Motzkin monoids. Micky East. York Semigroup University of York, 5 Aug, 2016

Like dokumenter
Moving Objects. We need to move our objects in 3D space.

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

Graphs similar to strongly regular graphs

Verifiable Secret-Sharing Schemes

Existence of resistance forms in some (non self-similar) fractal spaces

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2

Slope-Intercept Formula

Dynamic Programming Longest Common Subsequence. Class 27

Exercise 1: Phase Splitter DC Operation

Oppgave. føden)? i tråd med

Estimating Peer Similarity using. Yuval Shavitt, Ela Weinsberg, Udi Weinsberg Tel-Aviv University

SVM and Complementary Slackness

UNIVERSITETET I OSLO

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ.

Trigonometric Substitution

UNIVERSITETET I OSLO

Stationary Phase Monte Carlo Methods

Databases 1. Extended Relational Algebra

Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet.

Level-Rebuilt B-Trees

Neural Network. Sensors Sorter

Trust region methods: global/local convergence, approximate January methods 24, / 15

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Kartleggingsskjema / Survey

Splitting the differential Riccati equation

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt)

Ma Linær Algebra og Geometri Øving 5

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

REMOVE CONTENTS FROM BOX. VERIFY ALL PARTS ARE PRESENT READ INSTRUCTIONS CAREFULLY BEFORE STARTING INSTALLATION

UNIVERSITETET I OSLO

Lie 2-Groups, Lie 2-Algebras, and Loop Groups

INSTALLATION GUIDE FTR Cargo Rack Regular Ford Transit 130" Wheelbase ( Aluminum )

The regulation requires that everyone at NTNU shall have fire drills and fire prevention courses.

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN

Windlass Control Panel

INSTALLATION GUIDE FTR Cargo Rack Regular Ford Transit 130" Wheelbase ( Aluminum )

Level Set methods. Sandra Allaart-Bruin. Level Set methods p.1/24

Generalization of age-structured models in theory and practice

The representation theory of cyclotomic Temperley Lieb algebras

Disjoint Sets. Chapter 21. CPTR 430 Algorithms Disjoint Sets 1

MID-TERM EXAM TDT4258 MICROCONTROLLER SYSTEM DESIGN. Wednesday 3 th Mars Time:

GYRO MED SYKKELHJUL. Forsøk å tippe og vri på hjulet. Hva kjenner du? Hvorfor oppfører hjulet seg slik, og hva er egentlig en gyro?

INF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen

Smart High-Side Power Switch BTS730

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

KROPPEN LEDER STRØM. Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal.

STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD

Start Here USB *CC * *CC * USB USB

Evaluating Call-by-need on the Control Stack

EN Skriving for kommunikasjon og tenkning

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with.

IN2010: Algoritmer og Datastrukturer Series 2

TB-615 / TB-617 Wireless slim keyboard. EN User guide SE Användarhandledning FI Käyttöohje DK Brugervejledning NO Bruksanvisning

Right Triangle Trigonometry

buildingsmart Norge seminar Gardermoen 2. september 2010 IFD sett i sammenheng med BIM og varedata

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

TRAPPETA RN MONTERINGSANVISNING


UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Søker du ikke om nytt frikort/skattekort, vil du bli trukket 15 prosent av utbetalingen av pensjon eller uføreytelse fra og med januar 2016.

Continuity. Subtopics

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

AvtaleGiro beskrivelse av feilmeldinger for oppdrag og transaksjoner kvitteringsliste L00202 levert i CSV fil

PARABOLSPEIL. Still deg bak krysset

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

5 E Lesson: Solving Monohybrid Punnett Squares with Coding

TMA4245 Statistikk. Øving nummer 12, blokk II Løsningsskisse. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

Issues and challenges in compilation of activity accounts

Improving Customer Relationships

Right Triangle Trigonometry

3/1/2011. I dag. Recursive descent parser. Problem for RD-parser: Top Down Space. Jan Tore Lønning & Stephan Oepen

