UNIVERSITETET I OSLO

Like dokumenter
Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl.

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Trigonometric Substitution

Løsning til prøveeksamen i MAT2400, V-11

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Slope-Intercept Formula

Moving Objects. We need to move our objects in 3D space.

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ.

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO

SVM and Complementary Slackness

Bijective (= one-to-one and onto) Bijektiv (= en-til-en og på) Bisection principle (= lion hunting) Halveringsmetoden

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Dynamic Programming Longest Common Subsequence. Class 27

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Trust region methods: global/local convergence, approximate January methods 24, / 15

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5)

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Graphs similar to strongly regular graphs

5 E Lesson: Solving Monohybrid Punnett Squares with Coding

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt)

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23

UNIVERSITETET I OSLO

Verifiable Secret-Sharing Schemes

EKSAMENSOPPGAVE I SØK 1002 INNFØRING I MIKROØKONOMISK ANALYSE

TMA4329 Intro til vitensk. beregn. V2017

TMA4240 Statistikk 2014

Call function of two parameters

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with.

EKSAMENSOPPGAVE I FAG TKP 4105

MA2501 Numerical methods

UNIVERSITETET I OSLO

ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO

Hvordan føre reiseregninger i Unit4 Business World Forfatter:

UNIVERSITETET I OSLO

TMA4240 Statistikk Høst 2013

UNIVERSITETET I OSLO

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN

Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet.

Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX)

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO

Neural Network. Sensors Sorter

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Continuity. Subtopics

Existence of resistance forms in some (non self-similar) fractal spaces

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Analysedrypp IV: Metriske rom

UNIVERSITETET I OSLO

Medisinsk statistikk, KLH3004 Dmf, NTNU Styrke- og utvalgsberegning

Stationary Phase Monte Carlo Methods

Dagens tema: Eksempel Klisjéer (mønstre) Tommelfingerregler

Administrasjon av postnummersystemet i Norge Post code administration in Norway. Frode Wold, Norway Post Nordic Address Forum, Iceland 5-6.

UNIVERSITETET I OSLO

C13 Kokstad. Svar på spørsmål til kvalifikasjonsfasen. Answers to question in the pre-qualification phase For English: See page 4 and forward

1 Aksiomatisk definisjon av vanlige tallsystemer

Løsningsførslag i Matematikk 4D, 4N, 4M

Generalization of age-structured models in theory and practice

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO

KROPPEN LEDER STRØM. Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal.

Prosjektet Digital kontaktinformasjon og fullmakter for virksomheter Digital contact information and mandates for entities

Information search for the research protocol in IIC/IID

UNIVERSITETET I OSLO

Smart High-Side Power Switch BTS730

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

Ma Flerdimensjonal Analyse Øving 1

Maple Basics. K. Cooper

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

Ringvorlesung Biophysik 2016

Databases 1. Extended Relational Algebra

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO

UNIVERSITETET I BERGEN

Splitting the differential Riccati equation

Transkript:

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT2400 Analyse 1. Eksamensdag: Onsdag 15. juni 2011. Tid for eksamen: 09.00 13.00 Oppgavesettet er på 6 sider. Vedlegg: Tillatte hjelpemidler: Ingen. Ingen. Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Alle deloppgaver (1, 2, 3a, 3b osv.) teller 10 poeng. Oppgave 1 Funksjonene f n : R R er definert ved f n (x) = arctan(x 2n ) Vis at Er konvergensen uniform? lim f n(x) = 2 dersom x > 1 4 dersom x = 1 0 dersom x < 1 Oppgave 2 (X, d) er et metrisk rom, og A er en delmengde av X. Vi sier at b X er et opphopningspunkt for A dersom alle kuler B(b; r), r > 0, inneholder et punkt fra A forskjellig fra b. Vis at b er et opphopningspunkt for A hvis og bare hvis det finnes en følge {x n } fra A som konvergerer mot b og der alle elementene er forskjellige fra b. Oppgave 3 I denne oppgaven er µ Lebesgue-målet på R d, og M + er mengden av ikkenegative, målbare funksjoner f : R d [0, ]. Anta at I : M + [0, ] tilfredsstiller disse fire betingelsene: (i) I(cf) = ci(f) for alle c [0, ) og alle f M +. (ii) I(f + g) = I(f) + I(g) for alle f, g M +. (Fortsettes på side 2.)

