Ytelse og optimalisering

Størrelse: px
Begynne med side:

Download "Ytelse og optimalisering"

Transkript

1 Ytelse og optimalisering Frode Eika Sandnes Premature optimization is the root of all evil Donald Knuth 1

2 Begrep og tolkning I databehandling betyr optimalisering og forbedre et system slik at det går raskere eller bruker mindre minne. I matematikk, økonomi etc betyr optimalisering å finne laveste eller største verdi av en funksjon. For eksempel, optimalisere en kostnadavkastningsfunksjon. Læringsmål Få en forståelse for begrepet ytelse og hvilke faktorer som påvirker ytelse Få en forståelse for forholdet mellom tidsresurs og plassresurs Få innsikt i noen av teknikkene som brukes for å forbedre ytelse Lære om verktøy som brukes for å forbedre ytelse Lære at enkelte problemer ikke kan løses. 2

3 Ytelse Hvor mange multiplikasjoner og addisjoner skal til for å regne ut følgende utrykk? (en datamaskin kan egentlig bare multiplisere og addere) Ax 5 +Bx 4 +Cx 3 +Dx 2 +Ex+D Teknikk 1 (rett frem) 5 addisjoner =15 multiplikasjoner Kan vi gjøre dette med mindre innsats? Axxxxx+Bxxxx+Cxxx+Dxx+Ex+D 3

4 Teknikk 2 (Horner s metode) 5 addisjoner 5 multiplikasjoner Kan vi gjøre dette med mindre innsats? ((((Ax+B)x+C)x+D)x+E)x+D Omformulering Ofte kan vi omformulere et problem Omformuleringer kan føre til at problemet kan løses med mindre innsats Hvis en problem kan løses med mindre innsats, så får vi tid til å løse flere problemer innenfor samme tid. Vi har dermed forbedret ytelsen 4

5 Problem En organisasjon vurderer hvordan de skal restrukturere sorteringen av den interne posten til de forskjellige avdelingene og kutte kostnadene. De får en stor mengde post. Hva er den mest effektive løsningen? Man kjøper en postkasse for hver avdeling og henger de opp utenfor bygget med egen adresse. Det er nå postverket sin oppgave å sortere posten. Løsning 5

6 En liten oppgave Vi har et program som ser slik ut int a = verdi fra bruker int b = verdi fra bruker int temp = a; a = b; b = temp;? Vi skal lage dette programmet på en datamaskin som kun har plass til to variabler, nemlig a og b, og ikke temp. Hvordan gjør vi dette? Løsning int a = verdi fra bruker int b = verdi fra bruker b = a - b; a = a - b; b = a + b; Vi bruker differansen som en slags temp variabel 6

7 Utregning av heltallspotenser Vi så tidligere hvordan vi lett kunne regne ut heltallspotenser i polynomer med Horner s metode Hva gjør vi med enkle heltallpotenser med høy verdi. Hvordan regne ut for eksempel: 3 53 Løsning 1 Vi multipliserer tallet 53 ganger (53 multiplikasjoner) 3x3x3x..x3 Dette er lite effektivt 7

8 hvis vi analyserer 3 53 kan omskrives som 3 53 = = 3 1 x3 4 x3 16 x3 32 Vi lager en tabell Factor potens Delprodukt x 3 1 = x 3 2 = x 3 4 = x 3 8 = x 3 16 = Totalprodukt Et veldig stort tall 8

9 Innsats 5 multiplikasjoner 4 addisjoner 5 shift operasjoner 6 sammenlikninger Multiplikasjon tar mer tid enn addisjon som tar mer tid enn shift og sammenlikninger. Balansen mellom tid og plass Ofte er det en balansegang mellom tid og plass. Enten så kan vi løse et problem med mye innsats, hvor vi trenger liten lagringsplass Eller så kan vi løse et problem hurtig med lite innsats på bekostning av mer lagringsplass. 9

10 Praktisk eksempel Uregning av matematiske funksjoner som sin, cos Kan gjøres matematisk etter modell, eg. En Taylor rekke etc. Det kreves ofte en god del innsats Kan bruke en tabell med ferdige verdier Liknende matematisk tabell på skolen Eksempel Finne median (den midterste verdien) i en rekke med usorterte heltall. Plassoptimalisering Vi sorterer tallene (tar lang tid) Vi velger det midterste tallet (dette er median) Trenger ikke plass, trenger å kikke på verdiene opptil N*N ganger Ytelsesoptimalisering Vi lager et histogram over tallene (ved å telle) Vi kan lett telle oss frem til midtpunktet i histogrammet Vi trenger lagringsplass til histogrammet (opptil N elementer) Vi trenger kun å skanne igjennom tallene en gang (N). 10

11 Finne median med histogram Dette er det midterste elementet Dette er median Uløselige problemer Det finnes problemer som ikke kan løses (eksakt) av datamaskiner fordi det rett og slett tar for lang tid eller krever for mye minne. Disse problemene kaller vi uløselige problemer Eksempler er laging av timeplaner, sette opp arbeidsplaner for bussjåfører eller kabinpersonale i flyselskaper Slike problemer løser man ved å finne tilnærminger til løsningen 11

12 Eksempel: den reisende selger Tenk deg at du er salgsmann og du skal reise til alle byene hvor du har butikk, for eksempel Oslo, Bergen, Trondheim, Stavanger og Vardø. Du ønsker å reise på en slik måte at du besøker hver by kun en gang Samtidig ønsker du å reise korteste vei (spare drivstoff eller kostnad). 12

13 Hvorfor? Si at du har N byer. Hvilken by skal du velge først? Du kan velge mellom N byer. Hvilken by skal du velge neste gang? Du kan velge mellom N-1 byer (det er de byene du har igjen). Hvilden by skal du velge deretter? Du kan velge mellom N-2 byer (det er de byene du har igjen) Slik forsetter det til vi har en by igjen For å finne korteste vei må vi prøve alle mulighetene. Da må vi prøve N(N-1)(N-2)(N-3) (N-(N-1)) = N! muligheter Hvis du har mange byer, dvs en stor N, så blir dette veldig mange muligheter. Prøv for eksempel å finne hvor mange muligheter det er for 10 byer, 15 byer, 100 byer? Hvordan Det finnes mange måter å finne gode løsninger på den reisende selgers problem Ingen av disse garanterer den beste løsningen. En måte er å velge byene helt tilfeldig (random), og deretter kikke på resultatet. Hvis du for eksempel repeterer dette, si 1000 ganger vil du sannsynligvis finne en ganske god løsning (samme prinsipp som å kjøpe mange lodd i lotto for å øke vinnersjansene). Du velger da den ruten som gir kortest vei. 13

14 Hvordan optimalisere i praksis Hvordan kan vi måle ytelse i Java long start = System.currentTimeMillis();.. gjøre det som skal måles her long tid = System.currentTimeMillis() - start; 14

15 En annen vanlig teknikk Import java.util.date;.. Date start = new Date(); gjøre det som skal måles her Date slutt = new Date); Long antallmillisekunder = slutt.gettime() start.gettime(); Verktøy for å forbedre ytelsen Profiler Lar utvikleren se hva datamaskinen bruker tiden på Man kompilerer programmet med ekstra bokføringskode (et valg i kompilatoren) Man kjører programmet og bokføringskoden aktiveres Man får statistikk om Hvor mange ganger hver modul ble brukt, metode ble kalt, og hvor ofte hver kodelinje ble eksekvert. Hvor mange prosent av tiden som ble brukt av de respektive deler av koden. Dette kalles en eksekveringsprofil. 15

