AVERAGING SPECIAL VALUES OF DIRICHLET L-SERIES.

Like dokumenter
MeijerG1. Notations. Primary definition. Traditional name. Traditional notation. Mathematica StandardForm notation. Generalized Meijer G-function

UNIVERSITETET I OSLO

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ.

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes

Existence of resistance forms in some (non self-similar) fractal spaces

Slope-Intercept Formula

Trust region methods: global/local convergence, approximate January methods 24, / 15

UNIVERSITETET I OSLO

Neural Network. Sensors Sorter

Trigonometric Substitution

TMA4329 Intro til vitensk. beregn. V2017

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

Verifiable Secret-Sharing Schemes

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2

Graphs similar to strongly regular graphs

Databases 1. Extended Relational Algebra

Continuity. Subtopics

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)

Endelig ikke-røyker for Kvinner! (Norwegian Edition)

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger

SVM and Complementary Slackness

32.2. Linear Multistep Methods. Introduction. Prerequisites. Learning Outcomes

Chapter 4 Reflection and Transmission of Waves

Multivariate Distributions from Mixtures of Max-Infinitely Divisible Distributions

Trådløsnett med. Wireless network. MacOSX 10.5 Leopard. with MacOSX 10.5 Leopard

Motzkin monoids. Micky East. York Semigroup University of York, 5 Aug, 2016

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl.

Moving Objects. We need to move our objects in 3D space.

INF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen

The Bargmann Transform and Windowed Fourier Localization

KROPPEN LEDER STRØM. Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal.

Song 1 Down Stepney Way A S S S 4 4. East. don. Lon - Down. A S S S 4 2 ä ä Sä ES S. don. Lon - love. night with. East. A S S S 4 S å å.

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with.

Dynamic Programming Longest Common Subsequence. Class 27

Gir vi de resterende 2 oppgavene til én prosess vil alle sitte å vente på de to potensielt tidskrevende prosessene.

Martin Ødegaard. "Ein vanleg arbeidsmann"

Resolvable Mendelsohn Triple Systems with Equal Sized Holes F. E. Bennett Department of Mathematics Mount Saint Vincent University Halifax, Nova Scoti

Generalization of age-structured models in theory and practice

P(ersonal) C(omputer) Gunnar Misund. Høgskolen i Østfold. Avdeling for Informasjonsteknologi

Fault Tolerant K-Center Problems

IN2010: Algoritmer og Datastrukturer Series 2

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO

Start Here USB *CC * *CC * USB USB

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5)

Dialogkveld 03. mars Mobbing i barnehagen

+ Service Design on Steroids. Marzia Aricò

Call function of two parameters

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

Du må håndtere disse hendelsene ved å implementere funksjonene init(), changeh(), changev() og escape(), som beskrevet nedenfor.

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Start MATLAB. Start NUnet Applications Statistical and Computational packages MATLAB Release 13 MATLAB 6.5

A Nonparametric Test of Serial Independence for Time Series and Residuals

GEF2200 Atmosfærefysikk 2017

Ringvorlesung Biophysik 2016

5 E Lesson: Solving Monohybrid Punnett Squares with Coding

Perpetuum (im)mobile

klassisk angoragenser classic angora sweater

EKSAMENSOPPGAVE I BI2034 Samfunnsøkologi EXAMINATION IN: BI Community ecology

Rings with (a b c) = (a c b) and (a [b c] d) = 0: A Case Study Using Albert Irvin Roy Hentzel Department of Mathematics Iowa State University Ames, Io

Recommended machine weight:

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Emneevaluering GEOV272 V17

FYS2140 Kvantefysikk. Løsningsforslag for Oblig 7

Invitasjon til Gull markering

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Stationary Phase Monte Carlo Methods

Utvidet løsningsforslag til Eksamen vår 2010

UNIVERSITETET I OSLO

Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX)

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

MA2501 Numerical methods

HONSEL process monitoring

stjerneponcho for voksne star poncho for grown ups

Permutative Semigroups Whose Congruences Form a Chain

STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD

Eksamensoppgave i FY8104 / FY3105 Symmetrigrupper i fysikken

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

80. Lincoln to Parklands

3/1/2011. I dag. Recursive descent parser. Problem for RD-parser: Top Down Space. Jan Tore Lønning & Stephan Oepen

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Innholdsfortegnelse... 1 Endringslogg UD BETALINGSTERMINAL NETS NEW DRIVERS FULL SUPPORT WINDOWS

