Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2

Like dokumenter
Trigonometric Substitution

Slope-Intercept Formula

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl.

Maple Basics. K. Cooper

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with.

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITETET I OSLO

TMA4329 Intro til vitensk. beregn. V2017

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

5 E Lesson: Solving Monohybrid Punnett Squares with Coding

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO

Dynamic Programming Longest Common Subsequence. Class 27

Eksamensoppgave i MA1101/MA6101 Grunnkurs i analyse I. LØSNINGSFORSLAG

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Den som gjør godt, er av Gud (Multilingual Edition)

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Øving 5 - Fouriertransform - LF

Exercise 1: Phase Splitter DC Operation

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

UNIVERSITETET I BERGEN

Trådløsnett med. Wireless network. MacOSX 10.5 Leopard. with MacOSX 10.5 Leopard

Norsk (English below): Guide til anbefalt måte å printe gjennom plotter (Akropolis)

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Second Order ODE's (2P) Young Won Lim 7/1/14

Solution for INF3480 exam spring 2012

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

MA1101 Grunnkurs Analyse I Høst 2017

Neural Network. Sensors Sorter

ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems

Continuity. Subtopics

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)

TFY4170 Fysikk 2 Justin Wells

Endelig ikke-røyker for Kvinner! (Norwegian Edition)

Eksamen i MAT1100 H14: Løsningsforslag

Moving Objects. We need to move our objects in 3D space.

Hvordan føre reiseregninger i Unit4 Business World Forfatter:

Databases 1. Extended Relational Algebra

UNIVERSITETET I OSLO

Graphs similar to strongly regular graphs

Forkurs, Avdeling for Ingeniørutdanning

Right Triangle Trigonometry

Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX)

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

Start Here USB *CC * *CC * USB USB

UNIVERSITETET I OSLO

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23

Elektronisk innlevering/electronic solution for submission:

PARABOLSPEIL. Still deg bak krysset

TDT4117 Information Retrieval - Autumn 2014

Oppgave. føden)? i tråd med

PATIENCE TÅLMODIGHET. Is the ability to wait for something. Det trenger vi når vi må vente på noe

Level Set methods. Sandra Allaart-Bruin. Level Set methods p.1/24

stjerneponcho for voksne star poncho for grown ups

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger

Stationary Phase Monte Carlo Methods

EN Skriving for kommunikasjon og tenkning

Enkel og effektiv brukertesting. Ida Aalen LOAD september 2017

Geir Lieblein, IPV. På spor av fremragende utdanning NMBU, 7. oktober 2015 GL

BIBSYS Brukermøte 2011 Live Rasmussen og Andreas Christensen. Alt på et brett? -om pensum på ipad og lesebrett

FYS2140 Kvantefysikk. Løsningsforslag for Oblig 7

The internet of Health

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Ma Flerdimensjonal Analyse Øving 11

SmartPass Mini User Manual BBNORGE.NO

Namma Kalvi Mathematics (Sample Question Papers only for Practice)

SERVICE BULLETINE

Løsningsførslag i Matematikk 4D, 4N, 4M

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt)

SRP s 4th Nordic Awards Methodology 2018

Kartleggingsskjema / Survey

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes

Safety a t t h e f A c t o r y

Ma Flerdimensjonal Analyse Øving 6

GEF2200 Atmosfærefysikk 2017

UNIVERSITETET I OSLO

// Translation // KLART SVAR «Free-Range Employees»

32.2. Linear Multistep Methods. Introduction. Prerequisites. Learning Outcomes

MID-TERM EXAM TDT4258 MICROCONTROLLER SYSTEM DESIGN. Wednesday 3 th Mars Time:

Høgskolen i Oslo og Akershus. e 2x + x 2 ( e 2x) = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) 1 sin x (sin x) + 2x = cos x

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5)

Løsningforslag, Øving 9 MA0001 Brukerkurs i Matematikk A

3/1/2011. I dag. Recursive descent parser. Problem for RD-parser: Top Down Space. Jan Tore Lønning & Stephan Oepen

Appendix B, not for publication, with screenshots for Fairness and family background

NTNU Institutt for matematiske fag. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 8. Oppgave 1. Oppgave 2

KROPPEN LEDER STRØM. Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal.