Eksamensoppgave i TMA4265 Stokastiske prosesser

1 Øvelse Dynamic Mercy 1 Exercise Dynamic Mercy

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5)

OTC USE IN NORWAY FOR PARACETAMOL, ATC-CODE: N02BE01

SmartPass Mini User Manual BBNORGE.NO

ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems

RF Power Capacitors Class1. 5kV Discs

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Medisinsk statistikk, KLH3004 Dmf, NTNU Styrke- og utvalgsberegning

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Den som gjør godt, er av Gud (Multilingual Edition)

NRF Full 2012 Schedule

Software applications developed for the maritime service at the Danish Meteorological Institute

Ringvorlesung Biophysik 2016

2018 ANNUAL SPONSORSHIP OPPORTUNITIES

Resolvable Mendelsohn Triple Systems with Equal Sized Holes F. E. Bennett Department of Mathematics Mount Saint Vincent University Halifax, Nova Scoti

1. Explain the language model, what are the weaknesses and strengths of this model?

FASMED. Tirsdag 21.april 2015

Utsatt eksamen ECON2915


Numerical Simulation of Shock Waves and Nonlinear PDE

Call function of two parameters

Transkript:

Micky East York Semigroup University of York, 5 Aug, 206

Joint work with Igor Dolinka and Bob Gray 2

Joint work with Igor Dolinka and Bob Gray 3

Joint work with Igor Dolinka and Bob Gray 4

Any questions? Given a semigroup S: What is rank(s) = min { A : A S, S = A }? Is S idempotent-generated? If so, what is idrank(s) = min { A : A E(S), S = A }? Does idrank(s) = rank(s)? If not, what is E(S) = E(S)? What is rank(e(s))? idrank(e(s))? Are these equal? Can we enumerate minimal (idempotent) generating sets? Ditto for the ideals of S? 5

Transformation semigroups Full transformation semigroup Let T n be the set of all transformations of n = {,..., n}. T n is the full transformation semigroup of degree n. T n contains the symmetric group S n. Any finite group G embeds in S G. Any finite semigroup S embeds in T S +. For f T n and x n, write xf instead of f (x). For f, g T n, write fg = f g (do f first). 6

Transformation semigroups Anatomy of a transformation For f T n, define im(f ) = {xf : x n} the image of f, ker(f ) = {(x, y) : xf = yf } the kernel of f, rank(f ) = im(f ) = n/ ker(f ) the rank of f. For f = T 8 : im(f ) = {2, 4, 6, 7, 8}, ker(f ) = (, 2, 3 4, 5 6 7 8 ), rank(f ) = 5. 7

Transformation semigroups 4 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 Same box equal rank. Same column equal image. Same row equal kernel. Same cell equal image and kernel. A cell with a rank r idempotent (f = f 2 ) is a subgroup isomorphic to S r. f T n is idempotent f im(f ) = id im(f ). 2 2 2 2 2 2 2 2 2 2 2 f = T 8 is idempotent. 2 2 2 T 4 E(T n ) = {f T n : f = f 2 }. E(T n ) = n r= ( n r) r n r. 8

Transformation semigroups 4 3 3 3 3 3 3 3 3 3 3 3 3 D r = D r (T n ) = {f T n : rank(f ) = r}. I r = I r (T n ) = {f T n : rank(f ) r}. D n = S n. I n = T n. I n = T n \ S n. Theorem (Howie and others, 966 ) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 T n \ S n is idempotent-generated. rank(t n \ S n ) = ( ) n 2 = n(n ) 2 = idrank(t n \ S n ). I I 2 I n are the ideals of T n. I r = D r = E(D r ) for r < n. rank(i r ) = S(n, r) = idrank(i r ) for < r < n. T 4 9

