Øvingsforelesning i Matlab TDT4105
|
|
|
- Amanda Holen
- 8 år siden
- Visninger:
Transkript
1 Øvingsforelesning i Matlab TDT4105 Øving 6. Tema: funksjoner med vektorer, plotting, preallokering, funksjonsvariabler, persistente variabler Benjamin A. Bjørnseth 13. oktober 2015
2 2 Oversikt Funksjoner av vektorer Plotting Gjennomgang av øving 5 Funksjonskall Preallokering (Funksjoner som variabler) Persistente variabler
3 3 Konsept 1. Funksjon y = f (x):
4 3 Konsept 1. Funksjon y = f (x): f (x 1 ) = [f (x 1 )]
5 3 Konsept 1. Funksjon y = f (x): f (x 1 ) = [f (x 1 )] f ([x 1, x 2 ]) = [f (x 1 ), f (x 2 )]
6 3 Konsept 1. Funksjon y = f (x): f (x 1 ) = [f (x 1 )] f ([x 1, x 2 ]) = [f (x 1 ), f (x 2 )] f ([x 1,..., x n]) = [f (x 1 ),..., f (x n)]
7 3 Konsept 1. Funksjon y = f (x): f (x 1 ) = [f (x 1 )] f ([x 1, x 2 ]) = [f (x 1 ), f (x 2 )] f ([x 1,..., x n]) = [f (x 1 ),..., f (x n)] Kalles vektoriserte funksjoner
8 3 Konsept 1. Funksjon y = f (x): f (x 1 ) = [f (x 1 )] f ([x 1, x 2 ]) = [f (x 1 ), f (x 2 )] f ([x 1,..., x n]) = [f (x 1 ),..., f (x n)] Kalles vektoriserte funksjoner Eksempel: sin(x)
9 3 Konsept 1. Funksjon y = f (x): f (x 1 ) = [f (x 1 )] f ([x 1, x 2 ]) = [f (x 1 ), f (x 2 )] f ([x 1,..., x n]) = [f (x 1 ),..., f (x n)] Kalles vektoriserte funksjoner Eksempel: sin(x) 2. Funksjon skalar = f (x)
10 3 Konsept 1. Funksjon y = f (x): f (x 1 ) = [f (x 1 )] f ([x 1, x 2 ]) = [f (x 1 ), f (x 2 )] f ([x 1,..., x n]) = [f (x 1 ),..., f (x n)] Kalles vektoriserte funksjoner Eksempel: sin(x) 2. Funksjon skalar = f (x) Funger uansett hvor lang x er
11 3 Konsept 1. Funksjon y = f (x): f (x 1 ) = [f (x 1 )] f ([x 1, x 2 ]) = [f (x 1 ), f (x 2 )] f ([x 1,..., x n]) = [f (x 1 ),..., f (x n)] Kalles vektoriserte funksjoner Eksempel: sin(x) 2. Funksjon skalar = f (x) Funger uansett hvor lang x er Eksempel: sum(x)
12 4 Eksempler: 1. Lag en vektorisert funksjon f(x) som regner ut 2πx
13 4 Eksempler: 1. Lag en vektorisert funksjon f(x) som regner ut 2πx 2. Lag en vektorisert funksjon g(x) som regner ut f 2 (x)
14 4 Eksempler: 1. Lag en vektorisert funksjon f(x) som regner ut 2πx 2. Lag en vektorisert funksjon g(x) som regner ut f 2 (x) 3. Lag en vektorisert funksjon h(x, i) som regner ut x i i!
15 4 Eksempler: 1. Lag en vektorisert funksjon f(x) som regner ut 2πx 2. Lag en vektorisert funksjon g(x) som regner ut f 2 (x) 3. Lag en vektorisert funksjon h(x, i) som regner ut x i Estimer e ved å bruke h! i!
16 4 Eksempler: 1. Lag en vektorisert funksjon f(x) som regner ut 2πx 2. Lag en vektorisert funksjon g(x) som regner ut f 2 (x) 3. Lag en vektorisert funksjon h(x, i) som regner ut x i Estimer e ved å bruke h! e(x) = i=0 xi i! i!
17 4 Eksempler: 1. Lag en vektorisert funksjon f(x) som regner ut 2πx 2. Lag en vektorisert funksjon g(x) som regner ut f 2 (x) 3. Lag en vektorisert funksjon h(x, i) som regner ut x i Estimer e ved å bruke h! e(x) = i=0 xi i! Tips: n! regnes i matlab vha factorial(n) i!
18 5 Oversikt Funksjoner av vektorer Plotting Gjennomgang av øving 5 Funksjonskall Preallokering (Funksjoner som variabler) Persistente variabler
19 6 Grafikk For visualisering Plottfunksjoner: plot(xverdier, yverdier) Kan være lister, eller matriser (plott per kolonne)
20 6 Grafikk For visualisering Plottfunksjoner: plot(xverdier, yverdier) plot(x1, y1, x2, y2,..., xn, yn) Flere plots samtidig (kan også være punkt)
21 6 Grafikk For visualisering Plottfunksjoner: plot(xverdier, yverdier) plot(x1, y1, x2, y2,..., xn, yn) plot(yverdier) Typisk blir x-verdier indekser (med mindre y-verdiene er komplekse)
22 6 Grafikk For visualisering Plottfunksjoner: plot(xverdier, yverdier) plot(x1, y1, x2, y2,..., xn, yn) plot(yverdier) Merk: for linjeplott må alle punktene være samlet i en matrise.
