AUDITORIEØVING NR 2 TEP 4105 FLUIDMEKANIKK

Like dokumenter
Slope-Intercept Formula

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt)

Oppgave. føden)? i tråd med

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Side 1 av 5 INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK

REMOVE CONTENTS FROM BOX. VERIFY ALL PARTS ARE PRESENT READ INSTRUCTIONS CAREFULLY BEFORE STARTING INSTALLATION

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

Trigonometric Substitution

GYRO MED SYKKELHJUL. Forsøk å tippe og vri på hjulet. Hva kjenner du? Hvorfor oppfører hjulet seg slik, og hva er egentlig en gyro?

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2

Neural Network. Sensors Sorter

KROPPEN LEDER STRØM. Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal.

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with.

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Side 1 av 6 INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK

Dynamic Programming Longest Common Subsequence. Class 27

Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX)

5 E Lesson: Solving Monohybrid Punnett Squares with Coding

Perpetuum (im)mobile

Endelig ikke-røyker for Kvinner! (Norwegian Edition)

GEF2200 Atmosfærefysikk 2017

Exercise 1: Phase Splitter DC Operation

How Bridges Work Sgrad 2001

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F.

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23

UNIVERSITETET I OSLO

KAMPANJE APK : APK-5: Skifte pakninger mellom turbo og CCDPF

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl.

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Trådløsnett med. Wireless network. MacOSX 10.5 Leopard. with MacOSX 10.5 Leopard

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5)

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

EKSAMENSOPPGAVE I FAG TKP 4105

Windlass Control Panel

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)

The regulation requires that everyone at NTNU shall have fire drills and fire prevention courses.

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

FIRST LEGO League. Härnösand 2012

Databases 1. Extended Relational Algebra

INSTALLATION GUIDE FTR Cargo Rack Regular Ford Transit 130" Wheelbase ( Aluminum )

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Call function of two parameters

Justeringsanvisninger finnes på de to siste sidene.

EN Skriving for kommunikasjon og tenkning

TFY4170 Fysikk 2 Justin Wells

SERVICE BULLETINE

Den som gjør godt, er av Gud (Multilingual Edition)

Emneevaluering GEOV272 V17

Gir vi de resterende 2 oppgavene til én prosess vil alle sitte å vente på de to potensielt tidskrevende prosessene.

Information search for the research protocol in IIC/IID

PARABOLSPEIL. Still deg bak krysset

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO

Page 2 of 3. Problem 1.

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Solution Assignment 10 TEP 4100

Newtons fargeskive. Regnbuens farger blir til hvitt. Sett skiva i rask rotasjon ved hjelp av sveiva.

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

// Translation // KLART SVAR «Free-Range Employees»

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO

INSTALLATION GUIDE FTR Cargo Rack Regular Ford Transit 130" Wheelbase ( Aluminum )

Appendix B, not for publication, with screenshots for Fairness and family background

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Right Triangle Trigonometry

UNIVERSITETET I OSLO

Vekeplan 4. Trinn. Måndag Tysdag Onsdag Torsdag Fredag AB CD AB CD AB CD AB CD AB CD. Norsk Matte Symjing Ute Norsk Matte M&H Norsk

Trådløsnett med Windows XP. Wireless network with Windows XP

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger

Level Set methods. Sandra Allaart-Bruin. Level Set methods p.1/24

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

PATIENCE TÅLMODIGHET. Is the ability to wait for something. Det trenger vi når vi må vente på noe

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

EKSAMENSOPPGAVE I SØK 1002 INNFØRING I MIKROØKONOMISK ANALYSE

Moving Objects. We need to move our objects in 3D space.

Dagens tema: Eksempel Klisjéer (mønstre) Tommelfingerregler

Sensurfrist: 13 *anuar 2013 / Result available: January Hjelpemidler: Skrivesaker, kalkulator, arbeidsmappe med ovinger

Duke Energy Seminar September 3 5, 2008 Concord, NC

Administrasjon av postnummersystemet i Norge Post code administration in Norway. Frode Wold, Norway Post Nordic Address Forum, Iceland 5-6.

HONSEL process monitoring

Right Triangle Trigonometry

Verifiable Secret-Sharing Schemes

NO X -chemistry modeling for coal/biomass CFD

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Exam in Quantum Mechanics (phys201), 2010, Allowed: Calculator, standard formula book and up to 5 pages of own handwritten notes.

Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

The exam consists of 2 problems. Both must be answered. English

Ma Flerdimensjonal Analyse Øving 1

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

GEOV219. Hvilket semester er du på? Hva er ditt kjønn? Er du...? Er du...? - Annet postbachelor phd

Semesteroppgave. Gassturbinprosess

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Gol Statlige Mottak. Modul 7. Ekteskapsloven

Product Facts. Product code example

Ringvorlesung Biophysik 2016

Transkript:

AUDITORIEØVING NR TEP 4105 FLUIDMEKANIKK Høst 016 Utført av: (alle i gruppa) LØSNINGSFORSLAG Oppgave 1 Hvordan kan man finne funksjonen f ( x, y) ut fra uttrykkene f f a, b? x y Svar: Alt 1: Integrere begge og sammenligne. Integrasjon gir f ax F( y) og f by G( x). Begge uttrykkene må gjelde samtidig. Dermed er f ax by C hvor C er en konstant. Alt : Integrere den ene og sett inn i den andre. f ax F( y) som gir f df ax F( y) b F by C. y y dy Oppgave I xx ycp sin (1) pcga I xx ycp sin () hcga Hva menes med punktene CG og CP? Svar: CG: Arealsenter (Center of Gravity) CP: Angrepspunkt (Center of Pressure) y y Hvordan er y-aksen orientert? Svar: Positiv opp mot overflaten langsmed flaten. (Obs: Negativ i formelsamlingen til Irgens) CP x CG Når kan vi bruke den enkleste varianten () i stedet for (1)? Svar: Hvis atmosfæretrykket kanselleres i problemet. Da er forkortes vekk. p CG h og kan CG

Oppgave 3 0 p I kvasi-statiske problemer (stivt legeme bevegelse) kan vi justere tyngdens akselerasjon g til en g eff på to måter. Hvilke? Svar: Konstant akselerasjon a 0 eller konstant rotasjon g vil kunne gi statiske forhold i et relativt system. g eff Og hvordan? g a 0 g z 0 p ( geff a0) 0 p ( g r r ) eff e r Oppgave 4 Vi skal måle lave overtrykk måter. 1. Enkelt U-rør p ned til ca. 1 Pa ved hjelp av væskemanometri på tre p a p p a h Estimer høyden h ved p 1Pa. p 1 Svar: gh p h m g 1000 10. Med brev-vekt O H p a p p a A h A H O Myk slange Vekt

Her er A tverrsnittsarealet av vannbeholderene. Med hvor mange gram øker vekten med ved p 1Pa? p 1 pa Svar: p gh h. Masseøkning: m ha. Anta g g 1Pa 0.01m 1 A 10cm 10cm, da blir masseøkningen m gram. g 3. Med to væsker Hvis arealet A er mye større enn tverrsnittsarealet på U-røret så kan høyden h neglisjeres. Finn H uttrykt ved tetthetsforskjellen og p. Svar: Trykket nede ved der fluidene møtes i venstre kolonne er pb pa p 1 g( x H / ). Trykket ved samme høyde i høyre kolonne er pc pa 1g( h x H / ) gh. Vi har antatt h 0, så likevekt pb pc gir p H. ( 1) g

