Heuristisk søk 1. Prinsipper og metoder
|
|
|
- Gudrun Ludvigsen
- 9 år siden
- Visninger:
Transkript
1 Heuristisk søk Prinsipper og metoder
2 Oversikt Kombinatorisk optimering Lokalt søk og simulert størkning Populasjonsbasert søk
3 Traveling sales person (TSP) Tromsø Bergen Stavanger Trondheim Oppdal Oslo Byer Ruter >0 >0 7 0 Kristiansand
4 Kombinatorisk optimering Beste løsning - målfunksjon Diskrete løsninger Eksempler: Traveling sales person Permutasjon av nodene Minimum vertex cover Subsett av nodene Shortest superstring Permutasjon av strengene i et sett Mest deskriptive regulære uttrykk Parsetre
5 Minimum vertex cover Minste antall noder bundet til alle kanter
6 Målfunksjon og optimalisering Energilandskap som nyttig analogi Minimering av potensiell energi (mh) Smelting og størkning av materialer Krystallstruktur (Globalt optimum) Glass (Lokalt optimum)
7 Optimalisering Løsningsrom, C Målfunksjon (kostnad), c(.) Problem: min c( S * S C * )
8 Optimalisering - Løsningsskisse. Velg en tilstand som arbeidsløsning. Velg en nabotilstand. Sett nabotilstanden som ny arbeidsløsning. Gå til S C S N( S) = { S : S ~ S } S = S Hvordan definere naboskap (~)? Hvordan velge nabotilstand?
9 Minimal vertex cover Graf G=(V, E) Løsningsrom: Alle vertex covers Eks: V C Målfunksjon: c ( S) = Naboskap: S ~ S hvis S = S +- en node Max V naboløsninger S 6
10 Vertex cover gradient descent Hvordan velge nabotilstand?. Velg en tilstand S som arbeidsløsning. Velg en nabotilstand min c( S ) S N ( S ). Terminer med S hvis c(s) c(s ). Sett nabotilstanden som ny arbeidsløsning og gå til Løsning et lokalt minimum: c(s) c(s )
11 Vertex cover gradient descent som energilandskap
12 Forbedringer av gradient descent/hill climbing (GD/HC) Varianter i nabovalg Velg første nabotilstand c(s ) c(s) Velg tilfeldig nabotilstand c(s ) c(s) Prøv forskjellige starttilstander. Velg tilfeldig starttilstand. Kjør gradient descent. Ta vare på beste løsning Random-restart GD/HC
13 Hvordan unslippe lokale minima? ~ ~
14 Hvordan simulere tilstanden i et Statistisk mekanikk: Tilstand, S fysisk system? Energi til tilstand, E(S) Temperatur, T Gibbs-Boltzmann funksjonen: Sannsynlighet for å finne et fysisk system i tilstand S, P(S) P( S) ~ e E( S )/( kt )
15 Egenskaper ved Gibbs-Boltzmann funksjonen kt kt =00 =0 e E /(kt ) kt = kt = 0. E
16 Metropolis algoritmen simulerer fysisk system ved gitt temperatur. Velg en tilstand S som arbeidsløsning. Velg en tilfeldig nabotilstand S. if E(S ) E(S). Oppdater S S. else. ΔE = E(S ) - E(S). Oppdater S S med sannsynlighet. Gå til e ΔE /(kt ) Downhill GD/HC Uphill Ut av lokale minimum
17 Metropolis algoritmen har bias mot lavenergitilstander La andelen steg MA er i S i løpet av de t førstestegvære (t) Sett Da vil lim t f S Z ( t) = = Z S C e e Over lang tid vil Metropolis algoritmen bruke mest tid i lavenergitilstander f S E( S )/( kt ) E( S )/( kt )
18 Metropolis i praksis 6 ~ 6 ~ 6 ~ ~ 6 / / 6 6
19 - - 0 Energilandskap og temperatur Høy temperatur Lav temperatur kt kt =00 =0 E /(kt ) e kt = kt = 0. E
20 Energilandskap og temperatur Høy temperatur alle tilstander like sannsynlige Smeltet materiale Lav temperatur minimumstilstandene mest sannsynlige Krystallstruktur Rask endring fra høy til lav temperatur Stokastisk gradient descent Lokale minima Imperfekt krystallstruktur (eller glass)
