On multigrid methods for the CahnHilliard equation with obstacle potential

Like dokumenter
Stationary Phase Monte Carlo Methods

Splitting the differential Riccati equation

SVM and Complementary Slackness

Graphs similar to strongly regular graphs

Level Set methods. Sandra Allaart-Bruin. Level Set methods p.1/24

Trust region methods: global/local convergence, approximate January methods 24, / 15

Ringvorlesung Biophysik 2016

Second Order ODE's (2P) Young Won Lim 7/1/14

Neural Network. Sensors Sorter

UNIVERSITETET I OSLO

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

TMA4329 Intro til vitensk. beregn. V2017

melting ECMI Modelling week 2008 Modelling and simulation of ice/snow melting Sabrina Wandl - University of Linz Tuomo Mäki-Marttunen - Tampere UT

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)

SCE1106 Control Theory

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger

Lattice Simulations of Preheating. Gary Felder KITP February 2008

GEF2200 Atmosfærefysikk 2017

Generalization of age-structured models in theory and practice

TFY4170 Fysikk 2 Justin Wells

TMA4240 Statistikk 2014

Verifiable Secret-Sharing Schemes

TMA4240 Statistikk Høst 2013

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes

Eksamensoppgave i TMA4135 Matematikk 4D

Analysis of ordinal data via heteroscedastic threshold models

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl.

Call function of two parameters

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5)

Dynamic Programming Longest Common Subsequence. Class 27

Slope-Intercept Formula

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt)

Moving Objects. We need to move our objects in 3D space.

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23

Databases 1. Extended Relational Algebra

Trigonometric Substitution

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

32.2. Linear Multistep Methods. Introduction. Prerequisites. Learning Outcomes

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

MA2501 Numerical methods

NO X -chemistry modeling for coal/biomass CFD

Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen

HONSEL process monitoring

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ.

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F.

Numerical Simulation of Shock Waves and Nonlinear PDE

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX)

Exercise 1: Phase Splitter DC Operation

Unfoldable Self-Avoiding Walks

On time splitting for NLS in the semiclassical regime

Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet.

Endelig ikke-røyker for Kvinner! (Norwegian Edition)

Satellite Stereo Imagery. Synthetic Aperture Radar. Johnson et al., Geosphere (2014)

Issues and challenges in compilation of activity accounts

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Eksamensoppgave i TMA4123/TMA4125 Matematikk 4M/4N

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with.

The regulation requires that everyone at NTNU shall have fire drills and fire prevention courses.

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Finite Elements Methods. Formulary for Prof. Estor's exam

Exam in Quantum Mechanics (phys201), 2010, Allowed: Calculator, standard formula book and up to 5 pages of own handwritten notes.

REMOVE CONTENTS FROM BOX. VERIFY ALL PARTS ARE PRESENT READ INSTRUCTIONS CAREFULLY BEFORE STARTING INSTALLATION

Emneevaluering GEOV272 V17

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN

EKSAMENSOPPGAVE I FAG TKP 4105

Motzkin monoids. Micky East. York Semigroup University of York, 5 Aug, 2016

OPPA European Social Fund Prague & EU: We invest in your future.

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger

Fast preconditioned multigrid solution of the Euler and Navier Stokes equations for steady, compressible ows

Existence of resistance forms in some (non self-similar) fractal spaces

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

MID-TERM EXAM TDT4258 MICROCONTROLLER SYSTEM DESIGN. Wednesday 3 th Mars Time:

OPPA European Social Fund Prague & EU: We invest in your future.

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

INF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Level-Rebuilt B-Trees

Qi-Wu-Zhang model. 2D Chern insulator. León Martin. 19. November 2015

Gir vi de resterende 2 oppgavene til én prosess vil alle sitte å vente på de to potensielt tidskrevende prosessene.

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

Computation of moving boundaries and interfaces and stabilization parameters

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

IN2010: Algoritmer og Datastrukturer Series 2

Reg tek final exam formelsamling

Maple Basics. K. Cooper

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Forbedringsmodellen er viktig, men hva med alt det andre?