Eksamen i MAT2400, Onsdag 15. juni 2011. Side 2 (iii) I(1 A ) = µ(a) for alle målbare A R d. (iv) Dersom {f n } er en voksende følge fra M + som konvergerer mot f, så er lim I(f n ) = I(f). a) Vis ved induksjon at I(c 1 f 1 + c 2 f 2 + + c n f n ) = c 1 I(f 1 ) + c 2 I(f 2 ) + + c n I(f n ) for alle n N, alle c 1, c 2,..., c n [0, ) og alle f 1, f 2,..., f n M +. b) Vis at I(f) = f dµ for alle ikke-negative, enkle funksjoner f. c) Vis at I(f) = f dµ for alle f M +. Oppgave 4 I denne oppgaven er X mengden av alle funksjoner f : N R slik at f(i) < a) Vis at (i) Dersom f X og c R, så er cf X. (ii) Dersom f, g X, så er f + g X. Resultatet i punkt a) forteller oss at X er et vektorrom. Dette kan du bruke fritt i fortsettelsen. b) Vis at er en norm på X. f = f(i) c) For alle n N er e n : N R definert ved 1 dersom i = n e n (i) = 0 ellers Vis at {e n } n N er en basis for X. d) Vis at lim f e n = f + 1 for alle f X. Hvorfor kan ikke {e n } ha en konvergent delfølge i (X, )? e) Vis at B = {f X : f 1} er lukket og begrenset, men ikke kompakt. Er B totalt begrenset? (Fortsettes på side 3.)

Eksamen i MAT2400, Onsdag 15. juni 2011. Side 3 Oppgave 5 I denne oppgaven er (X, d) et metrisk rom, A er en delmengde av X, f : A R er en uniformt kontinuerlig funksjon, og b er et randpunkt til A. Vis at dersom {x n } er en følge fra A som konvergerer mot b, så konvergerer følgen {f(x n )}. Finn et eksempel som viser at dette ikke alltid gjelder dersom vi bare antar at f er kontinuerlig. Slutt (Fortsettes på side 4.)

Eksamen i MAT2400, Onsdag 15. juni 2011. Side 4 Problem 1 Solutions a) Note that lim x2n = lim (x2 ) n = if x > 1 1 if x = 1 0 if x < 1 Since arctan is continuous, and arctan 0 = 0, arctan 1 = 4, lim t arctan t = 2, we get 2 if x > 1 lim f n(x) = 4 if x = 1 0 if x < 1 Since the functions f n are continuous, but the limit function is not, the convergence can not be uniform. Problem 2 Assume first that b is an accumulation point. For each n N, we can find a point x n in B(b; 1 n ) A different from b. The sequence {x n} clearly satisfies the requirements. Assume next that there is a sequence {x n } from A which converges to b and where all elements are different from b. Given r > 0, there must be a number N N such that d(b, x n ) < r for n N. But then x N B(b; r) A, and x N b. Problem 3 a) We use the induction hypothesis: P n : For all c 1, c 2,..., c n [0, ) and all f 1, f 2,..., f n M +, we have I(c 1 f 1 + c 2 f 2 + + c n f n ) = c 1 I(f 1 ) + c 2 I(f 2 ) + + c n I(f n ) The base step P 1 follows immediately from condition (i): I(c 1 f 1 ) = c 1 I(f 1 ) It remains to show that if P n is true, so is P n+1. We have I(c 1 f 1 + c 2 f 2 + + c n f n + c n+1 f n+1 ) = = I([c 1 f 1 + c 2 f 2 + + c n f n ] + c n+1 f n+1 ) (ii) = (Fortsettes på side 5.)