21 Simulert størkning for optimalisering Krystalldyrkning i praksis:. Smelt. Avkjøl langsomt Simulert størkning: Start Metropolis algoritmen på høy temp Reduser temperaturen som funksjon av iterasjonene (annealing schedule) T = τ (i)
22 Simulert størkning. Velg en tilstand S som arbeidsløsning. Velg en tilfeldig nabotilstand S. Oppdater temperaturen. if E(S ) E(S). Oppdater S S. else. ΔE = E(S ) - E(S). Oppdater S S med sannsynlighet 6. Gå til e ΔE /(kt ) Downhill GD/HC Uphill Ut av lokale minimum
23 Simulert størkning konvergerer mot globalt optimum Langsom størkning gir globalt optimum T τ 0 ( i) = log( + i) Suboptimal størkning brukes i praksis τ ( i) = T g, g < 0 i 0 g = g = 0.9 log
24 Simulert størkning og TSP N byer i kvadrat med sidelengder N / Gjennomsnittelig avstand til nærmeste nabo uavhengig av N Gjennomsnittelig steglengde α uavhengig av N Heuristikk Gå til nærmeste by gir α = O(ln(N)) α. (i gjennomsnitt) Simulert størkning Tilstand S: Permutasjon av {,, N}, S=s s N Naboskap: Reverser en del av turen S Eks: S = 6789,S = 6789;S = 6789
25 Simulert størkning og TSP T =. α =.067 T = 0.8 α =. T = 0. α =.0 T = 0.0 α = 0.789
26 Naboskap påvirker løsbarhet Naboskap i TSP Reverser en del av turen Reverser etterfølgende par Bytt to tilfeldige byer Resten 0 Energilandskap?
27 Energilandskap for naboskap Reverser en del av turen Resten Resten 0 ~
28 Energilandskap for naboskap Reverser etterfølgende par Resten Resten 0 ~
29 Energilandskap for naboskap Bytt to tilfeldige byer Resten Resten 0 ~
30 Gradient descent, metropolis og simulert størkning Algoritme:. Velg en tilstand som arbeidsløsning. Velg en nabotilstand. Sett nabotilstanden som ny arbeidsløsning. Gå til Gradient descent Velg bedre nabo Metropolis + Velg dårligere nabo avhengig av temperatur og endring i kostnad Simulert størkning + Senk temperaturen
31 Tabu-søk Hvordan hindre tilbakefall til suboptimale løsninger? Resten
32 Tabu-søk Hvordan hindre tilbakefall til suboptimale løsninger? Resten Husk tidligere tilstander! 0 Tabu-søk husker siste n tilstander 9 8 Velger alltid beste løsning i N(S) Minnet (Tabu-listen) hindrer sykler med maks n elementer 6 7
33 Elementer så langt Iterer over enkelttilstander basert på naboskap Gå til bedre tilstand Aksepter dårligere tilstand Husk/unngå tidligere tilstander Se på flere løsninger Hva med å iterere over multiple tilstander samtidig?
34 Populasjonsbaserte optimaliseringsmetoder. Velg et sett av tilstander som arbeidsløsning. Velg et sett av nabotilstander. Sett nabotilstandene som ny arbeidsløsning. Gå til { S}, S C { S }, S N( S) = { S : S ~ S } { S } = { S } Hvordan definere naboskap (~)? Hvordan velge nabotilstander?
35 Hvordan velge nabotilstander? Parallel random-restart GD/HC min S N ( S ) c( S ) Igjen: naturen som inspirasjonskilde Charles Darwin Evolusjon -> naturens optimaliseringsmetode
36 Evolusjon som optimalisering Konkurranse om begrensede ressurser Arvelige egenskaper i en populasjon Organismer får mer avkom enn ressursgrunnlag Avkom har varierende evner til å overleve og reprodusere -> Fitness Nyttige egenskaper har større sjanse for å føres videre
37 Evolusjon som optimaliseringsmetode Tilstandsbeskrivelse som arvelig egenskap -> gen Begrenset populasjonsstørrelse Overlevelsesevne gitt av målfunksjon -> fitness Viktig element mangler!
