The Effects of an Extended Neutrino Sphere on Supernova Neutrino Oscillations

Like dokumenter
Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)

TFY4170 Fysikk 2 Justin Wells

Slope-Intercept Formula

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5)

Graphs similar to strongly regular graphs

Moving Objects. We need to move our objects in 3D space.

Lattice Simulations of Preheating. Gary Felder KITP February 2008

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl.

Neural Network. Sensors Sorter

Generalization of age-structured models in theory and practice

Ringvorlesung Biophysik 2016

NO X -chemistry modeling for coal/biomass CFD

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with.

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt)

Exercise 1: Phase Splitter DC Operation

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN

Splitting the differential Riccati equation

Qi-Wu-Zhang model. 2D Chern insulator. León Martin. 19. November 2015

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2

Second Order ODE's (2P) Young Won Lim 7/1/14

Trust region methods: global/local convergence, approximate January methods 24, / 15

Databases 1. Extended Relational Algebra

Level Set methods. Sandra Allaart-Bruin. Level Set methods p.1/24

SVM and Complementary Slackness

melting ECMI Modelling week 2008 Modelling and simulation of ice/snow melting Sabrina Wandl - University of Linz Tuomo Mäki-Marttunen - Tampere UT

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

Trigonometric Substitution

Satellite Stereo Imagery. Synthetic Aperture Radar. Johnson et al., Geosphere (2014)

GEF2200 Atmosfærefysikk 2017

Stationary Phase Monte Carlo Methods

UNIVERSITETET I OSLO

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F.

EKSAMENSOPPGAVE I BI2034 Samfunnsøkologi EXAMINATION IN: BI Community ecology

UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet

GYRO MED SYKKELHJUL. Forsøk å tippe og vri på hjulet. Hva kjenner du? Hvorfor oppfører hjulet seg slik, og hva er egentlig en gyro?

Emneevaluering GEOV272 V17

TMA4329 Intro til vitensk. beregn. V2017

Perpetuum (im)mobile

Energy Dissipation in Hybrid Stars. Sophia Han. Washington University

KROPPEN LEDER STRØM. Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal.

5 E Lesson: Solving Monohybrid Punnett Squares with Coding

Verifiable Secret-Sharing Schemes

EN Skriving for kommunikasjon og tenkning

Exam in Quantum Mechanics (phys201), 2010, Allowed: Calculator, standard formula book and up to 5 pages of own handwritten notes.

Hvordan føre reiseregninger i Unit4 Business World Forfatter:

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23

BEC in microgravity. W. Herr, Institute for Quantum Optics, Leibniz University of Hanover

Eksamen i FY3466 KVANTEFELTTEORI II Tirsdag 20. mai :00 13:00

Eksamensoppgave i TMA4265 Stokastiske Prosesser

Tor Haakon Bakken. SINTEF Energi og NTNU

Smart High-Side Power Switch BTS730

Ma Flerdimensjonal Analyse Øving 6

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Jeroen Stil Institute for Space Imaging Science. University of Calgary

Electrodynamics. Manfred Hammer, Hugo Hoekstra, Lantian Chang, Mustafa Sefünç, Yean-Sheng Yong

Eksamensoppgave i PSY3100 Forskningsmetode - Kvantitativ

Eksamensoppgave i TMA4265 Stokastiske prosesser

Ole Isak Eira Masters student Arctic agriculture and environmental management. University of Tromsø Sami University College

Information search for the research protocol in IIC/IID

Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet.

Ma Flerdimensjonal Analyse Øving 1

Den som gjør godt, er av Gud (Multilingual Edition)

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX)

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

Endelig ikke-røyker for Kvinner! (Norwegian Edition)

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ.

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Oppgave 1. Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk EKSAMEN I: MNFFY 245 INNFØRING I KVANTEMEKANIKK

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Energy Calibration for the Forward Detector at WASA-at-COSY

STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD

Surgical Outcome of Drug-Resistant Epilepsy in Prasat Neurological Institute

Oppgavesett kap. 6 (3 av..) GEF2200

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Administrasjon av postnummersystemet i Norge Post code administration in Norway. Frode Wold, Norway Post Nordic Address Forum, Iceland 5-6.