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

On Capacity Planning for Minimum Vulnerability

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

PATIENCE TÅLMODIGHET. Is the ability to wait for something. Det trenger vi når vi må vente på noe

2003/05-001: Dynamics / Dynamikk

INF5820 Natural Language Processing - NLP. H2009 Jan Tore Lønning

Innhold. Instruks for melding av hærverk. ID1743-a- hærverk. IE76286-b- Trafikkdetektor Leggebeskrivelse E og E

Transkript:

On multigrid methods for the CahnHilliard equation with obstacle potential ubomír Ba as Department of Mathematics Imperial College London Joint work with Robert Nürnberg http://www.ma.ic.ac.uk/~lubo lubo@imperial.ac.uk

Overview 1 1. Introduction 2. Continuous model 3. Numerical Method 4. Solvers for the discrete system 5. Numerical experiments ubomír Ba as Harrachov 2007 1/39

Introduction 2 Evolution of surfaces applications in material science (microstructure prediction, material proterties, void electromigration in semiconductors), image processing, etc. Overview Deckekelnick, Dzuik, Elliott (2005) ubomír Ba as Harrachov 2007 2/39

Introduction 3 Surface diusion sharp interface model V = s κ on Γ(t) Γ(t) void surface s surface Laplacian V velocity of Γ(t) κ curvature ubomír Ba as Harrachov 2007 3/39

Phase-eld model Diuse interface with interface width γπ 4 Alternatives to phase-eld approach Direct methods for approximation of the surface diusion model, topological changes problems with Level set methods can handle topological changes ubomír Ba as Harrachov 2007 4/39

Phase-eld model 5 γ > 0 interfacial parameter u γ (, t) K := [ 1, 1], t [0, T ] conserved order parameter; u γ (, t) = 1 void, u γ (, t) = 1 conductor w γ (, t) chemical potential φ γ (, t) electric potential Phase eld approximation of surface diusion (diuse interface) γ u γ t.( b(u γ) w γ ) = 0 in Ω T := Ω (0, T ], w γ = γ u γ + γ 1 Ψ (u γ ) in Ω T, where u γ < 1, + I.C. + B.C. ubomír Ba as Harrachov 2007 5/39

Degenerate coecients b(s) := 1 s 2, s K Obstacle-free energy Phase-eld model 6 { 1 ( ) Ψ(s) := 2 1 s 2 if s K, if s K, restricts u γ (, ) K. Approximation of the sharp interface model γ 0 then {x; u γ (x, t) = 0} Γ(t), Γ(t) is the solution of the sharp interface problem Advantages of phase-eld approach no explicit tracking of the interface needed can handle topological changes ubomír Ba as Harrachov 2007 6/39

Numerical approximation 7 U n W n S h u γ K h w γ Φ n S h φ γ Double obstacle formulation ( regularisation parameter) γ ( U n U n 1 τ n ) h, χ + (Ξ (U n 1 ) W n, χ) = 0 χ S h, γ ( U n, [χ U n ]) (W n + γ 1 U n 1, χ U n ) h χ K h, discrete inner product (mass lumping) (η 1, η 2 ) h := Ω πh (η 1 (x) η 2 (x)) dx Ξ ( ) b( ) Convergence (Existence) 2D: Barrett, Nürnberg, Styles (2004), 3D: Ba as, Nürnberg (2006) h 0, 0, τ = O(h 2 ) ubomír Ba as Harrachov 2007 7/39

Matrix formulation 8 The discrete system Find {U n, W n } K J R J such that γ (V U n ) T B U n (V U n ) T M W n (V U n ) T s V K J, γ M U n + τ n A n 1 W n = r M ij := (χ i, χ j ) h, B ij := ( χ i, χ j ), A n 1 ij := (Ξ (U n 1 ) χ i, χ j ) r := γ M U n 1 α τ n A n 1 Φ n R J, s := γ 1 M U n 1 R J. ubomír Ba as Harrachov 2007 8/39

Block Gauss-Seidel algorithm with projection 9 Projected block Gauss-Seidel (V U n,k ) T (γ (B D B L ) U n,k γ M U n,k 2 2 system for every vertex; explicit solution [ [ M W n,k ) (V U n,k ) T (s + γ BL T U n,k 1 + τ n (A D A L ) W n,k = r + τ n A T L W n,k 1 U n,k ] W n,k j ] j = [ Mjj r j + τ n A n 1 jj γ [M jj ] 2 + τ n γ A n 1 jj = r j γ M jj [U n,k τ n A n 1 jj ] j ŝ j B jj ] K ) ubomír Ba as Harrachov 2007 9/39

Uzawa algorithm 10 Uzawa-Multigrid algorithm Gräser, Kornhuber (2005), derived from the formulation of Blowey, Elliott (1991, 1992), Outer Uzawa-type iterations constrained minimisation, two sub-steps γ (V U n,k ) T B U n,k W n,k (V U n,k ( = W n,k 1 + S 1 γ M U n,k ) T s + (V U n,k ) T M W n,k 1 τ n A n 1 W n,k 1 ) + r V K J S 1 - preconditioner ubomír Ba as Harrachov 2007 10/39