38 Genetisk variasjon Avkom ikke nøyaktig kopi Mutasjoner (endring av individs arvestoff) Rekombinasjon (kombinasjon av to individs arvestoff) Crossover punkt Crossover punkt
39 Genetisk variasjon definerer naboskap Eks: TSP Arvestoff (tilstand) Nodepermutasjon Mutasjon (naboskap) Segmentreversjon Crossover/rekombinasjon (naboskap) Behold noderekkefølge fram til crossoverpunkt fra foreldre Bruk noderekkefølge for gjenværende noder fra foreldre S = 6789 S = 7689 S = 6789 S = 9876 S = 9876
40 Seleksjon definerer valg av naboer Overlevelsesevne gitt av målfunksjon Velg n løsninger (individ) proporsjonalt med løsningskvalitet (fitness) Velg n individ ved å velge beste individ fra n tilfeldige undergrupper
41 Evolusjonær algoritme. Lag en startpopulasjon {S 0 } = n (tilfeldig). Selekter n individ {S } fra {S i } (med tilbakelegging). Lag ny generasjon {S i+ } ved å rekombinere og mutere {S }. Gå til
42 Varianter av evolusjonære algoritmer Genetiske algoritmer Genom -> Strenger Parameteroptimalisering Genetisk programmering Genom -> Symbolske uttrykk Optimale deskriptive uttrykk
43 Heuristisk søk og optimalisering Basisalgoritme Velg en tilstand som arbeidsløsning Velg en nabotilstand Sett nabotilstanden som ny arbeidsløsning Gå til
44 Heuristisk søk og optimalisering Valg av nabotilstand viktig Definisjon av nabolag Valg av tilstand i nabolaget Resten No free lunch Alle metaheuristikker er i gjennomsnitt like gode Ytelse og valg av nabotilstand henger sammen
45 Pragmatiske løsninger
Oversikt. Heuristisk søk 1. Kombinatorisk optimering Lokalt søk og simulert størkning Populasjonsbasert søk. Prinsipper og metoder
Oversikt Heuristisk søk Kombinatorisk optimering Lokalt søk og simulert størkning Populasjonsbasert søk Prinsipper og metoder Pål Sætrom Traveling sales person (TSP) Kombinatorisk optimering Trondheim
Oversikt. Branch-and-bound. Hvordan løse NP-hard kombinatorisk optimering? Eks: Eksakt Min Vertex cover. Mulige løsninger representert som søketre
Oversikt Branch-and-bound Pål ætrom Branch and bound Prinsipper Min Vertex cover B & B eksempler Median string TP Hvordan løse NP-hard kombinatorisk optimering? Kombinatorisk opt. Løsningsrom, C Målfunksjon
INF-MAT 5380 - Geir Hasle - Leksjon 3 2
Leksjon 3 !"#$ Eksempler på DOP Alternative representasjoner Definisjon nabolag, -operator Lokalsøk Definisjon lokalt optimum Eksakt nabolag Prosedyre for lokalsøk Traversering av nabolagsgraf Kommentarer,
Løsningsforslag: Deloppgave om heuristiske søkemetoder, ALGKON 2003, kontinuasjonseksamen
Løsningsforslag: Deloppgave om heuristiske søkemetoder, ALGKON 2003, kontinuasjonseksamen 1. september 2003 Deloppgave a I denne oppgaven skal vi ta for oss isomorfismer mellom grafer. To grafer G og H
Heuristiske søkemetoder II
Heuristiske søkemetoder II Lars Aurdal Intervensjonssenteret [email protected] 4. september 23 Plan Hva er en heuristisk søkealgoritme? Hvorfor heuristiske søkealgoritmer framfor tilbakenøsting?
Heuristiske søkemetoder I: Simulert størkning og tabu-søk
Heuristiske søkemetoder I: Simulert størkning og tabu-søk Lars Aurdal Norsk regnesentral [email protected] Heuristiske søkemetoder I:Simulert størkning ogtabu-søk p.1/141 Hva er tema for disse forelesningene?
