Benjamin Bjørnseth

Øvingsforelesning 2 - TDT4120. Grafer og hashing. Benjamin Bjørnseth Øvingsforelesning 2 - TDT4120 Grafer og hashing Benjamin Bjørnseth Informasjon Studasser [email protected] Program Presentasjon av øving 2 Grafer og traverseringsalgoritmer BFS, DFS Hashing Gjennomgang

Detaljer

Kontinuasjonseksamen i tdt4125 Algoritmekonstruksjon, videregående kurs

Kontinuasjonseksamen i tdt4125 Algoritmekonstruksjon, videregående kurs Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Side 1 av 7 Eksamenforfattere: Ole Edsberg Kvalitetskontroll: Magnus Lie Hetland Kontakter under eksamen:

Detaljer

Løsningsforslag for utvalgte oppgaver fra kapittel 9

Løsningsforslag for utvalgte oppgaver fra kapittel 9 Løsningsforslag for utvalgte oppgaver fra kapittel 9 9.2 1 Grafer og minne.......................... 1 9.2 4 Omvendt graf, G T......................... 2 9.2 5 Kompleksitet............................

Detaljer

Notat for oblig 2, INF3/4130 h07

Notat for oblig 2, INF3/4130 h07 Notat for oblig 2, INF3/4130 h07 Dag Sverre Seljebotn 15. oktober 2007 Jeg har skrivd et noe langt notat for oblig 2 som interesserte kan se på. Merk at dette er kun for å gi et par tips (for oppgave 3

Detaljer

Matematisk evolusjonær genetikk, ST2301 Onsdag 15. desember 2004 Løsningsforslag

Matematisk evolusjonær genetikk, ST2301 Onsdag 15. desember 2004 Løsningsforslag Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Side av 5 Matematisk evolusjonær genetikk, ST30 Onsdag 5. desember 004 Løsningsforslag Oppgave a) Vi setter først navn på de

Detaljer

6. oktober Dagens program: Første time: Andre time, gjesteforelesning: Uavgjørbarhet. Stein Krogdahl. (Ikke pensum, egne foiler legges ut)

6. oktober Dagens program: Første time: Andre time, gjesteforelesning: Uavgjørbarhet. Stein Krogdahl. (Ikke pensum, egne foiler legges ut) Dagens program: Første time: INF 4130 6. oktober 2011 Stein Krogdahl Kap 23.5: Spilltrær og strategier for spill med to spillere Andre time, gjesteforelesning: Rune Djurhuus: Om sjakkspillende programmer

Detaljer

Sammenheng mellom læringsutbyttebeskrivelse og vurdering. Christian Jørgensen

Sammenheng mellom læringsutbyttebeskrivelse og vurdering. Christian Jørgensen Sammenheng mellom læringsutbyttebeskrivelse og vurdering Christian Jørgensen Bio100 - Fire deleksamener Deleksamen Maks poeng 1: Flervalg og kortsvar 20 2: Regneøvelse i Excel med rapport 20 3: Presentasjon

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2017 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 5: Grafer I Ingrid Chieh Yu (Ifi, UiO) INF2220 H2017, forelesning 5 1 / 53

Detaljer

KORTESTE STI. Vektede Grafer. Korteste Sti. Dijkstra s Algoritme. Vektet Urettet Graf

KORTESTE STI. Vektede Grafer. Korteste Sti. Dijkstra s Algoritme. Vektet Urettet Graf Vektet Urettet Graf KORTESTE STI Finn: fra en Enkel Kilde til Alle Noder. (Engelsk: Single Source Shortest Path - SSSP) Vektede Grafer vekter på kanter representerer f.eks. avstand, kostnad, båndbredde...

Detaljer

Løsningsforslag for eksamen i fag TDT4120 Algoritmer og datastrukturer Tirsdag 9. desember 2003, kl

Løsningsforslag for eksamen i fag TDT4120 Algoritmer og datastrukturer Tirsdag 9. desember 2003, kl TDT4120 2003-12-09 Stud.-nr: Antall sider: 1/7 Løsningsforslag for eksamen i fag TDT4120 Algoritmer og datastrukturer Tirsdag 9. desember 2003, kl. 0900 1500 Faglig kontakt under eksamen: Arne Halaas,

Detaljer

Heuristiske søkemetoder II: Simulert størkning og tabu-søk

Heuristiske søkemetoder II: Simulert størkning og tabu-søk Heuristiske søkemetoder II: Simulert størkning og tabu-søk Lars Aurdal Norsk regnesentral [email protected] Heuristiske søkemetoder II:Simulert størkning ogtabu-søk p.1/141 Hva er tema for disse forelesningene?

Detaljer