Øving 2 - Laplacetransform II - LF

Like dokumenter
1 Introduction. Let f(t) be a given function which is defined for all positive values of t, if. F(s) = A 0. Ae -st f(t) dt. L{f(t)} = F(s) = A 0

Slope-Intercept Formula

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with.

UNIVERSITETET I OSLO

Trigonometric Substitution

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt)

TMA4329 Intro til vitensk. beregn. V2017

Moving Objects. We need to move our objects in 3D space.

GEF2200 Atmosfærefysikk 2017

Solutions to selected problems from Exercise 5

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl.

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5)

Løsningsførslag i Matematikk 4D, 4N, 4M

Nynorsk / Bokmål / Engelsk NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK. Eksamen TFY4190 Instrumentering

CHAPTER. Differential Equations. x( ) ( ) ( ) ( ) ( ) 4.1 The Harmonic Oscillator. The Undamped Oscillator = 1, ( ) , x ( 0)

Øving 5 - Fouriertransform - LF

Stationary Phase Monte Carlo Methods

KROPPEN LEDER STRØM. Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal.

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)

Neural Network. Sensors Sorter

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ.

Second Order ODE's (2P) Young Won Lim 7/1/14

Trust region methods: global/local convergence, approximate January methods 24, / 15

32.2. Linear Multistep Methods. Introduction. Prerequisites. Learning Outcomes

Exercise 1: Phase Splitter DC Operation

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F.

Generalization of age-structured models in theory and practice

Eksamensoppgave i TFY4190 Instrumentering

SVM and Complementary Slackness

EKSAMENSOPPGAVE I SØK 1002 INNFØRING I MIKROØKONOMISK ANALYSE

Endelig ikke-røyker for Kvinner! (Norwegian Edition)

Eksamen i TMA4190 Mangfoldigheter Onsdag 4 juni, Tid :

Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX)

Continuity. Subtopics

Ma Flerdimensjonal Analyse Øving 11

Dynamic Programming Longest Common Subsequence. Class 27

FIRST LEGO League. Härnösand 2012

TMA4240 Statistikk 2014

Databases 1. Extended Relational Algebra

TMA4240 Statistikk Høst 2013

Solution for INF3480 exam spring 2012

Probabilistic interpretation for systems of Isaacs equations with two reflecting barriers

UNIVERSITETET I OSLO

ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger

MA2501 Numerical methods

FYS2140 Kvantefysikk. Løsningsforslag for Oblig 7

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

PARABOLSPEIL. Still deg bak krysset

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

5 E Lesson: Solving Monohybrid Punnett Squares with Coding

Gir vi de resterende 2 oppgavene til én prosess vil alle sitte å vente på de to potensielt tidskrevende prosessene.

Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

Eksamensoppgave i TFY4190 Instrumentering

Løsning til deleksamen 2 i SEKY3322 Kybernetikk 3

Besvar tre 3 av følgende fire 4 oppgaver.

INF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen

PHIL 102, Fall 2013 Christina Hendricks

Oppgave 1. Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk EKSAMEN I: MNFFY 245 INNFØRING I KVANTEMEKANIKK

Christmas in the round A Holiday Prism for Band. Preview Only

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

GEOV219. Hvilket semester er du på? Hva er ditt kjønn? Er du...? Er du...? - Annet postbachelor phd

The internet of Health

Eksamensoppgave i SØK3001 Økonometri I

(s + 1) 4 + 2(s + 1)

Trådløsnett med Windows XP. Wireless network with Windows XP

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

TFY4170 Fysikk 2 Justin Wells

The regulation requires that everyone at NTNU shall have fire drills and fire prevention courses.