INF-MAT-5380
INF-MAT-5380 http://www.uio.no/studier/emner/matnat/ifi/inf-mat5380/ Leksjon 3 Leksjon 2 - Oppsummering Eksempler på DOP Alternative formuleringer Definisjon nabolag, -operator Lokalsøk Definisjon lokalt
LØSNINGSFORSLAG ØVING 2 - APPROKSIMERING AV TSP
LØSNINGSFORSLAG ØVING 2 - APPROKSIMERING AV TSP Approksimering av Travling Salesman Problem er her illustrert vha. en genetisk algoritme (GA). Den grunnlegge metaforen for en genetisk algoritme er evolusjon
Avsluttende eksamen i TDT4125 Algoritmekonstruksjon, videregående kurs
TDT4125 2010-06-03 Kand-nr: 1/5 Avsluttende eksamen i TDT4125 Algoritmekonstruksjon, videregående kurs Eksamensdato 3. juni 2010 Eksamenstid 0900 1300 Sensurdato 24. juni Språk/målform Bokmål Kontakt under
NP-komplett, hva nå?
NP-komplett, hva nå? Anta vi har klart å vise at problemet vårt er NP-komplett eller NP-hardt. Hva betyr det? Såfremt P NP (de fleste tror det) har ikke problemet noen polynomisk algoritme. Hva skal vi
INF-MAT-5380 http://www.uio.no/studier/emner/matnat/ifi/inf-mat5380/
INF-MAT-5380 http://www.uio.no/studier/emner/matnat/ifi/inf-mat5380/ Leksjon 8 Diskrete optimeringsproblemer (DOP) Finnes overalt operasjonsanalyse kunstig intelligens mønstergjenkjenning geometri økonomi
IN2010: Forelesning 11. Kombinatorisk søking Beregnbarhet og kompleksitet
IN2010: Forelesning 11 Kombinatorisk søking Beregnbarhet og kompleksitet KOMBINATORISK SØKING Oversikt Generering av permutasjoner Lett: Sekvens-generering Vanskelig: Alle tallene må være forskjellige
Discrete Optimization Methods in Maritime and Road-based Transportation
Discrete Optimization Methods in Maritime and Road-based Transportation Forskningsprosjekt med støtte fra Norges Forskningsråd Samarbeidspartnere Norges Teknisk-Naturvitenskapelige Universitet Institutt
INF-MAT-5380
INF-MAT-5380 http://www.uio.no/studier/emner/matnat/ifi/inf-mat5380/ Leksjon 5 Leksjon 4 - Oversikt Tabusøk INF-MAT 5380 - Geir Hasle - Leksjon 5 2 Tabusøk - Sammendrag Inspirert fra matematisk optimering
Genetiske interaksjoner villfisk-oppdrettsfisk
Genetiske interaksjoner villfisk-oppdrettsfisk Jørgen Ødegård og Celeste Jacq Nofima AHA Oppstartkonferanse Leikanger, april 2011 Rømming av oppdrettslaks - trusselbilde Oppdrettsfisk kan rømme og krysse
Korteste vei problemet (seksjon 15.3)
Korteste vei problemet (seksjon 15.3) Skal studere et grunnleggende kombinatorisk problem, men først: En (rettet) vandring i en rettet graf D = (V, E) er en følge P = (v 0, e 1, v 1, e 2,..., e k, v k
NP-kompletthet. «Hvordan gjøre noe lett for å vise at noe annet er vanskelig»
NP-kompletthet «Hvordan gjøre noe lett for å vise at noe annet er vanskelig» Gjennomgang Øving 12, maks flyt Oppskrift på et NPkomplett problem 1. Vise at problemet er veldig lett å sjekke 2. Vise at problemet
Mer om Markov modeller
Høyere ordens Markov modeller Mer om Markov modeller p h mnr = Pr( Y j+ 3 = ah Y j+ 2 = am, Y j+ 1 = an, Y j = a : r For en k-te ordens Markov modell som modellerer en DNA prosess vil det være 3*4 k mulige
Genetiske interaksjoner mellom vill og oppdrettet laks
Genetiske interaksjoner mellom vill og oppdrettet laks Céleste Jacq, Jørgen Ødegård, Hans B. Bentsen og Bjarne Gjerde Havforskermøtet 2011 Trondheim Rømming av oppdrettslaks - trusselbilde Oppdrettsfisk
TMA4140 Diskret Matematikk Høst 2016
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4140 Diskret Matematikk Høst 2016 Seksjon 10.2 18 La G = (V,E) være en enkel graf med V 2. Ettersom G er enkel er de mulige
Data-avhengige trianguleringer
Data-avhengige trianguleringer Øyvind Hjelle [email protected], +47 67 82 82 75 Simula Research Laboratory, www.simula.no October 5, 2009 Definition (Data-avhengig triangulering) En triangulering (P),