Emnedesign for læring: Et systemperspektiv

Maple Basics. K. Cooper

Dynamic Programming Longest Common Subsequence. Class 27

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

PSi Apollo. Technical Presentation

Optical Properties of Plasmas Based on an Average-Atom Model

Little Mountain Housing

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Checking Assumptions

Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen

Innovasjon, Energi og Syntese i Fornybarsamfunnet

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Accuracy of Alternative Baseline Methods

On Capacity Planning for Minimum Vulnerability

TMA4240 Statistikk Høst 2013

TMA4245 Statistikk. Øving nummer 12, blokk II Løsningsskisse. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

HONSEL process monitoring

REMOVE CONTENTS FROM BOX. VERIFY ALL PARTS ARE PRESENT READ INSTRUCTIONS CAREFULLY BEFORE STARTING INSTALLATION

The magnetic field of the evolved star W43A

A Benchmark of Selected Algorithmic. Machine Learning and Computer Vision

Transkript:

The Effects of an Extended Neutrino Sphere on Supernova Neutrino Oscillations max-planck-institut für Kernphysik Heidelberg NDM 2018, IBS, Korea July 2, 2018 1 / 24

Janka et al. 2012 2 / 24

Impact of neutrino oscillations Supernova explosion mechanism: Modify the neutrino signal: E(ν µ/τ ) > E(ν e ) ν e ν µ/τ ν µ/τ ν e Nucleosynthesis depends on the neutron fraction: p + ν e n + e + n + ν e p + e (See also talk by Baha Balantekin on Friday) 3 / 24

Matter effect Electron background shifts the energy eigenvalues. ( ) H = m2 c2θ s 2θ + ( ) 1 0 2G F n e 2E 0 0 s 2θ c 2θ ν 2,eff ν e m 2 eff. m 2 2 vacuum ν 1,eff ν x solar centre m 2 1 n e 4 / 24

Density matrix formalism In the mean field approximation: ( ) ρee ρ ρ = ex = 1 ( ) P0 + P z P x ip y = 1 ρ xe ρ xx 2 P x + ip y P 0 P z 2 (P 0 + P σ). Similarly for the Hamiltonian: H = 1 ( ) Vz V x iv y = 1 V 2 V x + iv y V z 2 σ. Equation of motion (in absence of collisions, see also poster by Hirokazu Sasaki): i ρ = [H, ρ] P = V P 5 / 24

Collective oscillations Normal oscillations: prob(ν e ν e ) cos 2 ( m 2 L/4E). prob(νe νe) 1.0 0.8 0.6 0.4 0.2 2E0 5E0 3E0 Neutrino background: H νν = 2G F dp(ρ ρ). 0.0 E0. L Conversion independent of E. Non-linear problem hard to solve in a realistic setting. Hannestad et al. 2006 6 / 24

Linear equations, RSLH and Smirnov, 2018 Observation Considering the individual neutrino, its oscillations in a SN is a linear problem. Idea How much of the neutrino-neutrino refraction can we describe using linear equations. Ultimate goal General conclusions about the behaviour of neutrino oscillations in presence of neutrino-neutrino refraction. Methods - Solve equations from first principles, analytic and numeric. - Describe complicated systems using effective potentials. 7 / 24

General equations Probe neutrino in arbitrary neutrino and matter background. H (p) = 1 ( c2θ ω p + V e + V ν s 2θ ω p + 2 V ν e iφ ) B 2 s 2θ ω p + 2 V ν e iφ, (1) B c 2θ ω p V e V ν V ν = dkvν 0 (k) [ρ ee (k) ρ ττ (k))], V ν e iφ B = dkv 0 ν (k)ρ eτ (k) V 0 ν (k) = 2G F n(k) (1 v bg v p ) 8 / 24