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Samlede Skrifter PDF. ==>Download: Samlede Skrifter PDF ebook

Medisinsk statistikk, KLH3004 Dmf, NTNU Styrke- og utvalgsberegning

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Right Triangle Trigonometry

TMA4245 Statistikk Eksamen 9. desember 2013

TEKSTER PH.D.-KANDIDATER FREMDRIFTSRAPPORTERING

Information search for the research protocol in IIC/IID

Oppgave. føden)? i tråd med

eutdanningsdirektoratet Eksamen ENG1002/ENG1003 Engelsk fellesfag For elevar og privatistar/for elever og privatister Nynorsk/Bokmal

Right Triangle Trigonometry

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Splitting the differential Riccati equation

EKSAMENSOPPGAVE I BI2034 Samfunnsøkologi EXAMINATION IN: BI Community ecology

Vekeplan 4. Trinn. Måndag Tysdag Onsdag Torsdag Fredag AB CD AB CD AB CD AB CD AB CD. Norsk Matte Symjing Ute Norsk Matte M&H Norsk

Newtons fargeskive. Regnbuens farger blir til hvitt. Sett skiva i rask rotasjon ved hjelp av sveiva.

ENGELSK. 1. Vi registrerer hjerterytmen din. We are measuring your heart rate. 2. Vi måler blodtrykket ditt. We are measuring your blood pressure.

PATIENCE TÅLMODIGHET. Is the ability to wait for something. Det trenger vi når vi må vente på noe

Norsk (English below): Guide til anbefalt måte å printe gjennom plotter (Akropolis)

UNIVERSITETET I OSLO

Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

Eksamensoppgave i TMA4135 Matematikk 4D

Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener.

Transkript:

Øving - Laplaceranform II - LF Jon Vegard Venå, Tai Terje Huu Nguyen Obligaorike oppgaver See he Lecure noe Malab: clear %e oving.m hvi du lurer paa noe her [-pi:.:pi]; fheaviide; plo,f axi[-pi pi - ] Pyhon: impor numpy a np impor maplolib.pyplo a pl N #-aken np.linpace-np.pi,np.pi,numn # de andre argumene er funkjonverdien for x. f np.heaviide, #lage plo av funkjonen pl.plo,f #korrek uni pl.axi[-np.pi,np.pi,-,] # navn paa akene pl.xlabelr'$x$' pl.ylabelr'$y$' #vie plo pl.how 3 a Taking he Laplace ranform of y + 4y + 5y δ yield Y y y + 4 Y y + 5Y e. Wih he iniial condiion y and y 3 we have Y 3 + 4Y + 5Y e uch ha Y e + 3 + 4 + 5 3 + + e +

Taking he invere Laplace ranform uing -hifing, -hifing and a andard able of Laplace ranform link y 3e in + e in u b Taking he Laplace ranform of y + 5y + 6y δ π + u π co δ π u π co π yield Y y y + 5 Y y + 6Y e π/ e π +. Wih he iniial condiion y and y we have uch ha Y + 5Y + 6Y e π/ e π + Y e π/ + 5 + 6 e π + + 5 + 6. Uing parial fracion expanion we ge + 5 + 6 + + 3 and + 5 + 6 + + 5 + 6 A + B + + A + + B A + B + 3A + B { + 3 + 5 + 6 A + B 3A + B A, B C + + D + 3 A + B C + D + 3C + D + + + 5 + 6 B + C + D3 + A + 5B + 3C + D + 5A + 6B + C + D + 6A + 3C + D + + 5 + 6 B + C + D A + 5B + 3C + D 5A + 6B + C + D 6A + 3C + D A, B, C 5, D 3. Hence, Y + + 3 + + 3 e π/ e π/ + + 5 + + 3 + 3 + + e π + 4 + + 3 + 3 e π

Taking he invere Laplace ranform uing -hifing and a able of Laplace ranform y e π/ e 3 π/ u π in π + co π 4e π + 3e 3 π u π e π/ e 3 π/ u π + in + co + 4e π 3e 3 π u π c We have L {y } d d Y y Y Y and uing y L {y } d Y y y Y Y +. d Taking he Laplace ranform of he ODE herefore yield Y Y + + Y + Y + Y Y + Y. From earlier coure we know ha we can olve hi fir order ODE uing inegraing facor which i in hi cae. Muliplicaion by he inegraing facor yield Y + Y d d Y Y + C Y + C for ome conan C. Taking he invere ranform y + C. Since y we have C. The oluion of he iniial value problem i herefore y +. d Noe ha we can wrie he inegral equaion in he form y y g wih g. Uing he convoluion heorem and he infamou able we ge Y Y 3 Y,