Uzawa algorithm Preconditioner If we know the exact coincidence/contact set Ĵ(U n ) = { j J : } [U n ] j = 1, 11 the problem becomes linear ( γ n B(U ) M(U n ) γ M τ n A n 1 ) ( U n W n ) = ( ŝ(u n ) r ). with and B ij = M ij = ŝ i = { δij i Ĵ B ij else { 0 i Ĵ M ij else { γ [U n ] i i Ĵ s i,, j J, else. ubomír Ba as Harrachov 2007 11/39

Uzawa algorithm 12 Optimal choice Schur complement S(U n ) = M B(U n ) 1 M(U n ) + τ n A n 1 Approximation U n,k U n S = S(U n,k ) = M B(U n,k ) 1 n,k M(U ) + τ n A n 1 Uzawa with the preconditioner S(U k ) γ (V U n,k ) T B U n,k (V U n,k ( W n,k = S(U n,k ) 1 M ) T s + (V U n,k B(U n,k ) T M W n,k 1 ) V K J, ) + r. ) 1 ŝ(u n,k ubomír Ba as Harrachov 2007 12/39

Uzawa algorithm 13 Solution of the subproblems rst step, elliptic variational inequality with double obstacle, we can use standard methods: projected Gauss-Seidel or Monotone multigrid; iterations can be stopped when we obtain convergence in the coincidence step - only few iterations. input W n,k 1, output U n,k second step is equivalent to the solution of linear symmetric saddle point problem ( γ γ 2 B γ n,k M(U n,k M(U ) τ n A n 1 ) ) ( Ũ k W n,k ) = ( γ s r ) standard W -cycle multigrid method for saddle point problems (Stokes equations, mixed FEM), canonical restriction and prolongation, block Gauss-Seidel smoother (1 smoothing step), alternative (Vanka type (1986)) smoother Schröberl, Zulehner (2003). input Ĵ k n,k = Ĵ(U ), output W n,k ubomír Ba as Harrachov 2007 13/39

Uzawa algorithm 14 Numerical implementation (more natural, but no proof of convergence) Ξ (U n 1 ) π h [b(u n 1 )], π[b(u n 1 )] 0 on J deg A n 1 - has zero rows due to the degeneracy of b( ) Degenerate set j J deg := { j J : π [ h b(u n 1 ) ] 0 on supp(χ j ) } Solution We use the fact (J deg Ĵ k ) U n,k j = U n 1 j saddle point problem with regular matrix A 1 deg ( γ 2 B γ M γ M τ n A n 1 deg for all j J deg We obtain an equivalent ) ( Ũ k W k ) = ( γ s r deg ), where W j = W n 1 j for j J deg. ubomír Ba as Harrachov 2007 14/39

Complete algorithm Uzawa algorithm 15 1. Initialization: Start with inital guess U n,0 = U n 1, set Ĵ 0 = W n,0 by solving the linear saddle point problem with coincidence set Ĵ 0. 2. Uzawa iterations: for k = 1,... do n,0 Ĵ(U ) and compute Ĵ(U n,k 1st sub-step Compute the approximate coincidence set Ĵ k = is obtained from the elliptic variational inequality by PGS or MMG. If Ĵ k = Ĵ k 1 go to step 3. ), where U n,k 2nd sub-step Solve a linear symmetric saddle point problem by the multigrid method with block GaussSeidel smoother to obtain W n,k [ If max j J to step 3. W n,k ] j [ W n,k 1 ] j. < tol, with tol being the prescribed tolerance, go 3. Uzawa iterations have converged: Compute U n,k+1 up to the desired accuracy from the elliptic variational inequality from the 1st sub-step using W n,k 4. Set U n = U n,k+1, W n = W n,k.. ubomír Ba as Harrachov 2007 15/39

Numerical experiments 16 FEM code Alberta; adaptive meshes: if U n < 1 (i.e. in the interfacial region) set h = h min 1 N f h = h max = 1 N. c Comparison of Uzawa and Gauss-Seidel methods γ = 1 12π else ( U n = 1) set N f τ GS Uzawa-MG ratio 128 1e-6 14227m 3445m 4.13 64 4e-6 252m 146m 1.72 32 1.e-5 9m40s 11m20s 0.85 Table 1: Computation times for dierent values of h γ N f τ GS Uzawa-MG ratio 1/12π 128 1e-6 14227m 3445m 4.13 1/6π 64 4e-6 853m 259m 3.29 1/3π 32 1.e-5 93m 30m 3.1 Table 2: Computational times for dierent values of γ ubomír Ba as Harrachov 2007 16/39