Maple Basics. K. Cooper

Hvordan føre reiseregninger i Unit4 Business World Forfatter:

Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

Ingen hjelpemiddel er tillatne. Ta med all mellomrekning som trengst for å grunngje svaret. Oppgåve 1... (4%) = = 10 =

Løsningsforslag uke 9 INF212 - Våren 2002 Jørgen Hermanrud Fjeld with precious assistance from Marte Arnestad Harald Askestad Kai-

(see table on right) 1,500,001 to 3,000, ,001pa to 250,000pa

Norsk (English below): Guide til anbefalt måte å printe gjennom plotter (Akropolis)

Trådløsnett med Windows XP. Wireless network with Windows XP

(see table on right) 1,500,001 to 3,000, ,001pa to 250,000pa

Information search for the research protocol in IIC/IID

Hangman. Level. Introduksjon

Universitetet i Oslo Det matematisk-naturvitenskapelige fakultet

Hvor finner vi flått på vårbeiter? - og betydning av gjengroing for flåttangrep på lam på vårbeite

TMA4245 Statistikk. Øving nummer 12, blokk II Løsningsskisse. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

Solution for INF3480 exam spring 2012

Transkript:

AVERAGING SPECIAL VALUES OF DIRICHLET L-SERIES KEVIN JAMES Abstrct In ths pper we derve estmtes or weghted verges o the specl vlues o Drchlet L-seres whch generlze smlr estmtes o Dvd nd Ppplrd [] Introducton Fx r, m, n Z wth m, n = Let d p = r 4p nd Br = mx5, r /4 Dene { } Br < p X : p s prme; p m mod n; Sm, r n, X := 4p r mod ; d p 0, mod 4 nd Ar, m, n, X := X p S r m,n,x L, χ dp log p Dvd nd Ppplrd see [] Theorem 3 nd Lemm 4 proved n estmte or Ar,,, X whch ws n ntegrl prt o ther proo tht the Lng-Trotter conjecture s true on verge In relted work on the Lng-Trotter conjecture or ellptc curves wth nontrvl rtonl torson subgroups see or exmple [] t ws neccessry to prove smlr estmtes on Ar, r, n, X or vrous sureree n In ths pper we gve n estmte or Ar, m, n, X or m, n = rbtrry In order to stte the mn result, we wll need bt more notton We wll let = r 4m nd put 3 Q < r,m,n = { >, prme : n; r; ord < ord n} Q r,m,n = { >, prme : n; r; ord ord n} For Q < r,m,n, we wll denote by γ, the gretest nteger whch s less thn ord /, tht s γ := ord / Also, we wll let { / ord r,m ord s even, postve nd nte, 4 Γ = 0 otherwse In ths pper we prove: Dte: August 3, 005 000 Mthemtcs Subject Clsscton Prmry M06;Secondry G05 Key words nd phrses Drchlet L-seres, Specl vlues o L-seres The uthor s prtlly supported by NSF grnt DMS-00907 nd

KEVIN JAMES Theorem where C r,m,n = φn C r,m,n Q < r,m,n Q r,m,n, odd n r Ar, m, n, X C r,m,n X, ordn ordn, odd n r ord r,m / ordn ordn 3 n r m Γ Γ Γ ord ord r,m nd C r,m,n s dened by 3 r s odd 4 3 r s even; nd 4 n, r mod 4; ord n ord, 3 ord n 4 3 ord n ord n 3 ord n r mod 4; ord n = ord nd ord, r mod 4; ord n = ord nd ord, r mod 4; ord n = ord ; ord ; ord r,m mod 4, r mod 4; ord ord n n = ord ; ord OR r,m C r,m,n = ord r,m 3 mod 4, r mod 4; ord n > ord ; ord s even nd r,m ord r,m mod 8, 4 3 ord r,m r mod 4; ord n > ord ; ord s even nd r,m ord r,m 5 mod 8, ord r,m r mod 4; ord n > ord ; ord OR r,m ord r,m 3 mod 4, 5 r 0 mod 4; ord 3 n = ; m 3 mod 4, r 0 mod 4; 8 n; m 3 mod 4; r,m mod 8, 4 4 r 0 mod 4; 8 n; m 3 mod 4; r,m 5 mod 8, 3 4 r 0 mod 4; 4 n; m mod 4,