General equations - rotated Rewrite the off-diagonal as V e iφ = s 2θ ω p + 2 V ν e iφ B ( ). Apply the transformation U = diag e iφ /2, e iφ /2. H (p) = 1 2 ( V r V V V r ), where V = 4 V 2 ν + 4s 2θ ω p cos φ B Vν + s 2 2θ ω2 p, V r = V e + V ν + φ c 2θ ω p. 9 / 24

Conditions for a large conversion Our Ansatz is that every case where a large conversion happens can be described in terms of at least one of these frameworks: 1 Resonance Vanishing diagonal: 2 Adiabatic conversion V e + V ν + φ c 2θ ω p = 0. Fast oscillations in V r and V can be removed by going to a rotating frame. This can result in a Hamiltonian describing adiabatic evolution. 3 Parametric enhancement Present if the period of oscillation equals the period of change of mixing angle. 10 / 24

Energy spectrum 0.010 0.008 0.006 ω k = 0.5ω p ω k = ω p ω k = 1.5ω p Box spectrum Analytic Peτ 0.004 0.002 0.000 0 5 10 15 20 tω p RSLH and Smirnov, 2018 11 / 24

Neutrino emission ν µ/τ have: Number sphere: ν µ/τ decouple first, then ν e and last ν e. Energy sphere: e + e ν µ/τ ν µ/τ e ν µ/τ e ν µ/τ Transport sphere: N ν µ/τ N ν µ/τ 12 / 24

Neutrino emission ν µ/τ decouple first, then ν e and last ν e. ν µ/τ have: Number sphere: Energy sphere: e + e ν µ/τ ν µ/τ e ν µ/τ e ν µ/τ Transport sphere: N ν µ/τ N ν µ/τ ν e and ν e are dominated by absorption and emission from nucleons. (n n > n p ) Mean free path: 1 λ G 2 F π (g 2 V + 3g 2 A )E 2 n N. Emissivity: j = 1 λ exp( E/T ) 12 / 24

Extended source Rough estimates: Neutrino sphere: 10km. Width of neutrino sphere: 1km. Oscillation length: 1 G F n e 10 8 10 7 km. Average over emission region suppresses oscillatory terms by 10 7 10 8. Parametric resonance is not removed as such. 13 / 24

Extended source - non-linear ρee = 1 2 (1 + P z) 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 10 0 z = 0 3π sin β z = λ 7π sin β z = λ 21π sin β z = λ emission region 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 ρex Hex 10 1 10 2 10 3 10 4 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 z 14 / 24

Extended source - non-linear ρee = 1 2 (1 + P z) 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 10 0 z = 0 3π sin β z = λ 7π sin β z = λ 21π sin β z = λ emission region 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 ρex Hex 10 1 10 2 10 3 10 4 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 z 14 / 24

Changing background - only matter Coordinate system with V along z-axis: ( r ) ρ 12 (r) = ρ 12,initial exp i ω m (r )dr. r e Average over emission point: ρ 12 (r) = r 0 p(r e ) 1 2 sin 2θ m(r e )exp ( r ) i ω m (r )dr dr e, r e where p(r e ) = 1 ( ) 1 exp( E/T ) exp λ(r e ) r e λ(r ) dr. 15 / 24

Changing background - only matter 0.0018 10 8 12 0.0016 7 0.0014 6 p 0.0012 0.0010 0.0008 0.0006 0.0004 0.0002 0.0000 10 8 10 9 50 100 150 200 r[km] p sin(2θ) 5 4 3 2 1 0 50 100 150 200 r[km] Include effect of damping, D: 10 10 10 11 P = V P D P T. ρ 12 10 12 10 13 10 14 10 15 10 16 10 17 10 18 10 19 averaging damping p(r) = δ(r rνsphere) 50 100 150 200 r[km] For V z and D large and P z 1: P x V xv z V 2 z + D 2, P y V xd V 2 z + D 2. Bell et al. 1998, Hannestad et al. 2012 16 / 24