and by parial fracion expanion we ge Hence, A + B + C + A A + B + C + B C A A + B + C B C A A, B, C. Y + + +. Taking he invere Laplace ranform look here yield y + e + e + coh. + B + C + B C Anbefale oppgaver See he Lecure noe a We wrie + +. Hence: L + b We wrie ++ L + + Tha i L ++ L L + + in. + + + +. Hence, uing alo -hifing: L + e. L + e e. c We wrie: + + : F G, where we recognize ha F and + G are Laplace ranform of ome known funcion: F Lco and G Lin. Thu by he convoluion formula: L + co in. 3

By definiion of he convoluion, we ge: Now, we have: and co in in coτ in τ dτ coτ in coτ inτ co dτ co τ dτ co coτ + in dτ co inτ in + τ co 4 coτ inτ dτ inτ dτ coτ 4 in in + in + co co co. 4 in in in co 5 co co co co co co in 6 and hence i follow ha only he erm in i lef. Tha i: L + in. 7 d We wrie 3 5. Now recall ha, if h 3 5 m m, hen Lh m m! m+ m N {}. We ake m 4 o ha m + 5. Then we ee ha Lh 4 4! Conidering hi and -hifing, we conclude ha: when 4. 5 5 L 3 5 4 e3 4. 8 3 a We fir recall he -hifing formula. Le θ a be he funcion defined o be given by θ a u a. Tha i he uni-ep funcion a a. We conider Lθ a f for ome general funcion f whoe Laplace ranform exi. Then by definiion: Lθ a f a e θ a f d e u af d e f d. 9 The la equaliy follow becaue u a for < a and i equal o when > a. Thi i by definiion. Now, le u change variable. We define x : a. Then x run from x o x. Moreover dx d and x + a. Subiuing hi, we find: Lθ a f e x+a fx + a dx e a e x fx + a dx.

Now, le u define f a o be he funcion uch ha f a x fx + a. The inegral on he righ-hand ide i hen by definiion Lf a. Hence we conclude ha: Lθ a f e a Lf a. A perhap more familiar way of wriing hi, o ha he Laplace ranform of f appear on he righ-hand ide i hen: Uing he noaion in he book, hi i: Lθ a f a e a Lf. Lu af a e a Lf. 3 We now conider he Laplace ranform of f from he exercie. Tha i, of f, where f θ θ π co. According o he formula we derived above, we have: Lθ co e Lco + Similarly, from he formula above, we have wih a π: Thu we finally have: Lco +. 4 Lθ π co e π Lco + π e π L co e π +. 5 Lf + + e π + + e π. 6 + To draw he graph of f, we conider how u u π behave like for differen value of. Noe ha for < boh erm u and u π are zero, o he whole expreion i. When < < π, u while u π. Hence he whole expreion i equal o. Finally for > π, u and u π. So he whole expreion i again zero. Thu he only place i i non-zero, in which cae i i equal o, i when, π. Thu he graph of f i he graph of co for, π and zero elewhere. b We ue he -hifing formula. Le h. We ge: We have h a + a + a + a. Hence: Lθ a h e a Lh a. 7 and hence: Lh a L + a + a 3 + a + a 8 Lθ a h e a 3 + a + a. 9

A for he graph of θ a h, we ue he definiion of θ a and h. I follow ha θ a h for < a and i equal o h for > a. c Perhap he imple way o olve hi exercie i o look a he graph of f given below wih a π and ee ha i alernae beween and in inerval of lengh a. Thu we can pli he inegral in he Laplace ranform o ge Lf ai+ i e d i i ai i i e ai+ e ai i e ai e a i i[ e ] ai+ ai e a e a i. i Now, ince boh and a are poiive, e a <, o we can ue he formula for a geomeric erie o obain e a i e a i e a e a + e a e a anha/ Noe: When we olve hi exercie we aume ha we can change he order of inegraion and ummaion. In general, for infinie um, hi canno be done. In our cae hi i poible, ince e i u ia d i + N e N i u ia i i u ia d in i + N in i + Na in e i u ia d i e u ia d e i u ia d i e u ia d.