16 Hva gjør man med en profil Profilen viser oss hvor flaskehalsen er i programmet Hvis vi ønsker å forbedre ytelsen så gjør vi dette ved å starte der hvor skoen trykker. Dvs. vi kan lett se hvor i koden vi bør gjøre inngrep. Java profil Du kan kjøre profileren med prof flagget java prof klassenavnet Eller for applets java -prof sun.applet.appletviewer myapplet.html Det genereres en fil med navn java.prof som inneholder profilen 16

17 Profilering i praksis Gjør målinger både før og etter en endring for å dokumentere at endringen faktisk førte til en forbedring i ytelse (iallfall under testoppsettet) Prøv å utfør hver måling under de samme forutsetningene og forholdene Unngå målinger der brukere leverer input til systemet, da dette kan føre til store variasjoner i målingene Prinsipper for optimalisering regelen 90% av tiden brukes vanligvis i 10% av koden. Vi bør bruke 90 % av optimaliseringsinnsatsen på å forbedre disse 10% ene av koden 17

18 Unngå optimalisering Man bør unngå optimalisering av koden Kan resultere i nye feil i koden Gjør koden vanskeligere å forstå Gjør vedlikehold av koden vanskelig Fjør koden mindre generell og portabel Er kostbart og tidkrevende Noe som er optimalisert på en plattform kjører kanskje enda saktere på en annen plattform. Mye tid investert i optimalisering gir ikke nødvendigvis avkasting i ytelsesforbedringer Man bør utsette optimalisering av koden Man bør bruke automatiske optimaliseringsverktøy (optimaliseringsflagg) Bruk bedre og kjente algoritmer Det kan være billigere å kjøpe bedre maskinvare Det er ofte et motsetningsforhold mellom vedlikeholdbar, generisk kode og optimalisert effektiv kode Teknikker for optimalisering 18

19 Styrkereduksjon Erstatte en operasjon med en annen ekvivalent operasjon som er mindre tidkrevende For eksempel erstatte multiplikasjon av tall med base 2 (2, 4, 8, 16 etc) med venstre shift operasjoner, og divisjon av tall med base2 med høyre shift operasjoner. x >> 2 er det samme som x / 4 x << 1 er det samme som x * 2 Begge gir samme resultat Shift operasjoner tar mye mindre tid enn multiplikasjoner og divisjoner. Eliminering av vanlige subutrykk Eliminere utrykk som går igjen hvor samme ting regnes ut gang på gang. double x = d * (lim / max) * sx; double y = d * (lim / max) * sy; Bør erstattes med double dybde = d * (lim / max); double x = dybde * sx; double y = dybde * sy; 19

20 Flytting av kode Kode som eksekveres flere ganger selv om verdiene ikke endres seg bør flyttes slik at koden kun eksekverer når det har skjedd en endring. for (int i = 0; i < x.length; i++) x[i] *= Math.PI * Math.cos(y); Bør endres til double picosy = Math.PI * Math.cos(y); for (int i = 0; i < x.length; i++) x[i] *= picosy; Rulle ut løkker Ved og ekspandere løkker så unngår vi å eksekvere kode som styrer selve løkka. Hvis vi i forrige eksempel vet at lengden på tabellen alltid er et partall (delelig med to), så kan vi halvere antall løkkeiterasjoner double picosy = Math.PI * Math.cos(y); for (int i = 0; i < x.length; i += 2) x[i] *= picosy; x[i+1] *= picosy; 20

21 Sammenlikninger Å sammenlikne to vilkårlige tall er vanligvis mer tidkrevende enn å sammenlikne et tall med null (fordi begge tall må lagres i minnet). for (i = 0; i < N; i++) // gjør et eller annet Vi endrer sammenlikningen: for (i = N; --i >= 0; ) // gjør et eller annet Ikke sammenlikn Vi kan også fjerne sammenlikningen try for (i = 0; ; i++) array[i] = i; catch (ArrayIndexOutOfBoundsException e) Ulempene er Avvik er kostbare Fungerer kun hvis N er veldig stor Ytelsen vil variere mye fra en plattform til en annen 21

22 Variabler Lokale variabler er hurtigere enn globale variabler I java er int den hurtigste datatypen Mindre datatyper som for eksempel, boolean, short, char og boolean er representert som en integer Hvis vi skal eksplisitt arbeide med kortere datatyper så kreves det ekstra instruksjoner for konvertering Kortere datatyper er derfor tregere enn int Ikke kopier mer enn nødvendig Kopiering av data tar lang tid, spesielt lange variabler etc. Java hjelper oss ved all alle ikke atomiske datatyper videreformidles med referanser. Dette er ikke tilfelle i alle språk som for eksempel C/C++/Pascal hvor en lett kan kaste bort tid på unødvendig kopiering (spesielt parametere til metoder osv). 22

23 Arrayer og static Hvor du bruker en lokal array i en metode som kalles ofte, så må denne arrayen skapes hver gang. Dette er ueffektivt. Du kan deklarere arrayen som static. Da kan du bruke den samme arrayen gang på gang uten at den skapes på nytt for hvert metodekall. Unngå casting Casting tar lang tid boolean equals (Object obj) if (obj instanceof Point) return (((Point)obj).x == this.x && ((Point)obj).y == this.y); return false; Erstatt med boolean equals (Object obj) if (obj instanceof Point) Point p = (Point)obj; return (p.x == this.x && p.y == this.y); return false; Casting er spesielt dyrt hvis det dreier seg om et interface 23

24 Generelle tips for ytelsesøkning Native-metoder (kall til typisk C-funksjoner) Konverter til C (finnes verktøy for dette) Bruk buffere ved input og output (BufferedInputStream og BufferedOutputStream) Ikke bruk synchronize (synkronisering) Unngå avvik (exceptions) Unngå sammenslåingsoperatoren + for strenger Bruk API funksjonalitet Bruk erstatninger for API funksjonalitet Gjenbruk av objekter Oppgave 2 Vi kan finne det største av to tall som følger if (a>b) max = a; else max = b; Og vi kan finne det minste tallet ved å endre > til <. Kan du gjøre det samme uten å bruke en sammenlikning (if)? (Ja, det er faktisk mulig) 24

25 Kompilatoroptimalisert kode Kompilatorer gjør en del optimaliseringer C og C++ kompilatorer er meget gode. Java kompilatorer er fortsatt unge Java compilatoren: Folding av konstanter: i=10*10 blir til i=100 Branch folding: unødvendige goto s i bytekoden fjernes Eliminering av død kode: if(false) i = 1 Du kan også bruke O (optimaliserings) muligheten fra kommandolinjen (javac O fil.java) Kode ekspansjon (inline): alle metoder som er static, private eller final ekspanderes slik at utgiftene i forbindelse med selve metodekallet elimineres Optimalisering for plass Javakode som tar mindre plass vil lastes hurtigere inn i minnet Eksempel: Det tar kortere tid å laste ned en liten java applet enn en stor java applet fra en nettside Vi derfor ønsker å minske størrelsen på den kompilerte javakoden 25