23 7 Eksempel: sannsynlighetsfordelinger 1. Plott en standard normalfordeling for x [ 5, 5] f (x) = 1 2π e x2 2
24 7 Eksempel: sannsynlighetsfordelinger 1. Plott en standard normalfordeling for x [ 5, 5] f (x) = 1 2π e x Plott en standard eksponensialfordeling for x [ 1, 10] { e x if x >= 0 f (x) = 0 if x < 0
25 8 Oversikt Funksjoner av vektorer Plotting Gjennomgang av øving 5 Funksjonskall Preallokering (Funksjoner som variabler) Persistente variabler
26 9 Større oppgaver 1. Les oppgavene nøye (gjerne to-tre ganger). 2. Let etter enkle utgangspunkt Skal jeg lage en funksjon? Skal jeg bare opprette en variabel? Skal jeg sette sammen en løsning i et script? 3. Fyll ut med detaljer for å få løsningen til å stemme.
27 10 Oversikt Funksjoner av vektorer Plotting Gjennomgang av øving 5 Funksjonskall Preallokering (Funksjoner som variabler) Persistente variabler
28 11 Funksjonskall og verdioverføring I kommandovindu I fil funksjon.m
29 12 Funksjonskall og verdioverføring I kommandovindu I fil funksjon.m
30 13 Funksjonskall og verdioverføring I kommandovindu I fil funksjon.m 1. Variabel brukt som argument
31 14 Funksjonskall og verdioverføring I kommandovindu I fil funksjon.m 1. Variabel brukt som argument 2. Variabelnavn brukt til å lagre parameterverdi i lokalt workspace.
32 15 Funksjonskall og verdioverføring I kommandovindu I fil funksjon.m 1. Variabel brukt som argument 3. Variabelnavn brukt for å hente ut verdi fra lokalt workspace. 2. Variabelnavn brukt til å lagre parameterverdi i lokalt workspace.
33 16 Funksjonskall og verdioverføring I kommandovindu I fil funksjon.m 4. Variabelnavn brukt til å lagre returverdi etter funksjonskall. 1. Variabel brukt som argument 3. Variabelnavn brukt for å hente ut verdi fra lokalt workspace. 2. Variabelnavn brukt til å lagre parameterverdi i lokalt workspace.
34 17 Funksjonskall og verdioverføring I kommandovindu I fil funksjon.m Gjennomførelse av funksjonskallet: Globalt workspace
35 18 Funksjonskall og verdioverføring I kommandovindu I fil funksjon.m Globalt workspace Gjennomførelse av funksjonskallet: 1. Send verdier til funksjonen (funksjonsprolog) 2. Kjør funksjonen 3. Hent eventuelt ut resultater fra funksjonen (funksjonsepilog)
36 19 Funksjonskall og verdioverføring I kommandovindu I fil funksjon.m Gjennomførelse av funksjonskallet: prolog Globalt workspace
37 20 Funksjonskall og verdioverføring I kommandovindu I fil funksjon.m Gjennomførelse av funksjonskallet: prolog 1. Lag nytt lokalt workspace for funksjonskallet. Globalt workspace Lokalt workspace
38 21 Funksjonskall og verdioverføring I kommandovindu I fil funksjon.m Gjennomførelse av funksjonskallet: prolog 1. Lag nytt lokalt workspace for funksjonskallet. 2. Regn ut argumentverdier Globalt workspace Lokalt workspace
39 22 Funksjonskall og verdioverføring I kommandovindu I fil funksjon.m Gjennomførelse av funksjonskallet: prolog 1. Lag nytt lokalt workspace for funksjonskallet. 2. Regn ut argumentverdier 3. Bind parameternavn til argumentverdier i lokalt workspace Globalt workspace Lokalt workspace
40 23 Funksjonskall og verdioverføring I kommandovindu I fil funksjon.m Gjennomførelse av funksjonskallet: selve funksjonen Globalt workspace Lokalt workspace
41 24 Funksjonskall og verdioverføring I kommandovindu I fil funksjon.m Gjennomførelse av funksjonskallet: selve funksjonen 1. Kjør funksjonen linje for linje. Globalt workspace Lokalt workspace
42 25 Funksjonskall og verdioverføring I kommandovindu I fil funksjon.m Gjennomførelse av funksjonskallet: selve funksjonen 1. Kjør funksjonen linje for linje. Globalt workspace Lokalt workspace
43 26 Funksjonskall og verdioverføring I kommandovindu I fil funksjon.m Gjennomførelse av funksjonskallet: epilog Globalt workspace Lokalt workspace
44 27 Funksjonskall og verdioverføring I kommandovindu I fil funksjon.m Gjennomførelse av funksjonskallet: epilog 1. Slå opp verdien av returverdivariabelen i funksjonens lokale workspace Globalt workspace Lokalt workspace
45 28 Funksjonskall og verdioverføring I kommandovindu I fil funksjon.m Gjennomførelse av funksjonskallet: epilog 1. Slå opp verdien av returverdivariabelen i funksjonens lokale workspace 2. Bind variabelnavn til variabel for lagring av resultat til verdien fra funksjonen. Globalt workspace Lokalt workspace
46 29 Funksjonskall og verdioverføring I kommandovindu I fil funksjon.m Gjennomførelse av funksjonskallet: epilog 1. Slå opp verdien av returverdivariabelen i funksjonens lokale workspace 2. Bind variabelnavn til variabel for lagring av resultat til verdien fra funksjonen. 3. Slett det lokale workspacet. Globalt workspace
47 30 Funksjonskall og verdioverføring I kommandovindu I fil funksjon.m Gjennomførelse av funksjonskallet: ferdig! Globalt workspace
48 31 Funksjonskall og verdioverføring I kommandovindu I fil funksjon.m MERK! Navnet på lokal returverdivariabel og variabel brukt for lagring av resultat er helt urelatert! (men ofte heter de det samme, siden de refererer til samme type verdi.)