FLERVALGSOPPGAVER EVOLUSJON
FLERVALGSOPPGAVER EVOLUSJON FLERVALGSOPPGAVER FRA EKSAMEN I BIOLOGI 2 V2008 - V2011 Disse flervalgsoppgavene er hentet fra eksamen i Biologi 2 del 1. Det er fire (eller fem) svaralternativer i hver oppgave,
Maks Flyt og NPkompletthet
Maks Flyt og NPkompletthet Flyt - Intro Mange av oppgavene om flyt handler om å se at Dette kan vi løse som et flytproblem. Resten er som regel kortsvarsoppgaver, og går på grunnleggende forståelse av
Eksamensoppgave i TDT4120 Algoritmer og datastrukturer
Institutt for datateknikk og informasjonsvitenskap Eksamensoppgave i TDT0 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Telefon 98 5 99 Eksamensdato 7. desember, 06 Eksamenstid
Løsningsforslag ST2301 Øving 11
Løsningsforslag ST230 Øving Kapittel 6 Exercise I en diploid populasjon i Wright-Fisher-modellen, hvor mange generasjoner tar det før 90% av heterozygotene er tapt? Antar at det er N individer i populasjonen
Kulturell seleksjon. Hva er det og innebærer det et eget prinsipp for seleksjon?
Kulturell seleksjon Hva er det og innebærer det et eget prinsipp for seleksjon? 1 Abstract Mange atferdsanalytikere snakker i dag om seleksjon på tre nivåer. Den mest grunnleggende form for seleksjon er
INF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 13: Dynamisk programmering (Ifi, UiO) INF2220 H2017, forelesning 13 1 / 30 Dagens plan Dynamisk
A study of different matching heuristics. Hovedfagspresentasjon Jan Kasper Martinsen
A study of different matching heuristics Hovedfagspresentasjon Jan Kasper Martinsen ([email protected]) Terminologi: Graf teori En graf består av et sett med noder Nodene er tilknyttet hverandre ved hjelp
GRAFER. Korteste vei i en vektet graf uten negative kanter. Korteste vei, en-til-alle, for: Minimale spenntrær
IN Algoritmer og datastrukturer GRAER IN Algoritmer og datastrukturer Dagens plan: orteste vei, en-til-alle, for: ektet rettet graf uten negative kanter (apittel 9..) (Dijkstras algoritme) ektet rettet
Kontinuasjonseksamen i tdt4125 Algoritmekonstruksjon, videregående kurs
Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Side 1 av 7 Eksamenforfattere: Ole Edsberg Kvalitetskontroll: Magnus Lie Hetland Kontakter under eksamen:
IN Algoritmer og datastrukturer
IN00 - Algoritmer og datastrukturer HØSTEN 08 Institutt for informatikk, Universitetet i Oslo Forelesning 5: Grafer II Ingrid Chieh Yu (Ifi, UiO) IN00 8.09.08 / Dagens plan: Korteste vei en-til-alle vektet
Prosjektoppgaver om diusjonsprosesser og diusjonstilnærmelse
Prosjektoppgaver om diusjonsprosesser og diusjonstilnærmelse February 13, 2006 I alle oppgavene skal det skrives litt om hva diusjonsprosesser er, hvilke spesielle resultater fra diusjonsteorien man skal
IN Algoritmer og datastrukturer
IN010 - Algoritmer og datastrukturer HØSTEN 018 Institutt for informatikk, Universitetet i Oslo Forelesning 6: Grafer III Ingrid Chieh Yu (Ifi, UiO) IN010 0.10.018 1 / 0 Dagens plan: Dybde-først søk Biconnectivity
Prosjektoppgaver om diusjonsprosesser og diusjonstilnærmelse
Prosjektoppgaver om diusjonsprosesser og diusjonstilnærmelse February 22, 2007 I alle oppgavene skal det skrives litt om hva diusjonsprosesser er, hvilke spesielle resultater fra diusjonsteorien man skal
!!!" " # $ Leksjon 1
!!!"" # $ Leksjon 1 %# Studenten skal etter seminaret ha en grunnleggende forståelse av hvordan moderne heuristiske metoder basert på lokalsøk og metaheuristikker kan brukes for å finne approksimerte løsninger
Populasjonsgenomikk på torsk -et verktøy for identifisering av viktige genomiske regioner for oppdrettsnæringen.