26 Plassbesparingsteknikk er Bruke arkiv (jar-fil) Ikke finne opp hjulet på nytt (bruk eksisterende API) Utnytt arv Separer ut felles kode Ikke initialiser store arrayer Datoer er store (bruk long) Bruk korte navn (kompilert kode inneholder navnene) Plasser static final konstanter i interfaces Unngå string-sammenslåing (ekstra kall og objektskapelse) Lykke til! 26

Rekursiv programmering

Rekursiv programmering Rekursiv programmering Babushka-dukker En russisk Babushkadukke er en sekvens av like dukker inne i hverandre, som kan åpnes Hver gang en dukke åpnes er det en mindre utgave av dukken inni, inntil man

Detaljer

Utførelse av programmer, metoder og synlighet av variabler i JSP

Utførelse av programmer, metoder og synlighet av variabler i JSP Utførelse av programmer, metoder og synlighet av variabler i JSP Av Alf Inge Wang 1. Utførelse av programmer Et dataprogram består oftest av en rekke programlinjer som gir instruksjoner til datamaskinen

Detaljer

Oblig3Pi- en matematisk rettet obligatorisk oppgave nr. 3 (av 4) i INF1000 ett av to alternativer for oblig 3.

Oblig3Pi- en matematisk rettet obligatorisk oppgave nr. 3 (av 4) i INF1000 ett av to alternativer for oblig 3. Oblig3Pi- en matematisk rettet obligatorisk oppgave nr. 3 (av 4) i INF ett av to alternativer for oblig 3. Leveringsfrist Oppgaven må leveres senest fredag. oktober kl 6.. Viktig: les slutten av oppgaven

Detaljer

I dag skal vi se på. INF 1000 (uke 2) Variabler, tilordninger og uttrykk. Gruppene starter denne uken! Klart for første oblig

I dag skal vi se på. INF 1000 (uke 2) Variabler, tilordninger og uttrykk. Gruppene starter denne uken! Klart for første oblig INF 1000 (uke 2) Variabler, tilordninger og uttrykk Grunnkurs i programmering Institutt for Informatikk Universitet i Oslo I dag skal vi se på Flere praktiske opplysninger Litt repetisjon Hva er en variabel

Detaljer

2 Om statiske variable/konstanter og statiske metoder.

2 Om statiske variable/konstanter og statiske metoder. Litt om datastrukturer i Java Av Stein Gjessing, Institutt for informatikk, Universitetet i Oslo 1 Innledning Dette notatet beskriver noe av det som foregår i primærlageret når et Javaprogram utføres.

Detaljer

13.09.2012 LITT OM OPPLEGGET. INF1000 EKSTRATILBUD Stoff fra uke 1-3 12. September 2012 Siri Moe Jensen EKSEMPLER

13.09.2012 LITT OM OPPLEGGET. INF1000 EKSTRATILBUD Stoff fra uke 1-3 12. September 2012 Siri Moe Jensen EKSEMPLER .9.22 LITT OM OPPLEGGET INF EKSTRATILBUD Stoff fra uke - 2. September 22 Siri Moe Jensen Målgruppe: De som mangler forståelse for konseptene gjennomgått så langt. Trening får du ved å jobbe med oppgaver,

Detaljer

Kapittel 8: Programutvikling

Kapittel 8: Programutvikling Kapittel 8: Programutvikling Redigert av: Khalid Azim Mughal (khalid@ii.uib.no) Kilde: Java som første programmeringsspråk (3. utgave) Khalid Azim Mughal, Torill Hamre, Rolf W. Rasmussen Cappelen Akademisk

Detaljer

Oversikt. Introduksjon Kildekode Kompilering Hello world Hello world med argumenter. 1 C programmering. 2 Funksjoner. 3 Datatyper. 4 Pekere og arrays

Oversikt. Introduksjon Kildekode Kompilering Hello world Hello world med argumenter. 1 C programmering. 2 Funksjoner. 3 Datatyper. 4 Pekere og arrays Oversikt C programmering 1 C programmering Introduksjon Kildekode Kompilering Hello world Hello world med argumenter 2 Funksjoner 3 Datatyper 4 Pekere og arrays 5 Kontrollstrukturer Lars Vidar Magnusson

Detaljer

PG4200 Algoritmer og datastrukturer Lab 1. 8.januar 2014. I dag skal vi undersøke en rekke velkjente databeholdere i Java:

PG4200 Algoritmer og datastrukturer Lab 1. 8.januar 2014. I dag skal vi undersøke en rekke velkjente databeholdere i Java: PG4200 Algoritmer og datastrukturer Lab 1 8.januar 2014 Innledning I dag skal vi undersøke en rekke velkjente databeholdere i Java: java.util.arraylist java.util.linkedlist java.util.hashset java.util.treeset

Detaljer

Algoritmer - definisjon

Algoritmer - definisjon Algoritmeanalyse Algoritmer - definisjon En algoritme er en beskrivelse av hvordan man løser et veldefinert problem med en presist formulert sekvens av et endelig antall enkle, utvetydige og tidsbegrensede

Detaljer

Mattespill Nybegynner Python PDF

Mattespill Nybegynner Python PDF Mattespill Nybegynner Python PDF Introduksjon I denne leksjonen vil vi se litt nærmere på hvordan Python jobber med tall, og vi vil lage et enkelt mattespill. Vi vil også se hvordan vi kan gjøre ting tilfeldige.

Detaljer

lfæ~~~~:::j~~:~l -.~=:~-t::-d I Alle trykte og håndskrevne EKSAMENSOPPGA VE Side l av 5 Eksamenstid:

lfæ~~~~:::j~~:~l -.~=:~-t::-d I Alle trykte og håndskrevne EKSAMENSOPPGA VE Side l av 5 Eksamenstid: EKSAMENSOPPGA VE Side l av 5 Bokmålstekst Emne: PROGRAMMERINGSSPRÅK i II Grupper: loa, ldb Emnekode LO 112 A Dato: 14.12.2005 Faglig veileder: Mark Burgess, Eva Vihovde, Frode Sandnes og Ulf uttersrud

Detaljer

TDT4102 Prosedyre og Objektorientert programmering Vår 2015

TDT4102 Prosedyre og Objektorientert programmering Vår 2015 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap TDT4102 Prosedyre og Objektorientert programmering Vår 2015 Øving 3 Frist: 2014-02-07 Mål for denne øvinga:

Detaljer

TDT4102 Prosedyreog objektorientert programmering Vår 2016

TDT4102 Prosedyreog objektorientert programmering Vår 2016 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap TDT4102 Prosedyreog objektorientert programmering Vår 2016 Øving 4 Frist: 2016-02-12 Mål for denne øvingen:

Detaljer

Kapittel 9: Sortering og søking Kort versjon

Kapittel 9: Sortering og søking Kort versjon Kapittel 9: Sortering og søking Kort versjon Redigert av: Khalid Azim Mughal (khalid@ii.uib.no) Kilde: Java som første programmeringsspråk (3. utgave) Khalid Azim Mughal, Torill Hamre, Rolf W. Rasmussen

Detaljer

Programmering i C++ Løsningsforslag Eksamen høsten 2005

Programmering i C++ Løsningsforslag Eksamen høsten 2005 Programmering i C++ Eksamen høsten 2005 Simen Hagen Høgskolen i Oslo, Avdeling for Ingeniørutdanning 7. desember 2005 Generelt Denne eksamensoppgaven består av tre oppgaver, pluss en ekstraoppgave. Det