Transformation semigroups Theorem (Howie and McFadden, 978) T n \ S n = E(D n ). E(D n ) = {e ij, e ji : i < j n}. e 47 = e 74 = {minimal idempotent generating sets of T n \ S n } {strongly connected tournaments on n}. 5 2 4 3 Theorem (Wright, 970) T 5 \ S 5 = 0 e2,e 3,e 4,e 5,e 32, e 24,e 25,e 43,e 53,e 45

Full linear monoids Theorem (Gray, 2008) M n (F q ) = semigroup of all n n matrices over F q. D r = D r (M n (F q )) = {A M n (F q ) : rank(a) = r}. I r = I r (M n (F q )) = {A M n (F q ) : rank(a) r}. I r = D r = E(D r ) for 0 r < n. rank(i r ) = idrank(i r ) = [ n r ] q for 0 r < n. rank(m n (F q ) \ G n (F q )) = idrank(m n (F q ) \ G n (F q )) = qn q Erdos, 967; Dawlings, 982.

Green s relations For a semigroup S: x R y xs = ys x L y S x = S y x J y S xs = S ys H = R L D = R L = J if S finite Eggbox diagram: D-related elements in same box R-related elements in same row L -related elements in same column H -related elements in same cell 2

Green s relations T n 4 f R g ker(f ) = ker(g) 3 3 3 3 3 3 3 3 3 3 f R= b g a 3 3 2 2 2 2 2 2 f = ga g = fb 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 T 4 3

Green s relations T n 4 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 f R g ker(f ) = ker(g) f L g im(f ) = im(g) f D g rank(f ) = rank(g) group H -classes are isomorphic to S r D-classes are D r = {f T n : rank(f ) = r} D r contains ( n r) L -classes D r contains S(n, r) R-classes 2 2 2 2 2 2 2 2 2 2 2 T 4 D r = ( n r) S(n, r)r! T n = n r= D r n n = n r= ( n r) S(n, r)r! 3

Green s relations M n (F q ) 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 A R B Col(A) = Col(B) A L B Row(A) = Row(B) A D B rank(a) = rank(b) group H -classes are isomorphic to GL(r, F q ) D-classes are D r = {A M n (F) : rank(a) = r} 0 M 3 (F 2 ) D r contains [ n r ] q L -classes (and R-classes) q n2 = n r=0 [ n r ] 2 q q(r 2) (q ) r [r] q! Note For T n and M n (F q ), rank(i r ) = idrank(i r ) is equal to the maximum of the number of R- or L -classes in D r. 4

Partition monoids Let n = {,..., n} and n = {,..., n }. The partition monoid on n is P n = { set partitions of n n } { (equiv. classes of) graphs on vertex set n n }. Eg: α = { {, 3, 4 }{, 3, 4 }, {2, 4}{2, 4}, {5, 6,, 6 }{5, 6,, 6 }, {2, 3 }{2, 3 P 6 2 3 4 5 6 } n } n 2 3 4 5 6 5

Partition monoids product in P n Let α, β P n. To calculate αβ: () connect bottom of α to top of β, (2) remove middle vertices and floating components, (3) smooth out resulting graph to obtain αβ. { α { β 2 3 } αβ The operation is associative, so P n is a semigroup (monoid, etc). 6

Partition monoids submonoids of P n B n = {α P n : blocks of α have size 2} Brauer monoid TL n = {α B n : α is planar} Temperley-Lieb monoid PB n = {α P n : blocks of α have size 2} partial Brauer monoid M n = {α PB n : α is planar} Motzkin monoid B 6 PB 6 TL 6 M 6 7

Green s relations diagram monoids P 4 PB 4 M 4 B 4 TL 4 8

Green s relations diagram monoids For α P n : dom(α) = {i n : the α-block of i intersects n } ker(α) = {(i, j) : i and j belong to the same α-block} codom(α) = {i n : the α-block of i intersects n} coker(α) = {(i, j) : i and j belong to the same α-block} rank(α) = number of transversal α-blocks For α = P 8 : dom(α) = {, 2, 3, 5} ker(α) = (, 2, 3 4, 7 ) rank(α) = 2 codom(α) = {3, 4, 7} coker(α) = (, 2 3, 4 6, 8 ) 9