A i u ia i bounded by, we ge he bound i e u ia d i e u ia d Na in Na in Na in which converge o zero when N ince e become very mall. e d, 3 4 a We ake he Laplace ranform on boh ide and ue he iniial condiion Y y y +Y e π }{{}}{{}. We collec he erm uing he flye-bye rule Y e π + }{{} :F e π + We noe ha he invere Laplace ranform of F i f co, and uing -hifing we ge y co πu π. b We ake he Laplace ranform on boh ide and ue ha Lf g LfLg. We e Ly : Y and recall Lh where h. Then we ge afer aking Laplace ranform on boh ide of he given equaion: Y Y. 4 Tha i: Y Y. 5 Tha i, for >, we obain: Hence y inh. Y. 6 5 The RLC-circui i governed by he following inegro-differenial equaion where in our cae v Li + Ri + C { 34e < < 4 oherwie iτ dτ v 7 34e u 4 34e 34e 4 e 4 u 4.

The Laplace ranform of hi expreion i given by uing -hifing and a andard able of Laplace ranform V L {v} 34 + 34e 4 e 4 + 34 e 4 4. + Equaing hi reul wih he Laplace ranform of he lef hand ide of 7, we obain uing Laplace ranform of derivaive and Laplace ranform of inegral Thu, 34 e 4 4 L + { Li + Ri + C L I i + RI + C I + 4I + I I Uing parial fracion expanion we ge 34 e 4 4 + + 4 +. 34 + + 4 + A + + B + D + 4 + Hence, I + + + } iτ dτ I + 4 + I. A + D + 4A + B + D + A + B + + 4 + A + D 4A + B + D 34 A + B A, B 4, D. 4 + e 4 4 + 4 + + 4 + 9 4 + 4 e 4 e 4. The invere Laplace ranform of hi funcion yield he final reul uing -hifing, -hifing and andard able of Laplace ranform i e + e co 4 + 9e in 4 u 4e 4 e 4 + e 4 co[4 4] + 9e 4 in[4 4] e + e co 4 + 9 in 4 u 4 e + e co[4 4] + 9 in[4 4]. Nø a We fir recall he definiion of he Gamma funcion Γ i i alo aed in he exercie: Γx + z x e z dz. 8

Le h n be he funcion uch ha h n n. Then by definiion of he Laplace ranform of h n, we have: Lh n n e d. 9 We ue a change of variable. Se x :. Then, for >, x and d dx. Alo x run from o. Subiuing hi, we ge ha: Lh n x n e x dx n+ b We fir how Γx + xγx. By definiion we have: Γx + We ue inegraion by par, which hen yield: x n e x dx Γn + n+. 3 y x e y dy. 3 Γx + y x e y + x y x e y dy xγx where he la equaliy follow from he definiion of Γx and he fac ha lim y y x e y. Obervaion: noe ha Γ e y dy and hence in he cae n N, i follow by hi formula and by inducion ha Γn + n!. In order o calculae Γ k+ noe ha Γ k+ Γ k +. From hi and he formula we ju proved Γx + xγx, i follow by inducion ha Γk + / Γk + / + Γ/ k j j + /, when k. Here k j g j for ome quaniie g,..., g k, imply mean g g g k ; ha i, he produc of all hee quaniie. Γ3/ Γ + / Γ/ Γ5/ Γ + / Γ + 3/ 3 Γ/ Γ7/ Γ3 + / Γ + 5/ 5 3 Γ/ Γ9/ Γ4 + / Γ + 7/ 7 5 3 Γ/ For he cae k, hi reduce immediaely o Γ/. Hence we will need o know how o calculae Γ/ in order for hi o be ueful. We do hi in d below. c By definiion, we have: Γ/ x / e x dx. 3 We ue a change of variable. Se u : x. Then u run from o and dx u du. Subiuing hi, we herefore have: Γ/ e u du. 33