AVERAGING SPECIAL VALUES OF DIRICHLET L-SERIES 3 Proos We rst stte the ollowng result whch s essentlly due to Dvd nd Ppplrd, n the sense tht one cn obn proo by ollowng the sme lne o rgument gven n the proo o Theorem 3 n [] wth mnor modctons such s crryng the condton p m mod n throughout ther rgument Proposton Suppose tht r, m, n Z nd tht m, n = Then or ny c > 0, X Ar, m, n, X = K r,m,n X O log c, X where nd K r,m,n = k := = k= k kφ[n; k ] mod 4k 0, mod 4 r,4k =4 4m r mod 4n,4k k For the ske o brevty, we omt the proo o ths result nd reer the reder to [] The proo o the mn result now reures only reconclng o the constnts K r,m,n nd C r,m,n To tht end we begn wth n nvestgton o the k For convenence, we wll splt these nto two sums: 5,0 k := nd, k := k k mod 4k 0 mod 4 r,4k =4 4m r mod 4n,4k mod 4k mod 4 r,4k =4 4m r mod 4n,4k In order to descrbe the behvor o the, k s we hve the ollowng lemms The rst lemm ollows drectly rom the bove dentons We stte t or the ske o convenence only Lemm For,0 k to be nonzero, t s necessry tht we hve r, even; k, odd, r/, = nd n, r/ m For, k to be nonzero, one o the ollowng must hold r nd re both odd, r, = nd n, b r mod 4, r/, =, 4n, I ord n ord, then we reure tht ord mxord n, 4 I ord n = ord, then we reure tht ord = ord n I ord n ord, then we reure tht ord = ord nd mod 4 ord r,m

4 KEVIN JAMES c r 0 mod 4, mod 4, r, / = nd n, / r/ m I n 0 mod 4, then we lso need m 3 mod 4 Lemm, k =0, s multplctve uncton o k Proo I r s odd,,0 k = 0 nd the multplctvty o, k cn be shown s n [], lemm 33 So, we wll consder only the cse when r s even In ths cse, r/, =, n, r/ m nd k s odd, then we obtn 6,0 k = mod k r/,k= r/ m n, n, mod n n,,k k, nd zero otherwse Snce, runs through certn congruence clsses modulo k n the bove sum, the multplctvty o,0 k now ollows orm the Chnese remnder theorem nd the multplctve propertes o the Legendre symbol We need only tret the cses n whch, k s possbly nonzero see lemm For cse, k s odd, then we hve 7, k = Z/kZ r,k= n, n, mod n n,,k k In cses b nd c, when k s odd, we hve 8, k = Z/kZ r/ /,k= r/ m n,/ / n,/ mod n n,/,k k In ether o these cses, we see tht the sums vry over congruence clsses modulo k whch s odd The multplctvty o, now ollows rom the Chnese remnder theorem nd the multplctve propertes o the Legendre symbol

AVERAGING SPECIAL VALUES OF DIRICHLET L-SERIES 5 Lemm 3 Gven r, m nd n, let = 0 or nd dene τ s ollows r mod 4; = nd ord n ord nd ord n, ord n r mod 4; = nd ord n ord nd ord n >, ord n r mod 4; = ; ord τ = n = ord ; nd ord n s odd, ord r mod 4; = ; ord n ord ; ord s even nd r,m ord r,m mod 4, r 0 mod 4 nd =, 0 r s odd or = 0 I s chosen such tht r, m, n nd stsy one o the condtons n lemm or,, nd s n odd prme, then we hve, α = τ ord, α Also, r, m, n nd stsy one o condtons, b or c o lemm, then 9,0 α = mod α r/,=, α = ord, α Proo We wll rst tret the cse when = 0 nd r, m, n nd stsy condton o lemm Usng 6, we hve α ord n ord, mod α r/ m ord ord mod n ord,α α ord n > ord, Note tht s sure whch s coprme to Thus mkng the chnge o vrble = ord, the lst sum becomes ord α 0 Now combnng ths wth 9, we hve,0 α = mod α r/ m ord mod n ord,α mod α r/,= mod α r/ m ord mod n ord,α α ord n ord, α ord n > ord