Green s relations P n α D β rank(α) = rank(β) { dom(α) = dom(β) and α R β ker(α) = ker(β) { codom(α) = codom(β) α L β coker(α) = coker(β) and Group H -classes are isomorphic to S r P 6 P 4 20

Green s relations B n α D β rank(α) = rank(β) α R β ker(α) = ker(β) α L β coker(α) = coker(β) Group H -classes are isomorphic to S r Ranks are restricted to n, n 2, n 4,... B 6 B 4 2

Green s relations TL n α D β rank(α) = rank(β) α R β ker(α) = ker(β) α L β coker(α) = coker(β) Group H -classes are trivial Ranks are restricted to n, n 2, n 4,... TL 6 TL 4 22

Green s relations PB n α D β rank(α) = rank(β) { dom(α) = dom(β) and α R β ker(α) = ker(β) { codom(α) = codom(β) α L β coker(α) = coker(β) and Group H -classes are isomorphic to S r PB 6 PB 4 23

Green s relations M n α D β rank(α) = rank(β) { dom(α) = dom(β) and α R β ker(α) = ker(β) { codom(α) = codom(β) α L β coker(α) = coker(β) and Group H -classes are trivial M 6 M 4 24

Green s relations TL8 TL 25

Green s relations TL 5 TL 7 Thanks to Attila Egri-Nagy for these... 26

Green s relations PB 5 27

Green s relations PB 5 28

Green s relations M 5 29

Idempotent generators P n Theorem (E, 20) P n \ S n is idempotent generated. P n \ S n = t r, t ij : r n, i < j n. t r = r n t ij = i j n rank(p n \ S n ) = idrank(p n \ S n ) = ( ) n+ 2 = n(n+) 2. Defining relations also given. 30

Idempotent generators P n \ S n Minimal (idempotent) generating sets (E and Gray, 204). 5 2 5 25 2 4 3 45 35 24 23 4 34 3 P 5 \ S 5 = t 2, t 3, t 5, t 24, t 34, t 45, t 4, e 4, f 4, e 23, f 23, e 35, f 35, e 52, f 52. 3

Idempotent generators B n Theorem (Maltcev and Mazorchuk, 2007) B n \ S n is idempotent generated. B n \ S n = u ij : i < j n. u ij = i j n rank(b n \ S n ) = idrank(b n \ S n ) = ( ) n 2 = n(n ) 2. Defining relations also given. 32

Idempotent generators B n \ S n Minimal (idempotent) generating sets (E and Gray, 204). 5 2 25 4 3 45 35 24 23 34 33

Idempotent generators TL n Theorem (Borisavljević, Došen, Petrić, 2002, etc) TL n is idempotent generated. TL n = u,..., u n. u i = i n rank(tl n ) = idrank(tl n ) = n. 2 23 34 45 34

Idempotent generators E(PB n ) = E(PB n ) PB 5 PB 5 \ S 5!E(PB 5 ) PB 5 \ S 5! 35

Idempotent generators E(PB n ) = E(PB n ) PB 5 E(PB 5 ) PB 5 \ S 5! 36

Idempotent generators E(PB n ) = E(PB n ) PB 5 E(PB 5 ) PB 5 \ S 5! 37

Idempotent generators E(PB n ) = E(PB n ) E(PB 7 ) 38

Idempotent generators E(PB n ) = E(PB n ) Theorem (Dolinka, E, Gray, 205) E(PB n ) = {} {t r : r n} I r 2 (PB n ) E(PB n ) = t r, u ij : r n, i < j n. t r = r n u ij = i j n rank(e(pb n )) = idrank(e(pb n )) = ( ) n+ 2 = n(n+) 2. 39