d We conider he inegral e x dx. Thi i he claical Gau inegral. I ha imporan applicaion in many area, for inance in aiic where i appear in relaion wih e x +y dx dy. he normal diribuion. Denoe he inegral by I. Then we have I We now change coordinae o polar coordinae, eing x + y r and dx dy r dr dθ. Noe ha he inegraion area i over he whole fir quadran in R. Tha i θ, π/ and r,. Thu we find: I π/ e r r dr dθ π e u du π 4 34 and hence I du dr. π. In he econd equaliy we have ued he ubiuion u : r giving e We fir noe ha by combining c and d we have Γ/ π. We expand he exponenial, uing he ideniy: Taking z p we hu ge: e z n z n n!. 35 e p n p n. 36 n! n Thi i a power erie wih infinie radiu of convergence i converge for all p, and o from calculu we know ha we can inegrae erm-wie over all of R for hoe familiar wih he erm: we can do hi becaue he erie converge uniformly a we know from he heory of power erie; c.f Abel lemma. Hence inegraing erm-wie we find: e p dp n p n dp n! n n n n n! p n dp n n!n + n+/ 37 / 3/ 3 + 5/ 7/ + 5! 7 3! Now we wan o ake he Laplace ranform of he above erie, and alo here move he inegral inide he um:

L n n n!n + n+/ n n n!n + L n+/. 38 From a we know he Laplace ranform of n+/, i.e., L n+/ Γn++/ n++/, >, o we have n n n!n + L n+/ n n Γn + + / n!n + n++/. 39 We now ue b wih x n + /, o n n Γn + / + n!n + n+/+ n Γ3/ 3/ n n + /Γn + / n!n + n+3/. 4 Γ5/ 3 5/ + Γ7/ 5! 7/ + Γ9/ 7 3! 9/ + A la we ue he formula for Γk + ha we found in b and wha we noed in he beginning: ha Γ/ π, o ge n n n! Γ n+ n Γ/ n j j / n+3/ n! n+3/ 4 n π n n j j / n! n+3/ n π 3/ 5/ + 3 4 7/ 3 5 4 6 9/ + π 3/ + 3 4 3 5 4 6 3 + 4 We inroduce now he generaliaion of wha i known a binomial formula, i.e., r x + y r x r k y k, k k which hold for x > y and r i a real. The o-called Pochhammer ymbol r k i defined by r rr r k + :. k k! Thi hen ell u ha x + y r x r + rx r y + rr x r y +! rr r x r 3 y 3 +. 3!

Hence, wih x, y /, >, and r / we find Going back o 4, we find + / / + n n n! Thu, he Laplace ranform i 3 4 3 5 4 6 3 +. Γ n+ π n+3/ + / / 3/ π + / / π +. L e p dp π +. 43 An alernaive mehod uing direcly he definiion of he Laplace ranform and changing he order of inegraion in muliple inegral, i a follow. From he definiion we have: L e x dx e e x dx d. 44 π π The idea i now o change order of inegraion. Noe ha x run from o while run from o. The curve x i he righ par of he curve x i.e. he par where x. Hence in he x-plane we are inegraing over he infinie region above he curve x wih x. Thu we ee ha hi i he region where run from x o and x run from o. Hence: L e x dx e x e d dx π π π π x x e x e dx e x + dx. 45 We now ue a change of variable u : x +. Then u run from o and du + dx. Subiuing hi, we herefore finally have L e x dx π π + e u du + 46 where he la equaliy follow from he Gau inegral I e u du π from d.

Finally, we can alo proceed a follow. Le f : π e x dx. Then by he fundamenal heorem of calculu, we have f π e π e. Noe ha f. Hence by he formula for he Laplace ranform of he derivaive, we ge: Tha i Lf Lf. Now, we have: Lf π Lf Lf. 47 e e d π e + d. 48 We ue a change of variable. Pu u : +. Then du o. Subiuing hi, we herefore have: + d and u run from Lf e u du π + π π + 49 + where he econd equaliy follow from he Gau inegral I e x dx Hence we ge: π from d. Lf Lf +. 5