Effect of non-adiabaticity Solve P = V P D PT numerically: ρ12 10 13 10 14 10 15 10 16 10 17 10 18 10 19 numerical adiabatic non-adiabatic 10 20 20 30 40 50 60 70 80 90 100 r[km] Non-adiabatic effects for D=0: V x Vx r Vz V z + sin ( V Vz 3 z (r )dr ) ( V P = x r V z ( V 1 cos z 3 Vz (r )dr )) 1 + V x 2 r V z sin (. V Vz 4 z (r )dr ) ρ 12 V x r V z 2Vz 3 V x 2Vz 2 r 0 17 / 24

Linear stability analysis Banerjee, Dighe, Raffelt 2011 Linear analysis demonstrate stability or instability. ρ = f ν e + f νx + f ( ) ν e f νx s S 2 2 S s S = P x + ip y 1, s 2 + S 2 = 1 s = P z 1. Linearised equation: iṡ = (ω + λ + µ)s µ dγ (1 v v )S, 18 / 24

Linear stability analysis In Fourier space: S = e iωt Q ΩQ = (ω + λ + µ)q µ dγ (1 v v )Q Unstable if Im(Ω) 0. (See also Capozzi et al. 2017) Discrete modes: solve matrix equation. (Continious modes: Decompose in independent functions.) Can also be formulated as a dipersion relation. (Izaguirre, Raffelt and Tamborra, 2016) 19 / 24

Simple model Linearised equation: (ω = 1, λ = 30, µ = 3) i ( ) ω + λ µ µ S = µ ω + λ + µ S Eigenvalues: Ω = λ ± ω(2µ + ω) Growth rate = Im(Ω). (1 + Pz) ρee = 1 2 1.0 0.9 0.8 0.7 z = 0 0.6 3π sin β z = 0.5 λ 7π sin β 0.4 z = λ 21π sin β 0.3 z = λ 0.2 emission region 0.1 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 10 0 Emission point = 2 3 z. Start value = 1 zλ sin 2θ m. Does not work for large z. ρex Hex 10 1 10 2 10 3 10 4 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 z 20 / 24

Multiple angles, in-homogeneous Linear stability analysis of a more realistic model: (Ω + v k)q = (ω + λ + µ(ɛ v φ))q µ dγ (1 v v )g Q µ and λ functions of r. Multi angle matter effect. Homogeneous mode: k = 0 Chakraborty, RSLH, Izaguirre and Raffelt, 2015 21 / 24

Very fast flavour conversion R. F. Sawyer Chakraborty, RSLH, Izaguirre and Raffelt, 2016 Conversion on meter-scale. Can also occur in a supernova. Dasgupta, Mirizzi and Sen, 2016 22 / 24

Summary The non-negligible width of the neutrino sphere affects the neutrino state due to averaging over different emission points. The angle between the neutrino state and the Hamiltonian in polarization space is reduced by a factor 10 8 at the neutrino sphere by the averaging. A small adiabaticity violation increases the angle significantly as the neutrino propagates out through the supernova. The onset of neutrino conversion can be analysed using linear stability analysis, and for a given model, it can be calculated if conversion has the potentially to occur. 23 / 24

Thanks for your attention! 24 / 24

Backup Slides Neutrino emission. Deleptonisation Accretion Cooling Lang et al. 2016 25 / 24

Backup Slides Neutrino mixing Normal ν 3 ν 2 Inverted L int = g 2 W + µ ν l L γµ l L + h.c. m 2 atm ν 1 m 2 sun Interaction states and mass states are different: ν 2 m 2 atm ν l = Uν i. ν e m 2 sun ν 1 ν µ ν τ ν 3 Mixing matrix: 1 0 0 c 13 0 s 13 e iδ CP c 12 s 12 0 U = 0 c 23 s 23 0 1 0 s 12 c 12 0. 0 s 23 c 23 s 13 e iδ CP 0 c 13 0 0 1 26 / 24

Backup Slides Collective oscillations Can collective oscillations still occur? YES! ρ12 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 10 11 10 12 10 13 10 14 10 15 100 120 140 160 180 200 220 240 260 280 r[km] 27 / 24

Backup Slides Very fast flavour conversion Dasgupta, Mirizzi and Sen, 2016 28 / 24