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F.

Løsningsforslag til eksamen i MAT111 Vår 2013

Transkript:

Mathematics 4Q Name: SOLUTIONS. (x + 5)(x +5x) 7 8 (x +5x) 8 + C [u x +5x]. (3 x) (3 x) + C [u 3 x] 3. 7x +9 (7x + 9)3/ [u 7x + 9] 4. x 3 ( + x 4 ) /3 3 8 ( + x4 ) /3 + C [u + x 4 ] 5. e 5x+ 5 e5x+ + C [u 5x + ]

Math 4Q 6. 4 cos(3x) 4 3 sin(3x)+c [u 3x] 7. sin(ln x) x cos(ln x)+c [u ln x] 8. x + x +4x 3 ln x +4x 3 + C [u x +4x 3] 9. (3 x + )( x ) ln 3 3x + + C [u x + ]. x ln x ln ln x + C [u ln x]. cos(5x) esin(5x) 5 e sin(5x) + C [u sin(5x)]

Math 4Q. π x sin(x ) Let u x. Then du x, so π x sin(x ) π x π x sin(x ) x sin(u)du ( cos(x ) ) π 3. x 4 x [Hint: If u 4 x, what does that make x in terms of u?] If u 4 x, then x 4 u and so du. all of this into the integral: Now just substitute x 4 x (4 u) u ( )du ( 4u / + u 3/) du 8 3 (4 x)3/ + 5 (4 x)5/ + C

Math 4Q 4. xe x xe x e x + C [u x, dv e x ] 5. x sin x x cos(x) + sin(x)+c [u x, dv sin(x)] 6. x ln x x ln x x 4 + C [u ln x, dv x] 7. ln x x ln x x + C [u ln x, dv ] 8. ln x x 5 4 ln x x 4 6 x 4 + C [u ln x, dv x 5 ]

Math 4Q 9. x e 3x You will have to use integration by parts twice. First use u x and dv e 3x. This will give you x e 3x x 3 e3x 3 xe 3x. For the new integral, use u x and dv e 3x. answer: This gives the x e 3x x 3 e3x [ x 3 3 e3x 3 ] e ex x 3 e3x x 9 e3x + 7 e3x + C. x 3 ln(5x) x4 4 ln(5x) x4 6 + C [u ln(5x), dv x 3 ]. x x +3 Let u x and dv (x + 3) /. Then x x +3 3 x(x + 3)3/ 3 (x + 3)3/ 3 x(x + 3)3/ 4 5 (x + 3)5/ + C.

Math 4Q. sin (x) [Hint: write sin (x) as sin(x) sin(x) and use the Pythagorean Theorem.] As instructed in the hint, write sin (x) sin(x) sin(x). and dv sin(x). Then Let u sin(x) sin (x) sin(x) cos(x)+ cos (x) sin(x) cos(x)+ ( sin (x) ) sin(x) cos(x)+x sin (x) Now add sin (x) to both sides and divide by to get sin (x) sin(x) cos(x)+x. 3. x sin(x) cos(x) [Hint: let u x. You will need to use the result of the previous problem.] Let u x and dv sin(x) cos(x). Then v sin (x), so x sin(x) cos(x) x sin (x) sin (x) Note that we used x sin (x) [ ] sin(x) cos(x)+x + C sin (x), which we obtained in the previous problem. 4. x cos(x) x sin(x) + cos(x)+c [u x, dv cos(x)]