Detaljer

Algoritmeanalyse. (og litt om datastrukturer)

Algoritmeanalyse. (og litt om datastrukturer) Algoritmeanalyse (og litt om datastrukturer) Datastrukturer definisjon En datastruktur er den måten en samling data er organisert på. Datastrukturen kan være ordnet (sortert på en eller annen måte) eller

Detaljer

156C. Algoritmer og maskinspråk. IT1101 Informatikk basisfag. Maskinspråk: det maskinen forstår. Assembler / assemblerspråk

156C. Algoritmer og maskinspråk. IT1101 Informatikk basisfag. Maskinspråk: det maskinen forstår. Assembler / assemblerspråk IT1101 Informatikk basisfag I dag Programmeringsspråk Problemer med maskinspråk I dag: 5.1-5.3 Fra lavnivå til høynivå programmeringsspråk - utvikling Kompilator / tolker Programmeringsparadigmer Tradisjonelle

Detaljer

INF1000 Metoder. Marit Nybakken marnybak@ifi.uio.no 16. februar 2004

INF1000 Metoder. Marit Nybakken marnybak@ifi.uio.no 16. februar 2004 INF1000 Metoder Marit Nybakken marnybak@ifi.uio.no 16. februar 2004 Motivasjon Når man begynner å skrive store programmer, vil man fort oppleve at programmene blir uoversiktlige. Det blir vanskeligere

Detaljer

23.09.2015. Introduksjon til objektorientert. programmering. Hva skjedde ~1967? Lokale (og globale) helter. Grunnkurs i objektorientert.

23.09.2015. Introduksjon til objektorientert. programmering. Hva skjedde ~1967? Lokale (og globale) helter. Grunnkurs i objektorientert. Grunnkurs i objektorientert programmering Introduksjon til objektorientert programmering INF1000 Høst 2015 Siri Moe Jensen INF1000 - Høst 2015 uke 5 1 Siri Moe Jensen INF1000 - Høst 2015 uke 5 2 Kristen

Detaljer

INF1000 - Uke 10. Ukesoppgaver 10 24. oktober 2012

INF1000 - Uke 10. Ukesoppgaver 10 24. oktober 2012 INF1000 - Uke 10 Ukesoppgaver 10 24. oktober 2012 Vanlige ukesoppgaver De første 4 oppgavene (Oppgave 1-4) handler om HashMap og bør absolutt gjøres før du starter på Oblig 4. Deretter er det en del repetisjonsoppgaver

Detaljer

AlgDat 12. Forelesning 2. Gunnar Misund

AlgDat 12. Forelesning 2. Gunnar Misund AlgDat 12 Forelesning 2 Forrige forelesning Følg med på hiof.no/algdat, ikke minst beskjedsida! Algdat: Fundamentalt, klassisk, morsomt,...krevende :) Pensum: Forelesningene, oppgavene (pluss deler av

Detaljer

Kanter, kanter, mange mangekanter

Kanter, kanter, mange mangekanter Kanter, kanter, mange mangekanter Nybegynner Processing PDF Introduksjon: Her skal vi se på litt mer avansert opptegning og bevegelse. Vi skal ta utgangspunkt i oppgaven om den sprettende ballen, men bytte

Detaljer

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.1

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.1 Delkapittel 9.1 Generelt om balanserte trær Side 1 av 13 Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.1 9.1 Generelt om balanserte trær 9.1.1 Hva er et balansert tre? Begrepene balansert og

Detaljer

TDT4100 Objektorientert programmering

TDT4100 Objektorientert programmering Eksamensoppgave i TDT4100 Objektorientert programmering Torsdag 12. august 2010, kl. 09:00-13:00 Oppgaven er utarbeidet av faglærer Hallvard Trætteberg og kvalitetssikret av Svein Erik Bratsberg. Kontaktperson

Detaljer

Algoritmer og Datastrukturer

Algoritmer og Datastrukturer Eksamen i Algoritmer og Datastrukturer IAI 21899 Høgskolen i Østfold Avdeling for informatikk og automatisering Torsdag 3. november 2, kl. 9. - 14. Hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator.

Detaljer

Algoritmer og datastrukturer Kapittel 3 - Delkapittel 3.1

Algoritmer og datastrukturer Kapittel 3 - Delkapittel 3.1 Delkapittel 3.1 Grensesnittet Liste Side 1 av 11 Algoritmer og datastrukturer Kapittel 3 - Delkapittel 3.1 3.1 En beholder 3.1.1 En beholder En pappeske er en beholder En beholder er noe vi kan legge ting

Detaljer

Oppgave 1 a. INF1020 Algoritmer og datastrukturer. Oppgave 1 b

Oppgave 1 a. INF1020 Algoritmer og datastrukturer. Oppgave 1 b Oppgave 1 1 a INF1020 Algoritmer og datastrukturer Forelesning 14: Gjennomgang av eksamen vår 2001 oppgave 1,2,4 Arild Waaler Institutt for informatikk, Universitetet i Oslo Oppgave 1 a Programmer en ikke-rekursiv

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Kandidatnr Det matematisk-naturvitenskapelige fakultet LØSNINGSFORSLAG Eksamen i: PRØVEEKSAMEN INF1000 Eksamensdag: Prøveeksamen 22.11.2011 Tid for eksamen: 12:15-16:15 Oppgavesettet

Detaljer

I dag. Rep: Oppsummering - variabler. Rep: Datatyper. INF1000 (Uke 3) Mer om uttrykk, terminal I/O, forgreninger

I dag. Rep: Oppsummering - variabler. Rep: Datatyper. INF1000 (Uke 3) Mer om uttrykk, terminal I/O, forgreninger I dag INF1000 (Uke 3) Mer om uttrykk, terminal I/O, forgreninger Grunnkurs i programmering Institutt for Informatikk Universitet i Oslo Litt repetisjon Mer om uttrykk Lesing og skriving til terminal Forgreninger

Detaljer

Tips til arbeidet med obligatorisk oppgave 2 i MAT-INF 1100 høsten 2004

Tips til arbeidet med obligatorisk oppgave 2 i MAT-INF 1100 høsten 2004 Tips til arbeidet med obligatorisk oppgave 2 i MAT-INF 1100 høsten 2004 Knut Mørken 3. november 2004 Etter samtale med noen av dere de siste dagene skjønner jeg at noen strever med del 2 av oblig2. Problemene

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Kandidatnr Eksamen i INF1000 Grunnkurs i objektorientert programmering Eksamensdag: Prøveeksamen tirsdag 23. november 2010 Tid for eksamen:

Detaljer

Løsningsforslag ukeoppg. 6: 28. sep - 4. okt (INF1000 - Høst 2011)

Løsningsforslag ukeoppg. 6: 28. sep - 4. okt (INF1000 - Høst 2011) Løsningsforslag ukeoppg. 6: 28. sep - 4. okt (INF1000 - Høst 2011) Løsningsforslag til oppgave 7, 8, og 9 mangler Klasser og objekter (kap. 8.1-8.14 i "Rett på Java" 3. utg.) NB! Legg merke til at disse

Detaljer

Dagens tema. C-programmering. Nøkkelen til å forstå C-programmering ligger i å forstå hvordan minnet brukes.