6 KEVIN JAMES Usng ths expresson one cn esly see tht,0 α = ord,0 α, nd thus we hve proved tht the lemm holds n ths cse In ll other cses when s n odd prme, the proo s smlr For the lst sserton, we ssume tht r, m, n nd stsy ether o condtons b or c o lemm From 5, we hve We note tht, α = 3, α = mod α mod 4 r/ m n,/ / n,/ mod n n,/,α mod α mod 4 = r/ m ord ord α α ord n ord, α ord n ord mod α mod n n,/,α s n odd sure Thus, lettng ord = yelds ord α mod α ord n ord, mod 4 α mod α ord n ord r/ m ord mod n n,/,α Usng the lst expresson, one cn esly check tht, α = ord, α, s desred In the cse tht r, m, n nd stsy condton o lemm, the proo s smlr In order to evlute the α, = 0,, we hve the ollowng two lemms β, Lemm 4 Suppose tht s n odd prme nd α > 0 Lettng d = β,0 α when r s even; r, = nd n, β r/ m, or lettng d = τ β, α when r, m nd n stsy condtons, b or c o lemm, we hve r α β = 0; α, odd; n r α β = 0; α, even; n α α β = 0 nd n 4 d = n, α 0 β > 0; α, odd nd ord n β α β > 0; α, even nd ord n β α α / β β > 0 nd ord n > β n β,α Proo We wll prove the lemm or 4 β, α where s n odd prme nd where r, m nd n stsy condton b o lemm The proos or the other cses re smlr From 8 bove, we

hve 5 AVERAGING SPECIAL VALUES OF DIRICHLET L-SERIES 7 4 β, α = = Z/ α Z r/ 4 β,= r/ m 4β n, β n, β mod n n, β,α Z/ α Z r/ 4,= r/ m 4 mod n, α Z/ α Z r/ m 4β n, β n, β α α β = 0, α β > 0 mod n n, β,α Observe, tht when nd n, the second condton o our summton or the cse β = 0 s empty We lso note tht when n, we hve m, snce m, n = So, the second condton o the summton or the cse β = 0 mples the rst Wth these observtons, one cn now esly deduce the desred result The next lemm llows us to evlute the, t powers o The proo s smlr to tht o the prevous lemm nd or the ske o brevty we omt t Lemm 5 I r s odd, then,, α = { α 4 n, α n, α 4 n, I r s even nd r, = β, m nd n stsy ether o condtons b or c o lemm, then 0 ord n β nd α s odd, β, α = α ord n β nd α s even, α r/ m/ β α ord n β ord n β, α Now, let κn denote the multplctve uncton generted by { 6 κl α l α s odd, = α s even, or ny prme l nd ny α > 0 Then we hve the ollowng bound Lemm 6 For ll k,, k k/κk, where = 0, Proo From lemms 3, 4 nd 5, t ollows mmdetely tht or ny prme, {, α α α s even, 7 α α s odd = α /κ α

8 KEVIN JAMES The lemm now ollows rom the multplctvty o, nd κ We recll the ollowng ct rom [] Lemm 34 Lemm 7 Let c = l,prme converges l l Then, k U κkφk Thus rom lemms 6 nd 7, we see tht K r,m,n s nte constnt We rewrte K r,m,n s 8 K r,m,n = K 0 r,m,n K r,m,n, where 9 K 0 r,m,n = = k=,0 k kφ[n, k ] nd K r,m,n = = c U In prtculr, k= k=, k kφ[n, k ] Now we compute the constnts K r,m,n = 0, We recll the ollowng denttes A, B 0 φab = φaφb φa, B, nd thereore, we lso hve B A, φ A B = φaφ A B, B φb A B, B In prtculr, we cn wrte φ[n, k ] = φnk n, k κkφk Now, we recll or xed choce o r, m nd n, tht must be chosen such tht r, m, n nd stsy the condtons o lemm or, k to be non-zero We wll denote by S r,m,n the set o s whch stsy the condtons o lemm, nd we let τ be dened s n lemm 3 Then, we cn wrte 3 Kr,m,n = τ, kn, τ k φ τ n, k τ φ τ n kφk τ n, k = τ S r,m,n k= Usng lemm nd the multplctvty o φ nd lettng, b := ord,b, we cn rewrte the nner sum bove s, 4 τ, j n, τ j φ τ n, j j φ j τ n, j, prme Usng lemm 3, 4 cn be rewrtten s