Eksamen i MAT2400, Onsdag 15. juni 2011. Side 5 (ii) = I(c 1 f 1 + c 2 f 2 + + c n f n ) + I(c n+1 f n+1 ) Pn/(i) = P n/(i) = c 1 I(f 1 ) + c 2 I(f 2 ) + + c n I(f n ) + c n+1 I(f n+1 ) which shows that P n+1 follows from P n. b) For any nonnegative simple function f = n k=1 c k1 Ck, we have by a) and condition (iii) I(f) = I( n k=1 c k 1 Ck ) = a) c 1 I(1 C1 ) + c 2 I(1 C2 ) + + c n I(1 Cn ) (iii) = (iii) = c 1 µ(c 1 ) + c 2 µ(c 2 ) + + c n µ(c n ) = f dµ c) We know that there is an increasing sequence {f n } of non-negative, simple functions converging to f, and that f dµ = lim fn dµ. Thus Problem 4 f dµ = lim f n dµ = b) lim I(f n) (iv) = I(f) a) To prove (i), note that if f i = lim N N i=0 f i is finite, then so is cf i = lim N N i=0 cf i = c lim N N i=0 f i. To prove (ii), note that if f i = lim N N i=0 f i and g i = lim N N i=0 g i are finite, then f i +g i = lim N N i=0 f i +g i lim N N ( f i + g i ) = i=0 f i + g i < b) We need to check the three conditions a norm has to satisfy: (i) f 0 with equality if and only if f = 0: The expression f i is clearly nonnegative, and it is only 0 if all f i are 0, i.e. if f = 0. (ii) cf = c f for all c R and all f X: calculation: cf = cf i = c f i = c f i = c f This is just a simple (iii) f + g f + g for all f, g X: By the triangle inequality for real numbers: f + g = f i + g i ( f i + g i ) = f i + g i = f + g c) We need to show that each f X can be written as a linear combination f = α ie i in a unique way. First observe that f = f(i)e i. (Fortsettes på side 6.)

Eksamen i MAT2400, Onsdag 15. juni 2011. Side 6 To prove this, we have to check that f = lim N N f(i)e i, i.e. lim N f N f(i)e i 0 as N. This is the case since that N f f(i)e i = f i 0 i=n+1 where the last step uses that the series f i converges. To prove uniqueness, observe that if α ie i is another linear combination, then f(i)e i α i e i = f(i) α i > 0 and hence f(i)e i and α ie i cannot converge to the same element. d) We have f e n = i N,i n f i + f n 1 = f i + f n 1 f n f +1 0 = f +1 since f n 0 as n. It follows that for any f X and any subsequence {e nk }, lim k f e nk = f +1 1, and hence {e nk } cannot converge to f. e) That B is not compact, follows from d) since {e n } is a sequence from B that doesn t have a convergent subsequence. B is obviously bounded, and it is closed since the limit of any convergent sequence from B belongs to B (if {f n } is such a sequence with limit f, then f = lim f n 1). B is not totally bounded since any closed and totally bounded set is compact. Problem 5 Since R is complete, it suffices to show that {f(x n )} is a Cauchy sequence; i.e., we must show that for any ɛ > 0 there is an N N such that f(x n ) f(x m ) < ɛ when n, m N. Since f is uniformly continuous, there is a δ > 0 such that f(x) f(y) < δ whenever x, y A and d(x, y) < δ. Since {x n } converges to b, there is an N N such that d(x k, b) < δ 2 for all k N. This means that if n, m N, then d(x n, x m ) d(x n, b) + d(b, x m ) < δ 2 + δ 2 = δ and hence f(x n ) f(x m ) < ɛ as required. For the counterexample, we may, e.g., take X = R, A = (0, 1), and f(x) = 1 x. Then f is continuous on A, { 1 n } converges to 0, but {f( 1 n )} does not converge.