Math 4Q 5. x cos(x) You will need to do integration by parts twice. The first time, let u x and dv cos(x). Then x cos(x) x sin(x) sin(x) x. Next, let u x and dv sin(x). Then x cos(x) x sin(x) x sin(x) x sin(x) ( x cos(x)+ cos(x) ) x sin(x)+x cos(x) sin(x)+c. 6. e x cos(x) [Hint: Do integration by parts twice. equation.] Look carefully at both sides of the resulting Let u e x and dv cos(x). Then e x cos(x) e x sin(x) e x sin(x). To solve this new integral, use u e x and dv sin(x). Then e x cos(x) e x sin(x) [ e x cos(x) e x( cos(x) ) ] Now add e x cos(x) e x sin(x)+e x cos(x) e x cos(x) to both sides of this equation: e x cos(x) e x sin(x)+e x cos(x). Now divide both sides by to obtain the answer: e x cos(x) ex ( ) sin(x) + cos(x). WARNING: It is important that in the second step you do not choose u sin(x) and dv e x. If you do, you will end up undoing the first step.

Math 4Q 7. x 4 ( /4 x + + /4 ) x 4 ln x + + ln x + C 4 8. x x 4 ( / x + + / ) x ln x + + ln x + C 9. x(x + ) ( x + ) x + ln x ln x + + C 3. x (x + ) [Use A x, B x, C x+.] ( x + x + ) x + ln x + ln x + + C x

Math 4Q 3. x x 6 ( 5/8 x +4 + 3/8 ) x 4 5 8 ln x +4 + 3 ln x 4 + C 8 3. x +7 x (x + ) You should use partial fractions with A, B C. Solving for the A, B, C, x x x+ you will get A 5 4, B 7, C 5 4. Then the integral will be equal to ( 5 ) 7 5 4 x + x + 4 x + 5 4 ln x + 7 ( ) + 5 ln x + + C x 4 33. x(x + ) You should use partial fractions with A, Bx+C. Solving for A, B, C, x x + you will get A, B, C. Then the integral will be equal to ( ) ( ( )x + + x x + x x ) x + ln x ln x + + C Note: To do the second integral, use substitution with u x +. We don t need absolute value signs on the second term, because x + is always positive.

Math 4Q 34. e x + [Hint: This one is really tricky. Multiply by ex and then use substitution.] e x Following the hint you get: e x + e x e x (e x + ) Now let u e x, so that du e x. and you get: e x (e x + ) ex. Substitute this into the integral e x (e x + ) ex u(u + ) du ( u + ) du u + ln u ln u + + C Put back the x s and you get the answer: e x + ln ex ln e x + + C. Note: Since e x is always positive, you don t need the absolute value signs.

Math 4Q 35. +x arctan(x)+c [x tan(θ) θ arctan(x)] 36. 4 x arcsin( x )+C [x sin(θ) θ arcsin( x )] 37. x +4x +5 (x + ) + arctan(x + ) + C [x + tan(θ) θ arctan(x + )] x 38. +x [Hint: This one is tricky. You might have to add and subtract from the numerator.] x + ( ) x + ( x + x + ) x + ( ) x arctan(x)+c x +

Math 4Q 39. x r x x r + r (as r ) 4. x R x x R + + (as R ) R 4. e ln x x R e ln x x (ln x) R e (ln R) (as R ) [Use substitution with u ln x] 4. e x(ln x) R e x(ln x) R ln x e + + (as R ) ln R [Use substitution with u ln x]

Math 4Q 43. xe x Use integration by parts with u x and dv e x. R xe x ( xe x + Then ) e x R ( xe x e x) R as R. ( Re R e R) ( ) + Remark: Re R e R R e (as R ). R er 44. xe x Use substitution with u x and du x. Then R xe x R e x ( ) ( e R ) + as R. Remark: e R e R (as R ).

Math 4Q 45. arctan x x + [Hint: What is the derivative of arctan(x)?] Use substitution with u arctan(x) and du x +. R as R. arctan x x + (arctan x) ( π R Then (arctan R) (arctan ) ) ( ) π 3 4 3 π Remarks:. arctan() π 4, because. lim R arctan R π, because ( ) π tan sin ( ) π 4 4 cos ( ) π 4 / /. ( ) π tan sin ( ) π cos ( ) π. This should be thought of as a limit, not actual equality. 46. f(x), where f(x) { x if x x if x ( + x x x) + ( x) + 3