Dagens tema. C-programmering. Nøkkelen til å forstå C-programmering ligger i å forstå hvordan minnet brukes. Dagens tema Dagens tema C-programmering Nøkkelen til å forstå C-programmering ligger i å forstå hvordan minnet brukes. Adresser og pekere Parametre Vektorer (array-er) Tekster (string-er) Hvordan ser minnet

Detaljer

Kapittel 7: Mer om arv

Kapittel 7: Mer om arv Kapittel 7: Mer om arv Redigert av: Khalid Azim Mughal (khalid@ii.uib.no) Kilde: Java som første programmeringsspråk (3. utgave) Khalid Azim Mughal, Torill Hamre, Rolf W. Rasmussen Cappelen Akademisk Forlag,

Detaljer

INF1000 HashMap. Marit Nybakken marnybak@ifi.uio.no 2. november 2003

INF1000 HashMap. Marit Nybakken marnybak@ifi.uio.no 2. november 2003 INF1000 HashMap Marit Nybakken marnybak@ifi.uio.no 2. november 2003 Dette dokumentet skal tas med en klype salt og forfatteren sier fra seg alt ansvar. Dere bør ikke bruke definisjonene i dette dokumentet

Detaljer

Løse reelle problemer

Løse reelle problemer Løse reelle problemer Litt mer om løkker, metoder med returverdier og innlesing fra fil INF1000, uke4 Geir Kjetil Sandve Repetisjon fra forrige uke: while Syntaks: while (condition) do1; do2;... Eksempel:

Detaljer

Visuell Programmering: Kom i gang med Processing

Visuell Programmering: Kom i gang med Processing Visuell Programmering: Kom i gang med Processing Et enkelt program: Syntaks introdusert: Kommentarer, print(), println(), size(). + Start opp processing + Skriv en åpningskommentar på toppen av programmet

Detaljer

NIO 1. runde eksempeloppgaver

NIO 1. runde eksempeloppgaver NIO 1. runde eksempeloppgaver Oppgave 1 (dersom du ikke klarer en oppgave, bare gå videre vanskelighetsgraden er varierende) Hva må til for at hele det følgende uttrykket skal bli sant? NOT(a OR (b AND

Detaljer

Ordliste. Obligatorisk oppgave 1 - Inf 1020

Ordliste. Obligatorisk oppgave 1 - Inf 1020 Ordliste. Obligatorisk oppgave 1 - Inf 1020 I denne oppgaven skal vi tenke oss at vi vil holde et register over alle norske ord (med alle bøyninger), og at vi skal lage operasjoner som kan brukes til f.

Detaljer

Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.8

Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.8 Delkapittel 1.8 Algoritmeanalyse Side 1 av 12 Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.8 1.8 Algoritmeanalyse 1.8.1 En algoritmes arbeidsmengde I Delkapittel 1.1 ble det definert og diskutert

Detaljer

Algoritmer og datastrukturer Kapittel 11 - Delkapittel 11.2

Algoritmer og datastrukturer Kapittel 11 - Delkapittel 11.2 Algoritmer og datastrukturer Kapittel 11 - Delkapittel 11.2 11.2 Korteste vei i en graf 11.2.1 Dijkstras metode En graf er et system med noder og kanter mellom noder. Grafen kalles rettet Notasjon Verdien

Detaljer

3 emner i dag! INF1000 Uke 5. Objekter og pekere. null. Litt om objekter, pekere og null Filer og easyio Litt mer om tekster

3 emner i dag! INF1000 Uke 5. Objekter og pekere. null. Litt om objekter, pekere og null Filer og easyio Litt mer om tekster 3 emner i dag! INF1000 Uke 5 Litt om objekter, pekere og null Filer og easyio Litt mer om tekster Litt om objekter, filer med easyio, tekst 1 2 Objekter og pekere Vi lager pekere og objekter når vi bruker

Detaljer

if-tester Funksjoner, løkker og iftester Løkker og Informasjonsteknologi 2 Læreplansmål Gløer Olav Langslet Sandvika VGS

if-tester Funksjoner, løkker og iftester Løkker og Informasjonsteknologi 2 Læreplansmål Gløer Olav Langslet Sandvika VGS Løkker og if-tester Gløer Olav Langslet Sandvika VGS 29.08.2011 Informasjonsteknologi 2 Funksjoner, løkker og iftester Læreplansmål Eleven skal kunne programmere med enkle og indekserte variabler eller

Detaljer

Oppgave 3 a. Antagelser i oppgaveteksten. INF1020 Algoritmer og datastrukturer. Oppgave 3. Eksempelgraf

Oppgave 3 a. Antagelser i oppgaveteksten. INF1020 Algoritmer og datastrukturer. Oppgave 3. Eksempelgraf Oppgave 3 3 a IN1020 Algoritmer og datastrukturer orelesning 15: Gjennomgang av eksamen vår 2001 oppgave 3 Arild Waaler Institutt for informatikk, Universitetet i Oslo 11. desember 2006 Oppgave 3 a. Antagelser

Detaljer

PG4200 Algoritmer og datastrukturer Forelesning 7

PG4200 Algoritmer og datastrukturer Forelesning 7 PG4200 Algoritmer og datastrukturer Forelesning 7 Lars Sydnes, NITH 19. mars 2014 I. TERMINOLOGI FOR TRÆR TRÆR Lister: Lineære Trær: Hierarkiske Modell / Språk: Bestanddeler: Noder, forbindelser. Forbindelse

Detaljer

TDT4102 Prosedyre og Objektorientert programmering Vår 2014

TDT4102 Prosedyre og Objektorientert programmering Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap TDT4102 Prosedyre og Objektorientert programmering Vår 2014 Øving 1 Frist: DD.MM.YYYY Mål for denne øvinga:

Detaljer

INF1000 Uke 4. Innlesning fra terminal. Uttrykk og presedens. Oversikt

INF1000 Uke 4. Innlesning fra terminal. Uttrykk og presedens. Oversikt Oversikt INF1000 Uke 4 Forgreininger, løkker og arrayer Litt repetisjon Blokker og forgreininger if-setninger if-else-setninger switch-setninger Løkker while-løkker do-while-løkker for-løkker Arrayer Opprette,

Detaljer

BOKMÅL Side 1 av 7. KONTINUASJONSEKSAMEN I FAG TDT4100 Objektorientert programmering / IT1104 Programmering, videregående kurs

BOKMÅL Side 1 av 7. KONTINUASJONSEKSAMEN I FAG TDT4100 Objektorientert programmering / IT1104 Programmering, videregående kurs BOKMÅL Side 1 av 7 NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap KONTINUASJONSEKSAMEN

Detaljer

Eksempel: Body Mass Index (BMI) Forelesning inf1000 - Java 3. Ferdig program (første del) Ferdig program (siste del)

Eksempel: Body Mass Index (BMI) Forelesning inf1000 - Java 3. Ferdig program (første del) Ferdig program (siste del) Forelesning inf1000 - Java 3 Eksempel: Body Mass Index (BMI) Tema: Mer om forgreninger Løkker Arrayer Litt om easyio Ole Christian Lingjærde, 5. september 2012 Ole Chr. Lingjærde Institutt for informatikk,

Detaljer

Object interaction. Innhold. Abstraksjon 03.09.2007. Grunnleggende programmering i Java Monica Strand 3. september 2007.