Multigrid algorithm - notation 17 Problem matrix on ne mesh ( B M A = M A Saddle point problem with variational inequality ( ) ( ) U r A W s ) U K J Intergrid transfer operators (canonical restriction and prolongation) I c f, If c Coarse matrix A c A c = ( I c f B I f c I c f M If c ) I c f M If c I c f A If c ubomír Ba as Harrachov 2007 17/39

Multigrid algorithm 18 Two-grid scheme for the solution of ( U A W ) ( r s ) U K J pre smoothing m iteration of projected Gauss-Seidel (U 0, W 0 ) (U m, W m ) coarse grid correction solve the coarse problem exactly 1. compute residual (Q u, Q w ) = (r, s) A(U m, W m ) 2. ( ) ( V u I c A c V w f Q u ) If c V u K J c Qw 3. update solution (U m+1, W m+1 ) = (U m + I f c V u, W m + I f c V w ) post smoothing m iteration of projected Gauss-Seidel (U m+1, W m+1 ) (U 2m+1, W 2m+1 ) ubomír Ba as Harrachov 2007 18/39

Coarse grid correction 19 We require U m+1 + I f c V u 1 New obstacle for V u 1 U m+1 I f c V u 1 U m+1 associated with the ne mesh, but to compute V u on the coarse grid we need a coarse obstacle. Solution Mandel (1984) look for V u K J c { where } K J c V R J c ; Q c f ( 1 U m+1 ) V Rf c ( 1 U m+1 ) = obstacle restriction operators dened as with upper/lower ] [Q c f v (p) = max { } v(q); q N f int supp χ p, χ p Vh c, ] [Rf c v (p) = min { } v(q); q N f int supp χ p, χ p Vh c, with p N k 1, v V f h. Kornhuber (1994) slightly better obstacle restriction (suitable linear combination instead of min/max). ubomír Ba as Harrachov 2007 19/39

Coarse grid correction - mltiple grids 20 Restrictions for numerical convergence grid on the lowest has to be ne enough; number of grid levels depends on γ and h min, we need: small γ for good approximation of the sharp interface problem small h min (depending on γ) for good approximation of the continuous phase-eld model Feasible parameter combnations in 3D γ = 1 12π, N f = 1 128, 6 mesh points in the interface, 2-level method γ = 1 9π, N f = 1 128, 8 mesh points in the interface, 3-level method Coarse grid solver inexact solution with projected GS, 30 iteration are enough for the 3-level method. ubomír Ba as Harrachov 2007 20/39

Numerical experiments 21 Meshes on dierent levels ubomír Ba as Harrachov 2007 21/39

Comparison of the Multigrid and Uzawa methods 22 3D computation with about 900000 degrees of freedom, γ = 1 9π method total iteration CPU time MG 2063 2200m Uzawa-MG 4760 3390m Table 3: 3-level MG vs. Uzawa (8-level); W-cycle, 1 smoothing step Multigrid computations are about 1.5 times faster with 2 less iterations. ubomír Ba as Harrachov 2007 22/39

Numerical experiments γ = 1 12π, T = 0.06, τ = 10 6, N f = 128, N c = 2 23 Figure 1: (α = 0) Zero level sets for U (x, t), with cut through the mesh at x 3 = 0 at times t = 0, 0.001, 0.005. ubomír Ba as Harrachov 2007 23/39

Numerical experiments γ = 1 12π, T = 0.06, τ = 10 6, N f = 128, N c = 2 24 Figure 2: (α = 0) Zero level sets for U (x, t), with cut through the mesh at x 3 = 0 at times t = 0.01, 0.015, T = 0.06. ubomír Ba as Harrachov 2007 24/39

Numerical experiments γ = 1 12π, T = 0.08, τ = 5 10 6, N f = 48, N c = 2 25 Figure 3: (α = 0) Zero level sets for U (x, t), with cut through the mesh at x 3 = 0 at times t = 0, 0.001, 0.005. ubomír Ba as Harrachov 2007 25/39

Numerical experiments γ = 1 12π, T = 0.08, τ = 5 10 6, N f = 48, N c = 2 26 Figure 4: (α = 0) Zero level sets for U (x, t), with cut through the mesh at x 3 = 0 at times t = 0.01, 0.015, T = 0.08. ubomír Ba as Harrachov 2007 26/39