Programkonferansen HAVBRUK 2012, Stavanger, 16.-18. april 2012 Populasjonsgenomikk på torsk -et verktøy for identifisering av viktige genomiske regioner for oppdrettsnæringen. Paul R. Berga, Bastiaan Stara,
UNIVERSITETET I AGDER
FAKULTET FOR TEKNOLOGI OG REALFAG EKSAMEN Emnekode: BI0105 Emnenavn: Genetikk og evolusjon Dato: 21. november 2011 Varighet: 2 timer Antall sider inkl. forside 8 Tillatte hjelpemidler: Kalkulator Merknader:
Eksamensoppgave i TDT4120 Algoritmer og datastrukturer
Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf.!! 91851949 Eksamensdato! 15. august 2013 Eksamenstid (fra til)! 0900 1300 Hjelpemiddelkode D.
AVL MOT ILA. FHFs ILA workshop Borghild Hillestad April 2017
AVL MOT ILA FHFs ILA workshop Borghild Hillestad April 2017 HVA BOR I GENOMET TIL EN ART? Det genetiske mangfoldet hos en art kan være enormt MENNESKER KAN STYRE GENETIKKEN I FLERE RETNINGER En negativ
LP. Leksjon 8: Kapittel 13: Nettverk strøm problemer, forts.1
LP. Leksjon 8: Kapittel 13: Nettverk strøm problemer, forts.1 Vi fortsetter studiet av (MKS): minimum kost nettverk strøm problemet. Har nå en algoritme for beregning av x for gitt spenntre T Skal forklare
Evolusjonens tvangstrøyer
Evolusjonens tvangstrøyer Kjetil Lysne Voje Universitetet i Oslo volusjon foregår hele tida! Evolusjon er lett! Tre nødvendige ingredienser Variasjon Seleksjon Arvbarhet Tre nødvendige ingredienser
INF-MAT5370. Grafer og datastrukturer
INF-MAT5370 Grafer og datastrukturer Øyvind Hjelle [email protected], +47 67 82 82 75 Simula Research Laboratory, www.simula.no August 3, 2009 Innhold Kort om grafer Topologiske operatorer og operasjoner,
Heuristiske søkemetoder I
Heuristiske søkemetoder I Lars Aurdal Intervensjonssenteret [email protected] 14. september 2003 Plan Hva slags søkemetoder snakker vi om? Kombinatoriske strukturer. Sett. Lister. Grafer. Søkealgoritmer
LEKSJON 4: BIOTEKNOLOGI HVORDAN VI BRUKER NATURENS EGNE MEKANISMER TIL VÅR FORDEL, OG UTFORDRINGENE SOM FØLGER MED
LEKSJON 4: BIOTEKNOLOGI HVORDAN VI BRUKER NATURENS EGNE MEKANISMER TIL VÅR FORDEL, OG UTFORDRINGENE SOM FØLGER MED KOMPETANSEMÅL Forklarebegrepene krysning og genmodifisering, og hvordan bioteknologi brukes
Søk i tilstandsrom. Backtracking (Kap. 10) Branch-and-bound (Kap. 10) Iterativ fordypning. Dijkstras korteste sti-algoritme A*-søk (Kap.