Object interaction. Innhold. Abstraksjon 03.09.2007. Grunnleggende programmering i Java Monica Strand 3. september 2007. Object interaction Grunnleggende programmering i Java Monica Strand 3. september 2007 1 Innhold Til nå: Hva objekter er og hvordan de implementeres I klassedefinisjonene: klassevariable (fields), konstruktører

Detaljer

Java-kurs. Andreas Knudsen Nils Grimsmo 9th October 2003

Java-kurs. Andreas Knudsen <andreakn@idi.ntnu.no> Nils Grimsmo <nilsgri@idi.ntnu.no> 9th October 2003 Java-kurs Andreas Knudsen Nils Grimsmo 9th October 2003 1 (Dette blir lagt ut på nett, du trenger ikke ta notater.) 1 Motivasjon For de som ikke går å data:

Detaljer

Innlesning fra tastatur med easyio. INF1000 høst 2010. Vi må først skrive i toppen av programmet: import easyio.*;

Innlesning fra tastatur med easyio. INF1000 høst 2010. Vi må først skrive i toppen av programmet: import easyio.*; Innlesning fra tastatur med easyio INF1000 høst 2010 Forelesning 2: Innlesning fra terminal Boolean-variable if-setninger Løkker Litt mer om heltall: divisjon og modulo Vi må først skrive i toppen av programmet:

Detaljer

Tre måter å lese fra terminal. Java 4. Eksempel. Formatert utskrift til skjerm

Tre måter å lese fra terminal. Java 4. Eksempel. Formatert utskrift til skjerm Mer om easyio Mer om forgreninger Løkker 7. september 2004 Ole Christian Lingjærde Gruppen for bioinformatikk Institutt for informatikk Universitetet i Oslo Java 4 1 Tre måter å lese fra terminal Først:

Detaljer

Løsningsforslag EKSAMEN

Løsningsforslag EKSAMEN 1 Løsningsforslag EKSAMEN Emnekode: ITF20006 000 Dato: 18. mai 2012 Emne: Algoritmer og datastrukturer Eksamenstid: 09:00 til 13:00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Faglærer: Gunnar Misund

Detaljer

Enkle generiske klasser i Java

Enkle generiske klasser i Java Enkle generiske klasser i Java Oslo, 7/1-13 Av Stein Gjessing, Institutt for informatikk, Universitetet i Oslo Del 1: Enkle pekere Før vi tar fatt på det som er nytt i dette notatet, skal vi repetere litt

Detaljer

Oversikt. INF1000 Uke 6. Objekter, pekere og null. Lese og skrive fra/til fil. Litt om objekter, pekere og null Filer og easyio. Litt mer om tekster

Oversikt. INF1000 Uke 6. Objekter, pekere og null. Lese og skrive fra/til fil. Litt om objekter, pekere og null Filer og easyio. Litt mer om tekster Oversikt INF1000 Uke 6 Litt om objekter, pekere og null Filer og easyio. Litt mer om tekster Litt om objekter, filer med easyio, tekst Arne Maus 1 2 Objekter, pekere og null Vi lager pekere og objekter

Detaljer

Java. INF1000 : Forelesning 2. Ulike varianter for ulike behov. Java Standard Edition (Java SE) Java:

Java. INF1000 : Forelesning 2. Ulike varianter for ulike behov. Java Standard Edition (Java SE) Java: Variable og tilordninger Heltall, desimaltall og sannhetsverdier Kompilering og kjøring Utskrift på skjerm Ole Christian Lingjærde Gruppen for bioinformatikk Institutt for informatikk Universitetet i Oslo

Detaljer

Programmering i Java med eksempler

Programmering i Java med eksempler Simulering av differenslikninger Programmering i Java med eksempler Forelesning uke 39, 2006 MAT-INF1100 Differenslikn. p. 1 Løsning av differenslikninger i formel Mulig for lineære likninger med konst.

Detaljer

Python: Variable og beregninger, input og utskrift. TDT4110 IT Grunnkurs Professor Guttorm Sindre

Python: Variable og beregninger, input og utskrift. TDT4110 IT Grunnkurs Professor Guttorm Sindre Python: Variable og beregninger, input og utskrift TDT4110 IT Grunnkurs Professor Guttorm Sindre Læringsmål og pensum Mål for denne uka: Vite litt om design av programmer (2.1, 2.2, 2.4) Kunne skrive ut

Detaljer

Kapittel 1. Datamaskiner og programmeringsspråk. 1.1 Programmering

Kapittel 1. Datamaskiner og programmeringsspråk. 1.1 Programmering Kapittel 1 Datamaskiner og programmeringsspråk Dette kapitlet er en kort introduksjon til programmering. Vi vil se på hvordan man skriver, bygger og kjører programmer, samt illustrere noen sentrale programmeringsbegrep

Detaljer

datatyper Hva er programmering? Variabler og Informasjonsteknologi 2 Kompetansesemål

datatyper Hva er programmering? Variabler og Informasjonsteknologi 2 Kompetansesemål Variabler og datatyper Gløer Olav Langslet Sandvika VGS Høst 2012 Informasjonsteknologi 2 Hva er programmering? Når du skal bake en kake følger du gjerne en oppskrift. Først er det beskrevet hva kaken

Detaljer

Forelesning 15.11. Datatyper Kap 5.2 Instruksjonsformat Kap 5.3 Flyttall App B

Forelesning 15.11. Datatyper Kap 5.2 Instruksjonsformat Kap 5.3 Flyttall App B TDT4160 Datamaskiner Grunnkurs Forelesning 15.11 Datatyper Kap 5.2 Instruksjonsformat Kap 5.3 Flyttall App B Dagens tema Datatyper (5.2) Heltall Ikke-numeriske datatyper Instruksjonsformat (5.3) Antall

Detaljer

NB!!! Veldig korte svar er gitt her. Disse burde det vært skrevet mer på ved en eksamen..

NB!!! Veldig korte svar er gitt her. Disse burde det vært skrevet mer på ved en eksamen.. Løsningsforslag Eksamen V2007 Oppgave 1 NB!!! Veldig korte svar er gitt her. Disse burde det vært skrevet mer på ved en eksamen.. Oppgave 1.1 Klasse som pakke rinne n primitiv datatype, slik at vi kan

Detaljer

Leksjon 3. Kontrollstrukturer

Leksjon 3. Kontrollstrukturer 6108 Programmering i Java Leksjon 3 Kontrollstrukturer Del 2 Løkker Roy M. Istad 2015 Utførelse av et program Programflyt så langt start setning setning setning setning Sekvensielt Alle setninger utføres,

Detaljer

EKSAMEN Løsningsforslag. med forbehold om bugs :-)

EKSAMEN Løsningsforslag. med forbehold om bugs :-) 1 EKSAMEN Løsningsforslag med forbehold om bugs :-) Emnekode: ITF20006 000 Dato: 20. mai 2011 Emne: Algoritmer og datastrukturer Eksamenstid: 09:00 til 13:00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater

Detaljer

In105 Programmering i Java de første skritt

In105 Programmering i Java de første skritt In105 Programmering i Java de første skritt IN105-javabasics-1 class Velkommen { Velkommen.java public static void main ( String [] args ) { new Velkommen ( ); Velkommen ( ) { System.out.println ( "Velkommen