Exercise 5: Pressure Force Figure 1: Pressure force in water containers. a) The pressure forces against the bottom of the three containers in Figure 1 are all the same. How can the amount of water then be different in the three containers? The pressure force is the hydrostatic force acting normal to the surface and depends on its area and on the local water depth. At the horizontal bottom of all three containers the areas A = π D 4 and pressures P atm + ρgh are the same (h is here the total depth same for the three containers.) When concerning the cylindrical section of the containers we are only interested in the vertical components of the pressure forces. The first container has a completely vertical sides the normal vector at any point on this surface has no horizontal component and therefore does not contribute with any pressure force in the horizontal direction (in fact, the net side wall pressure force is zero. The second container has a larger opening. If we consider the resultant pressure force on the cylindrical section, the vertical pressure force component will point downward the sidewall carries the extra weight due to the large opening. The third container has a narrow opening. The vertical component of the resultant pressure force on the sidewall is thus upward the resulting force on the sidewall is the buoyant force. b) The middle container of Figure 1 is placed on a weight which register its mass to 1 kg exactly. For fun, we stick an index finger 5 cm down into the water of the container. What will the weight register now? You may assume your finger to have a cylindrical shape with a cm cross-sectional area. Use ρ = 1000 kg /m 3, g = 10 m /s. A weight (as the name suggests) registers the force F pushing down on it. When it returns a mass in kg it does so by assuming that the force is gravitational, caused by an object exposed to a fixed gravitational acceleration: m = F/g. We need therefore find the downward force on the weight. When we push a finger into the water we experience a buoyancy force from the water onto the finger: F buoyancy = gρ water V finger = g = 10 m /s 1000 kg /m 3 5 cm cm = 0.1 N. By Newton s 3rd law, an equal but oppositely directed force must then be acting on the water (and weight) from the finger. The new total force acting on the weight F new is then the weight of water and container W water+container plus F buoyancy. We already know the combined weight of the container and water. This was the force registered at the first weighing: The newly registered force is then and the weight will register a mass W water+container = F old = m old g = 1 kg 10 m /s = 10 N. F new = W water+container + F buoyancy = 10.1 N, m new = F new g = 10.1 N = 1.01 kg. 10 m /s (Do not be fooled by the weight/density of the finger itself; the weight of the finger merely reduce the effort with which we must push it down.) 1

Exercise 5: Choosing control volumes Below is a set of problems. Draw the control volumes (CV ) you would use were you to solve them. Discuss amongst yourselves how you would go about solving the problems and explain your choices of CV. You are not required to actually solve the problems presented. Hint: Simen s 5-trinns plan for løsning av kraftlovoppgaver serves as a useful guide. It can be found under Auditorieøvinger on It s Learning. a) Find the mass M that a water jet can hold up. Which of these cases can lift the heaviest mass M and why? Set the control volume 90 on the inlets and the outlets. Don t set any control surfaces up to the walls since the friction and the pressure are not known at these specific locations. The last example (on the right) is the one that is able to lift the heaviest mass because both inlet and outlet momentum flow rates contribute to an upward force. The water jet for that last example generates the largest y-component of ṁ v. b) River over a cube A river flows without friction over a cube fixed on the river bottom. The pressure of the water upstream and downstream the cube is assumed to be hydrostatic. Find the force acting on the cube. A control surface can be set on the bottom of the river because there is no friction force, but only a contact force acting from the cube on the river. Thus, it would also be possible to draw the control volume under the bottom of the river. c) Uniform stream passing a bridge pier An oval bridge pier is installed in a uniform stream. A wake is created behind the bridge pier with a velocity profile which is approximately drawn in the cross section B. The pressures at cross section A and cross section B are the same. Find the force on the bridge pier. 1

Draw the control surfaces along streamlines to avoid the fluxes which are unknown vertically. It is also possible to use the symmetrical properties of this situation and thus use the plane of symmetry as a control surface. In either case, the control surface should cut the bridge pier in the pier s interior. The opposite of the contact force from the bridge pier on the water yields the force from the water on the bridge pier. d) Air-cushion vehicle An air-cushion vehicle is hold up by keeping a constant overpressure p under its flexible cover. Find the power that the motor has to deliver to lift the mass M of the vehicle. The control surfaces should be in contact with the cover of the vehicle. But CS should not be in contact with the ground, otherwise you would basically find that the vehicle is carried by the ground. e) Air between two plates Air is injected between two circular plates. The pressure between the plates gets lower than the ambient pressure so that the lower plate can lift a mass M. Find M. As in the first situation, the control surfaces are 90 on the inlet and outlets and should also pass through the mass to take it into account. We make sure that the CV lies just below the upper plate so that it feels the pressure suction force inside the horizontal channel and does not feel the stretching force exserted on the vertical pipe. We would here typically assume frictionless, incompressible flow and use the Bernoulli and mass conservation equations to gain an expression for the underpressure as a function of the volume flow rate. This suction should then balance the mass weight and convection force from above. f) Friction force in a pipe A fluid with uniform speed enters a pipe. Because of friction, the velocity profile changes to become as u(r). Given a pressure P A at point A and P B at point B, find the friction force on the inner surface of the pipe. The contact force is equal to the friction force, which we do not know in detail. Therefore, we cannot integrate along the inner surface of the pipe. However, the contact force can be determined by the net momentum flow rate.