AVERAGING SPECIAL VALUES OF DIRICHLET L-SERIES 9 5 =, prme τ, j n, τ j φ τ n, j j φ j τ n, j τ, j n, τ j φ τ n, j j φ j τ n, j τ ord, j n, τ j φ τ n, j j φ j τ n, j τ ord, j n, τ j φ τ n, j j φ j τ n, j τ, j n, τ j φ τ n, j j φ j τ n, j Now, substtutng ths lst expresson bck nto 3 nd usng 0, we obtn the ollowng expresson or K r,m,n 6 τ φ τ n, prme = τ S r,m,n τ, j n, τ j φ τ n, j j φ j τ n, j φ τ n, φ τ n, τ ord, j n, τ j φ τ n, j j φ j τ n, j τ, j n, τ j φ τ n, j j φ j τ n, j Now, S r,m,n =, then the bove expresson s just 0 So, we wll ssume or now tht S r,m,n, nd n ths cse we cn rewrte the sum rom 6 s product 7, prme β= τ β S r,m,n φ τ n, β β φ β τ n, β τ β, j n, τ βj φ τ β n, j j φ j τ β n, j τ, j n, τ j φ τ n, j j φ j τ n, j Ths llows us to rewrte 6 s

0 KEVIN JAMES 8 τ φ τ n, odd n, odd n τ, j j φ j β= τ β S r,m,n j n, τ j β φ β τ, j n, j j φ j β= τ β S r,m,n τ β, j φ β, j j φ j β, j β φ β τ, j n, τj φ τ n, j j φ j τ n, j β= τβ S r,m,n φ τ n, β β φ β τ n, β τ β, j n, βj φ β n, j j φ j β n, j τβ, j n, τβj φ τβ n, j j φ j τβ n, j Snce, n the rst product, n, nd snce we re ssumng tht S r,m,n, τ β S r,m,n β nd only r So usng lemm 4, the rst product n 8 becomes or ll 9, odd n r, odd n r Recllng 3 nd 4, nd usng lemm 4 the second product o 8 becomes 30 Q < r,m,n Q r,m,n ordn ordn ord r,m / Γ Γ ordn ordn 3 Γ ord n r,odd ord r,m m

AVERAGING SPECIAL VALUES OF DIRICHLET L-SERIES Next, we evlute the thrd ctor o 8,whch we wll denote by T r,m,n Usng lemms nd 5, we nd tht 3 ord n5 = ; r mod 4; ord n ord, ord n = ; r mod 4; ord 3 n = ord, ord n = ; r mod 4; ord 3 n = ord ; ord s even nd r,m r,m mod 4, ord = ; r mod 4; ord n > ord ; ord s even nd r,m r,m mod 8, ord r,m = ; r mod 4; ord 3 n > ord ; ord s even nd r,m r,m 5 mod 8, n = ; r 0 mod 4; 4 n, T r,m,n 3 = 6 = ; r 0 mod 4; ord 3 n = nd m 3 mod 4, 8 = ; r 0 mod 4; 8 n; m 3 mod 4; r,m 4 mod 8, 8 = ; r 0 mod 4; 8 n; m 3 mod 4; r,m 3 4 5 mod 8, 3 = nd r s odd, 9 7 = 0; r mod 4 nd n s odd, 6 7 ord n = 0; r mod 4; 0 < ord n ord ; ord n s even, 5 = 0; r 7 ord n ord r,m = 0; r mod 4; ord n > ord, = 0 nd r 0 mod 4 mod 4; ord n ord ; ord n s odd, 3 Thus, K r,m,n = T r,m,n 0 φn T r,m,n τ φ τ n Q < r,m,n Q r,m,n, odd n r ordn ordn, odd n r ord r,m / ordn ordn 3 n r m Γ Γ Γ ord ord r,m

KEVIN JAMES Now one cn check tht C r,m,n = φn T r,m,n 0 when τ φ τ Sr,m,n n 0 S r,m,n nd 0 otherwse Thus Theorem now ollows rom Proposton nd rom 3 φn T r,m,n Reerences [] C Dvd nd F Ppplrd, Averge Frobenus dstrbutons o ellptc curves Internt Mth Res Notces 999 65 83 [] K Jmes, Averge Frobenus dstrbutons or ellptc curves wth 3-torson, preprnt Deprtment o Mthemtcl Scences Clemson Unversty BOX 340975 Clemson, SC 9634-0975, USA kevj@clemsonedu Deprtment o Mthemtcl Scences, Clemson Unversty, BOX 340975 Clemson, SC 9634-0975, USA E-ml ddress: kevj@clemsonedu URL: http://wwwmthclemsonedu/ kevj/