Detaljer

PG4200 Algoritmer og datastrukturer Forelesning 10

PG4200 Algoritmer og datastrukturer Forelesning 10 PG4200 Algoritmer og datastrukturer Forelesning 10 Lars Sydnes, NITH 9. april 2014 NOE Å STUSSE PÅ? Quadratic probing i Hash-tabell: ( ) 2 i + 1 p = p + ( 1) i+1 2 Underforstått forutsetning: Heltallsaritmetikk

Detaljer

Eksamen. Objektorientert Programmering IGR 1372

Eksamen. Objektorientert Programmering IGR 1372 + JVNROHQL1DUYLN $YGHOLQJIRU7HNQRORJL Eksamen i Objektorientert Programmering IGR 1372 7LG'HVHPEHU± 7LOODWWHKMHOSHPLGOHU 6NULYHVDNHU2UGE NHU -DYD6RIWZDUH6ROXWLRQV)RXQGDWLRQVRI3URJUDP 'HVLJQVNUHYHWDY/HZLV

Detaljer

Kompleksitetsanalyse Helge Hafting 25.1.2005 Opphavsrett: Forfatter og Stiftelsen TISIP Lærestoffet er utviklet for faget LO117D Algoritmiske metoder

Kompleksitetsanalyse Helge Hafting 25.1.2005 Opphavsrett: Forfatter og Stiftelsen TISIP Lærestoffet er utviklet for faget LO117D Algoritmiske metoder Helge Hafting 25.1.2005 Opphavsrett: Forfatter og Stiftelsen TISIP Lærestoffet er utviklet for faget LO117D Algoritmiske metoder Innhold 1 1 1.1 Hva er en algoritme?............................... 1 1.2

Detaljer

Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.3

Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.3 Delkapittel 1.3 Ordnede tabeller Side 1 av 70 Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.3 1.3 Ordnede tabeller 1.3.1 Permutasjoner En samling verdier kan settes opp i en rekkefølge. Hver

Detaljer

Løsningsforslag ukeoppg. 9: 19. - 25. okt (INF1000 - Høst 2011)

Løsningsforslag ukeoppg. 9: 19. - 25. okt (INF1000 - Høst 2011) Løsningsforslag ukeoppg. 9: 19. - 25. okt (INF1000 - Høst 2011) HashMap, innstikksortering, javadoc (kap. 9.1-9.11, m.m. i "Rett på Java" 3. utg.) NB! Legg merke til at disse er løsningsforslag. Løsningene

Detaljer

Å lese tall fra en fil, klassen Scanner

Å lese tall fra en fil, klassen Scanner Å lese tall fra en fil, klassen Scanner 1. Et Scanner-objekt kan knyttes til et strømobjekt eller til en streng. 2. Kan skanne teksten etter data av ulike typer. 3. Kan kun skanne framover i teksten. Vis

Detaljer

Forelesningsquiz. Forelesning inf1000 - Java 5. Sett dere to (eller tre) sammen og besvar de fire spørsmålene på utdelt ark. Tid: 15 min.

Forelesningsquiz. Forelesning inf1000 - Java 5. Sett dere to (eller tre) sammen og besvar de fire spørsmålene på utdelt ark. Tid: 15 min. Forelesning inf1000 - Java 5 Forelesningsquiz Tema: En liten quiz (se utdelt ark) Filbehandling Tekster Ole Christian Lingjærde, 19. september 2012 Sett dere to (eller tre) sammen og besvar de fire spørsmålene

Detaljer

Brukerveiledning for webapplikasjonen. Mathemateria 01.02.2015. Terje Kolderup

Brukerveiledning for webapplikasjonen. Mathemateria 01.02.2015. Terje Kolderup Brukerveiledning for webapplikasjonen Mathemateria 01.02.2015 Terje Kolderup Innhold Brukerveiledning for webapplikasjonen...1 Mathemateria...1 Introduksjon...3 Typisk eksempel og bryterstyring...3 Innlogging...4

Detaljer

Hva er en algoritme? Har allerede sett på mange algoritmer til nå i IT1101. Forholdet mellom en algoritme og et program. Algoritme program prosess

Hva er en algoritme? Har allerede sett på mange algoritmer til nå i IT1101. Forholdet mellom en algoritme og et program. Algoritme program prosess IT1101 Informatikk basisfag, dobbeltime 2/10 Hva er en algoritme? Fremgangsmåte for noe Hittil: Datarepresentasjon Datamanipulasjon Datamaskinarkutektur hvordan maskinen jobber Operativsystem Program som

Detaljer

Eksamen i Internetteknologi Fagkode: ITE1526

Eksamen i Internetteknologi Fagkode: ITE1526 Datateknikk Side 1 av 8 Eksamen i Internetteknologi Fagkode: ITE1526 Tid: Mandag, 23.05.05, 9:00-12:00 Tillatte hjelpemidler: Alle trykte og skrevne hjelpemidler tillatt. Eksamen består av 3 oppgaver og

Detaljer

1 ØVING I WINDOWS FRA CHRISTIAN ANDOLO

1 ØVING I WINDOWS FRA CHRISTIAN ANDOLO 1 ØVING I WINDOWS FRA CHRISTIAN ANDOLO Program fra sekunder Lag et program som leser inn en tid i sekunder (et stort tall). Deretter skal programmet skrive ut hvor mange timer, minutter og sekunder dette

Detaljer

Oblig 4Hybelhus litt mer tips enn i oppgaven

Oblig 4Hybelhus litt mer tips enn i oppgaven Oblig 4Hybelhus litt mer tips enn i oppgaven lørdag 19. okt 2013 Arne Maus Obligatorisk oppgave 4 Gulbrand Grås husleiesystem I denne oppgaven skal vi se på hans studenthus Utsyn. Utsyn består av 3 etasjer,

Detaljer

Side 1 av 11, prosesser, tråder, synkronisering, V. Holmstedt, HiO 2006

Side 1 av 11, prosesser, tråder, synkronisering, V. Holmstedt, HiO 2006 Side 1 av 11, prosesser, tråder, synkronisering, V. Holmstedt, HiO 2006 Prosesser og tråder Datamaskinen lager prosesser. En prosess organiserer arbeidet i et program ved å administrere tråder. Det er

Detaljer

INF1010 våren 2016. Arv og subklasser - del 2

INF1010 våren 2016. Arv og subklasser - del 2 INF1010 våren 2016 Onsdag 10. februar Arv og subklasser - del 2 pluss litt om feil og unntak hvis tid Stein Gjessing Institutt for informatikk Dagens tema Virtuelle metoder som er det samme som Polymorfi

Detaljer

Repetisjon, del 2. TDT 4110 IT Grunnkurs Professor Guttorm Sindre

Repetisjon, del 2. TDT 4110 IT Grunnkurs Professor Guttorm Sindre Repetisjon, del 2 TDT 4110 IT Grunnkurs Professor Guttorm Sindre Premieutdeling Kahoot Vinnere av enkeltrunder: Datamaskinens historie: mr.oyster (7311) Variable, aritmetiske op., etc.: Sha-ra (6155) if-setn.,