Numerical experiments γ = 1 12π, T = 0.06, τ = 1 10 6, N f = 128, N c = 2 27 Figure 5: (α = 0) Zero level sets for U (x, t), with cut through the mesh at x 3 = 0 at times t = 0, 0.0015, 0.003. ubomír Ba as Harrachov 2007 27/39

Numerical experiments γ = 1 12π, T = 0.06, τ = 1 10 6, N f = 128, N c = 2 28 Figure 6: (α = 0) Zero level sets for U (x, t), with cut through the mesh at x 3 = 0 at times t = 0.00505, 0.0051, T = 0.06. ubomír Ba as Harrachov 2007 28/39

Numerical experiments γ = 1 12π, T = 0.001,τ = 10 5, N f = 64, N c = 2 29 Figure 7: (α = 0) Zero level sets for U (x, t), with cut through the mesh at x 3 = 0 at times t = 0, 1.5 10 4, 3.5 10 4. ubomír Ba as Harrachov 2007 29/39

Numerical experiments γ = 1 12π, T = 0.001,τ = 10 5, N f = 64, N c = 2 30 Figure 8: (α = 0) Zero level sets for U (x, t), with cut through the mesh at x 3 = 0 at times t = 4 10 4, 4.5 10 4, 1 10 3. ubomír Ba as Harrachov 2007 30/39

Numerical experiments α = 114, γ = 1 12π, T = 5 10 4, τ = 1 10 7, N f = 128, N c = 16 31 Figure 9: (α = 114π) Zero level sets for U (x, t), with cut through the mesh at x 3 = 0 at times t = 0, 8 10 5, 1.2 10 5. ubomír Ba as Harrachov 2007 31/39

Numerical experiments α = 114, γ = 1 12π, T = 5 10 4, τ = 1 10 7, N f = 128, N c = 16 32 Figure 10: (α = 114π) Zero level sets for U (x, t), with cut through the mesh at x 3 = 0 at times t = 2 10 4, 2.4 10 4, 3.6 10 4. ubomír Ba as Harrachov 2007 32/39

Numerical experiments α = 114, γ = 1 12π, T = 5 10 4, τ = 10 7, N f = 128, N c = 16 33 Figure 11: (α = 114π) Zero level sets for U (x, t), with cut through the mesh at x 3 = 0 at times t = 0, 8 10 5, 1.2 10 5. ubomír Ba as Harrachov 2007 33/39

Numerical experiments α = 114, γ = 1 12π, T = 5 10 4, τ = 10 7, N f = 128, N c = 16 34 Figure 12: (α = 114π) Zero level sets for U (x, t), with cut through the mesh at x 3 = 0 at times t = 2 10 4, 2.4 10 4, 3.6 10 4. ubomír Ba as Harrachov 2007 34/39

Numerical experiments α = 300, γ = 1 12π, T = 1.25 10 4, τ = 10 7, N f = 128, N c = 16 35 Figure 13: (α = 300π) Zero level sets for U (x, t), with cut through the mesh at x 3 = 0 at times t = 0, 2.5 10 5, 7.5 10 5. ubomír Ba as Harrachov 2007 35/39

Numerical experiments α = 300, γ = 1 12π, T = 1.25 10 4, τ = 10 7, N f = 128, N c = 16 36 Figure 14: (α = 300π) Zero level sets for U (x, t), with cut through the mesh at x 3 = 0 at times t = 1.15 10 4, 1.2 10 4, T = 1.25 10 4. ubomír Ba as Harrachov 2007 36/39

Numerical experiments α = 120, γ = 1 12π, T = 2.7 10 4, τ = 10 7, N f = 128, N c = 16 37 Figure 15: (α = 120π) Zero level sets for U (x, t) at times t = 0, 7 10 5, 1.3 10 4. ubomír Ba as Harrachov 2007 37/39

Numerical experiments α = 120, γ = 1 12π, T = 2.7 10 4, τ = 10 7, N f = 128, N c = 16 38 Figure 16: (α = 120π) Zero level sets for U (x, t) at times t = 1.9 10 4, 2.3 10 4, T = 2.7 10 4. ubomír Ba as Harrachov 2007 38/39

Final remarks 39 fast coarse solver needed for eciency limited exibility with respect to γ robust except above remarks 2 less iterations than Uzawa theory? ubomír Ba as Harrachov 2007 39/39