Søk i tilstandsrom Backtracking (Kap. 10) DFS i tilstandsrommet. Trenger lite lagerplass. Branch-and-bound (Kap. 10) BFS Trenger mye plass: må lagre alle noder som er «sett» men ikke studert. Kan også
Søking i strenger. Prefiks-søking Naiv algoritme Knuth-Morris-Pratt-algoritmen Suffiks-søking Boyer-Moore-algoritmen Hash-basert Karp-Rabin-algoritmen
Søking i strenger Vanlige søkealgoritmer (on-line-søk) Prefiks-søking Naiv algoritme Knuth-Morris-Pratt-algoritmen Suffiks-søking Boyer-Moore-algoritmen Hash-basert Karp-Rabin-algoritmen Indeksering av
Eksamensoppgave i TDT4120 Algoritmer og datastrukturer
Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf. 91851949 Eksamensdato 7. desember 2013 Eksamenstid (fra til) 0900 1300 Hjelpemiddelkode Målform/språk
Biseksjonsmetoden. biseksjonsmetode. Den første og enkleste iterativ metode for ikke lineære likninger er den så kalt
Biseksjonsmetoden Den første og enkleste iterativ metode for ikke lineære likninger er den så kalt biseksjonsmetode. Gitt en intervall [a, b] hvor f skifter fortegn, vi halverer [a, b] = [a, b + a 2 ]
Løsningsforslag øving 12, ST1301
Løsningsforslag øving 12, ST1301 Oppgave 1 En to-utvalgs t-test forutsetter at observasjonene i hvert utvalg X 1 ; X 2 ; : : : ; X n og Y 1 ; Y 2 ; : : : ; Y m er uavhengige normalfordelte variable. Hvis
Eksamen - INF 283 Maskinlæring
Eksamen - INF 283 Maskinlæring 23 feb. 2016 Tid: 3 timer Eksamen inneholder 15 oppgaver, som vil bli vektet likt ved evaluering. 1 Table 1 attributt antall personer forsørget av låntaker månedlig inntekt
Norsk informatikkolympiade runde
Norsk informatikkolympiade 2017 2018 1. runde Sponset av Uke 46, 2017 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.
Eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl
Student nr.: Side 1 av 7 Eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl 0900-1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 73 593442. Hjelpemidler: Alle kalkulatortyper
INF-MAT-5380
INF-MAT-5380 http://www.uio.no/studier/emner/matnat/ifi/inf-mat5380/ Leksjon 7 GA - Oppsummering Viktige karakteristika populasjon av løsninger domeneuavhengighet enkoding mangel på utnyttelse av struktur
INF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer HØSTEN 2016 Institutt for informatikk, Universitetet i Oslo Forelesning 6: Grafer II Ingrid Chieh Yu (Ifi, UiO) INF2220 28.09.2016 1 / 30 Dagens plan: Dijkstra fort.
Tilfeldig søk Simulert størkning Terskelakseptanseteknikker. INF-MAT Geir Hasle - Leksjon 4 2
Leksjon 4 !!"# Tilfeldig søk Simulert størkning Terskelakseptanseteknikker INF-MAT 5380 - Geir Hasle - Leksjon 4 2 $!"% Inspirert av statistisk mekanikk - nedkjøling Metaheuristikk lokalsøk tilfeldig nedstigning
INF Algoritmer og datastrukturer
INF0 - Algoritmer og datastrukturer HØSTEN 05 Institutt for informatikk, Universitetet i Oslo Forelesning 6: Grafer II Ingrid Chieh Yu (Ifi, UiO) INF0.09.05 / 8 Dagens plan: Minimale spenntrær Prim Kruskal
ALGORITMER OG DATASTRUKTURER
Stud. nr: Side 1 av 6 NTNU Norges teknisk-naturvitenskapelige universitet BOKMÅL Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap LØSNINGSFORSLAG,
Kompleksitet og Beregnbarhet
Kompleksitet og Beregnbarhet 16. September, 2019 Institutt for Informatikk 1 Dagens plan Avgjørelsesproblemer. P EXPTIME NP Reduksjoner NP-kompletthet Uavgjørbarhet UNDECIDABLE DECIDABLE PSPACE NPC NP
INF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 11: Huffman-koding & Dynamisk programmering (Ifi, UiO) INF2220 H2015, forelesning 11 1 / 32 Dagens
Turingmaskiner.