Detaljer

INF1010 våren 2014. Arv og subklasser - del 2

INF1010 våren 2014. Arv og subklasser - del 2 INF1010 våren 2014 Onsdag 19. februar Arv og subklasser - del 2 Stein Gjessing Institutt for informatikk Dagens tema Virtuelle metoder som er det samme som Polymorfi Mer om arv / interface Mer om pekertilordninger

Detaljer

Divide-and-Conquer. Lars Vidar Magnusson 13.1.2015

Divide-and-Conquer. Lars Vidar Magnusson 13.1.2015 Divide-and-Conquer Lars Vidar Magnusson 13.1.2015 Kapittel 4 Maximum sub-array problemet Matrix multiplikasjon Analyse av divide-and-conquer algoritmer ved hjelp av substitusjonsmetoden Divide-and-Conquer

Detaljer

Dagens temaer. Fra kapittel 4 i Computer Organisation and Architecture. Kort om hurtigminne (RAM) Organisering av CPU: von Neuman-modellen

Dagens temaer. Fra kapittel 4 i Computer Organisation and Architecture. Kort om hurtigminne (RAM) Organisering av CPU: von Neuman-modellen Dagens temaer Fra kapittel 4 i Computer Organisation and Architecture Kort om hurtigminne (RAM) Organisering av CPU: von Neuman-modellen Register Transfer Language (RTL) Instruksjonseksekvering Pipelining

Detaljer

NB!!!! VIKTIG ANGÅENDE DATAFILA:

NB!!!! VIKTIG ANGÅENDE DATAFILA: INF1000, Oblig2, H2006, Tolkning av oppgaven NB!!!! VIKTIG ANGÅENDE DATAFILA: For å fastholde både leietagernes saldi og hyblenes utgifter, må hver linje i datafila ha to (ikke bare ett) tilsvarende tall

Detaljer

Python: Oppslagslister (dictionaries) og mengder 3. utgave: Kapittel 9

Python: Oppslagslister (dictionaries) og mengder 3. utgave: Kapittel 9 Python: Oppslagslister (dictionaries) og mengder 3. utgave: Kapittel 9 TDT4110 IT Grunnkurs Professor Guttorm Sindre Læringsmål og pensum Mål Forstå prinsippene for, og kunne bruke i praksis Mengder (sets)

Detaljer

Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat. Av Sigbjørn Hals

Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat. Av Sigbjørn Hals Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat Av Sigbjørn Hals 1 Innhold Hva er matematikktillegget for Word?... 2 Nedlasting og installasjon av matematikktillegget for Word...

Detaljer

PG4200 Algoritmer og datastrukturer forelesning 10. Lars Sydnes 21. november 2014

PG4200 Algoritmer og datastrukturer forelesning 10. Lars Sydnes 21. november 2014 PG4200 Algoritmer og datastrukturer forelesning 10 Lars Sydnes 21. november 2014 I Grafer Grafisk fremstilling av en graf D A B C Ikke-rettet graf Grafisk fremstilling av en graf D A B C Rettet graf Grafisk

Detaljer

BOKMÅL Side 1 av 5. KONTERINGSEKSAMEN I FAG TDT4102 Prosedyre og objektorientert programmering. Onsdag 6. august 2008 Kl. 09.00 13.

BOKMÅL Side 1 av 5. KONTERINGSEKSAMEN I FAG TDT4102 Prosedyre og objektorientert programmering. Onsdag 6. august 2008 Kl. 09.00 13. BOKMÅL Side 1 av 5 NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap KONTERINGSEKSAMEN

Detaljer

Kapittel 1: Datamaskiner og programmeringsspråk

Kapittel 1: Datamaskiner og programmeringsspråk Kapittel 1: Datamaskiner og programmeringsspråk Redigert av: Khalid Azim Mughal (khalid@ii.uib.no) Kilde: Java som første programmeringsspråk (3. utgave) Khalid Azim Mughal, Torill Hamre, Rolf W. Rasmussen

Detaljer

22.02.2009. Spørsmål fra forrige forelesning. INF1000 Forelesning 7. Oppførselen til inword()/inint()/etc. Operator-presedens i Java

22.02.2009. Spørsmål fra forrige forelesning. INF1000 Forelesning 7. Oppførselen til inword()/inint()/etc. Operator-presedens i Java Spørsmål fra forrige forelesning INF1000 Forelesning 7 Operator-presedens i Java? Hvordan virker metodene inword()/inint()/etc. i In-klassen i easyio når vi skriver inn flere verdier på tastaturet? Litt

Detaljer

INF 4130. 8. oktober 2009. Dagens tema: Uavgjørbarhet. Neste uke: NP-kompletthet

INF 4130. 8. oktober 2009. Dagens tema: Uavgjørbarhet. Neste uke: NP-kompletthet INF 4130 8. oktober 2009 Stein Krogdahl Dagens tema: Uavgjørbarhet Dette har blitt framstilt litt annerledes tidligere år Se Dinos forelesninger fra i fjor. I år: Vi tenker mer i programmer enn i Turing-maskiner

Detaljer

Ta inn og ut av 2D-array. Java 6. Liste over ulike verdier i 2D-array. Det ferdige programmet. Vi skal lage et program som illustrerer hvordan man

Ta inn og ut av 2D-array. Java 6. Liste over ulike verdier i 2D-array. Det ferdige programmet. Vi skal lage et program som illustrerer hvordan man Eksempel med to-dimensjonal array Filbehandling Tekster Ole Christian Lingjærde Gruppen for bioinformatikk Institutt for informatikk Universitetet i Oslo Java 6 Vi skal lage et program som illustrerer

Detaljer

EKSAMEN med løsningsforslag

EKSAMEN med løsningsforslag EKSAMEN med løsningsforslag Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: Eksamenstid: 20. mai 2009 kl 09.00 til kl 13.00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Kalkulator Faglærer:

Detaljer

Programmering i Java med eksempler

Programmering i Java med eksempler Differenslikn. p.124 Simulering av differenslikninger Programmering i Java med eksempler Forelesning uke 39, 2005 MAT-INF1100 Differenslikn. p.224 Differenslikning av orden 2 (1) Vi kjenner formler for

Detaljer

INF1000 Behandling av tekster

INF1000 Behandling av tekster INF1000 Behandling av tekster Marit Nybakken marnybak@ifi.uio.no 23. februar 2004 Tekster Vi kommer nesten aldri utenom å bruke tekststrenger i programmene våre, ikke minst fordi det nesten alltid skal

Detaljer

Verktøyopplæring i kalkulator

Verktøyopplæring i kalkulator Verktøyopplæring i kalkulator Enkel kalkulator... 3 Regneuttrykk uten parenteser... 3 Bruker kalkulatoren riktig regnerekkefølge?... 3 Negative tall... 4 Regneuttrykk med parenteser... 5 Brøk... 5 Blandet

Detaljer

Tall. Binære regnestykker. Binære tall positive, negative heltall, flytende tall

Tall. Binære regnestykker. Binære tall positive, negative heltall, flytende tall Tall To måter å representere tall Som binær tekst Eksempel: '' i ISO 889-x og Unicode UTF-8 er U+ U+, altså Brukes eksempelvis ved innlesing og utskrift, i XML-dokumenter og i programmeringsspråket COBOL

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 1: Kapittel 1 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 17. januar 2008 Velkommen til plenumsregning for MAT1030 Torsdager 10:15 12:00 Gjennomgang

Detaljer