Idempotent generators E(M n ) = E(M n ) M 5 E(M 5 ) 40

Idempotent generators E(M n ) = E(M n ) M 5 E(M 5 ) 4

Idempotent generators E(M n ) = E(M n ) A n is cosparse if: i n \ A i + A. Theorem (Dolinka, E, Gray, 205) E(M n ) = {} {id A : A n cosparse} {α M n : dom(α) and codom(α) non-cosparse} E(M n ) = t,..., t n, u,..., u n, v,..., v n 2. t i = i n u j = j n v k = k n rank(e(m n )) = idrank(e(m n )) = 3n 3. 42

Idempotent generators E(M n ) = E(M n ) M 5 E(M 5 ) 43

Ideals P n Theorem (E and Gray, 204) The ideals of P n are I r = I r (P n ) = {α P n : rank(α) r} for 0 r n. I r = D r = E(D r ) for 0 r < n, where D r = {α P n : rank(α) = r}. rank(i r ) = idrank(i r ) = n j=r S(n, j)( j r). P 4 44

Ideals B n Theorem (E and Gray, 204) The ideals of B n are I r = I r (B n ) = {α B n : rank(α) r} for 0 r = n 2k n. I r = D r = E(D r ) for 0 r < n, where D r = {α B n : rank(α) = r}. rank(i r ) = idrank(i r ) = n! 2 k k!r!. B 4 45

Ideals TL n Theorem (E and Gray, 204) The ideals of TL n are I r = I r (TL n ) = {α TL n : rank(α) r} for 0 r = n 2k n. I r = D r = E(D r ) for 0 r < n, where D r = {α TL n : rank(α) = r}. ). rank(i r ) = idrank(i r ) = r+ n+ ( n+ k TL 4 46

Ideals PB n Theorem (Dolinka, E, Gray, 205) The ideals of PB n are I r = I r (PB n ) = {α PB n : rank(α) r} for 0 r n. I r = D r D r for 0 r < n = D r iff r = 0 or r n (mod 2) rank(i r ) = ( n r ) (n r)!! + ( n r) a(n r), where a(k) = number of involutions of k. I r is idempotent-generated iff r n 2. PB 4 idrank(i r ) = rank(i r ) where appropriate. 47

Ideals M n Theorem (Dolinka, E, Gray, 205) The ideals of M n are I r = I r (M n ) = {α M n : rank(α) r} for 0 r n. I r = D r D r for 0 r < n. rank(i r ) = m(n, r) + m (n, r), Motzkin and Riordan numbers. I r is idempotent-generated iff r < n 2. rank(e(i r )) = idrank(e(i r )) = rank(i r ) for 0 r n 2. M 4 48

Motzkin triangle A06489 m(n, r) = number of Motzkin paths from (0, 0) to (n, r) stay in st quadrant, use steps U(, ), D(, ), F (, 0) m(4, 0) = 9: m(0, 0) =, m(n, r) = 0 if (n, r) out-of-bounds m(n +, r) = m(n, r ) + m(n, r) + m(n, r + ) 49

Motzkin triangle A06489 6 5 20 4 4 44 3 9 25 69 2 5 2 30 76 2 4 9 2 5 m(0, 0) =, m(n, r) = 0 if (n, r) out-of-bounds m(n +, r) = m(n, r ) + m(n, r) + m(n, r + ) 50

Riordan triangle A097609 m (n, r) = number of Motzkin paths from (0, 0) to (n, 0) with r flats at level 0. m (0, 0) =, m (n, r) = 0 if (n, r) out-of-bounds m (n +, r) = m (n, r ) + m (n, r + ) + + m (n, n) 0 0 5 0 4 4 0 3 3 2 0 2 2 7 4 0 3 6 5 5

Riordan triangle A097609 m (n, r) = number of Motzkin paths from (0, 0) to (n, 0) with r flats at level 0. m (0, 0) =, m (n, r) = 0 if (n, r) out-of-bounds m (n +, r) = m (n, r ) + m (n, r + ) + + m (n, n) 0 0 5 0 4 4 T H A N K 0 Y O U 4 0!! 6 5 5

Special thanks to the York Maths Dept! 52