Turingmaskiner http://www.youtube.com/watch?v=e3kelemwfhy http://www.youtube.com/watch?v=cyw2ewoo6c4 Søking i strenger Vanlige søkealgoritmer (on-line-søk) Prefiks-søking Naiv algoritme Knuth-Morris-Pratt-algoritmen
INF Triangulering. Med sterk støtte fra Petter Kristiansen. Skal først se på et eksempel fra Google Earth
INF 4130 17. november 2011 Triangulering Stein Krogdahl Med sterk støtte fra Petter Kristiansen Skal først se på et eksempel fra Google Earth De bruker en underliggende triangulering av landskapet, men
Ikke lineære likninger
Ikke lineære likninger Opp til nå har vi studert lineære likninger og lineære likningsystemer. 1/19 Ax = b Ax b = 0. I en dimensjon, lineære likninger kan alltid løses ved hjelp av formler: ax + b = 0
Øvingsforelesning 2 - TDT4120. Grafer og hashing. Benjamin Bjørnseth
Øvingsforelesning 2 - TDT4120 Grafer og hashing Benjamin Bjørnseth Informasjon Studasser [email protected] Program Presentasjon av øving 2 Grafer og traverseringsalgoritmer BFS, DFS Hashing Gjennomgang
Kontinuasjonseksamen i tdt4125 Algoritmekonstruksjon, videregående kurs
Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Side 1 av 7 Eksamenforfattere: Ole Edsberg Kvalitetskontroll: Magnus Lie Hetland Kontakter under eksamen:
Løsningsforslag for utvalgte oppgaver fra kapittel 9
Løsningsforslag for utvalgte oppgaver fra kapittel 9 9.2 1 Grafer og minne.......................... 1 9.2 4 Omvendt graf, G T......................... 2 9.2 5 Kompleksitet............................
Notat for oblig 2, INF3/4130 h07
Notat for oblig 2, INF3/4130 h07 Dag Sverre Seljebotn 15. oktober 2007 Jeg har skrivd et noe langt notat for oblig 2 som interesserte kan se på. Merk at dette er kun for å gi et par tips (for oppgave 3
Matematisk evolusjonær genetikk, ST2301 Onsdag 15. desember 2004 Løsningsforslag
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Side av 5 Matematisk evolusjonær genetikk, ST30 Onsdag 5. desember 004 Løsningsforslag Oppgave a) Vi setter først navn på de
6. oktober Dagens program: Første time: Andre time, gjesteforelesning: Uavgjørbarhet. Stein Krogdahl. (Ikke pensum, egne foiler legges ut)
Dagens program: Første time: INF 4130 6. oktober 2011 Stein Krogdahl Kap 23.5: Spilltrær og strategier for spill med to spillere Andre time, gjesteforelesning: Rune Djurhuus: Om sjakkspillende programmer
Sammenheng mellom læringsutbyttebeskrivelse og vurdering. Christian Jørgensen
Sammenheng mellom læringsutbyttebeskrivelse og vurdering Christian Jørgensen Bio100 - Fire deleksamener Deleksamen Maks poeng 1: Flervalg og kortsvar 20 2: Regneøvelse i Excel med rapport 20 3: Presentasjon
INF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer HØSTEN 2017 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 5: Grafer I Ingrid Chieh Yu (Ifi, UiO) INF2220 H2017, forelesning 5 1 / 53
KORTESTE STI. Vektede Grafer. Korteste Sti. Dijkstra s Algoritme. Vektet Urettet Graf
Vektet Urettet Graf KORTESTE STI Finn: fra en Enkel Kilde til Alle Noder. (Engelsk: Single Source Shortest Path - SSSP) Vektede Grafer vekter på kanter representerer f.eks. avstand, kostnad, båndbredde...
Løsningsforslag for eksamen i fag TDT4120 Algoritmer og datastrukturer Tirsdag 9. desember 2003, kl
TDT4120 2003-12-09 Stud.-nr: Antall sider: 1/7 Løsningsforslag for eksamen i fag TDT4120 Algoritmer og datastrukturer Tirsdag 9. desember 2003, kl. 0900 1500 Faglig kontakt under eksamen: Arne Halaas,
Heuristiske søkemetoder II: Simulert størkning og tabu-søk
Heuristiske søkemetoder II: Simulert størkning og tabu-søk Lars Aurdal Norsk regnesentral [email protected] Heuristiske søkemetoder II:Simulert størkning ogtabu-søk p.1/141 Hva er tema for disse forelesningene?