49 32 Funksjonskall og verdioverføring I kommandovindu I fil funksjon.m MERK! Navnet på funksjonens lokale parametre og variabler sendt som argument er helt urelatert! (men ofte heter de det samme, siden de refererer til samme type verdi.)
50 33 Funksjonskall og verdioverføring I kommandovindu I fil funksjon.m - Utskrift sender verdier til skjerm - Retur av verdier er overføring fra lokalt workspace til aktivt workspace hvor funksjonen ble kalt. Globalt workspace Lokalt workspace
51 34 Oversikt Funksjoner av vektorer Plotting Gjennomgang av øving 5 Funksjonskall Preallokering (Funksjoner som variabler) Persistente variabler
52 35 Effektiv matlab Hvis du trenger en vektor, lag hele med en gang Raskere enn å lage vektoren litt og litt Preallokering v = zeros(1, 100); for i = 1:100 v(i) = f(i); end Uten preallokering v = []; for i = 1:100 v(i) = f(i); end
53 36 Eksempel 1. Lag en funksjon fibonacci(n) som returnerer en liste med fibonaccitallene 1 til n. Lag to varianter: 1.1 En med preallokering. 1.2 En uten preallokering. 2. Lag et script som måler forskjell i tid på regne ut fibonacci(1e6)
54 37 While-løkker og preallokering Vi vet ikke hvor mange ganger løkken kjører Det er derfor vi bruker while og ikke for Hvis vi skal produsere en vektor: hvordan kan vi vite hvor stor den må være?
55 37 While-løkker og preallokering Vi vet ikke hvor mange ganger løkken kjører Det er derfor vi bruker while og ikke for Hvis vi skal produsere en vektor: hvordan kan vi vite hvor stor den må være? Løsning: estimer, og øk eventuelt etter hvert. Kutt eventuelt bort ekstra elementer til slutt.
56 38 While-løkker og preallokering: eksempel Modifiser Newtons metode til å ikke skrive ut midlertidige resultater, men returnere dem i en vektor.
57 39 Oversikt Funksjoner av vektorer Plotting Gjennomgang av øving 5 Funksjonskall Preallokering (Funksjoner som variabler) Persistente variabler
58 40 Konsept Egentlig ikke noe nytt konsept. (Bare litt ny syntaks) Man kan også se på en funksjon som et objekt som kan sendes rundt i koden Ikke bare en fil
59 40 Konsept Egentlig ikke noe nytt konsept. (Bare litt ny syntaks) Man kan også se på en funksjon som et objekt som kan sendes rundt i koden Ikke bare en fil Eksempler: integrer(funksjon, a, b) finn_nullpunkt(funksjon)
60 40 Konsept Egentlig ikke noe nytt konsept. (Bare litt ny syntaks) Man kan også se på en funksjon som et objekt som kan sendes rundt i koden Ikke bare en fil Eksempler: integrer(funksjon, a, b) finn_nullpunkt(funksjon) Gitt funksjonen f(x): min_funksjon lager en ny variabel som referer til f(x) finn_nullpunkt(@f) kaller funksjonen finn_nullpunkt med funksjonen f som parameter.
61 41 Eksempel: numerisk integrering Estimer x 2 dx ved å bruke matlabs integral-funksjon
62 42 Nytt konsept Kan lage funksjoner mens matlab kjører Kan brukes for funksjoner med bare ett uttrykk som regner ut resultatet.
63 42 Nytt konsept Kan lage funksjoner mens matlab kjører Kan brukes for funksjoner med bare ett uttrykk som regner ut resultatet. Syntaks: min_funksjon = <uttrykk>;
64 42 Nytt konsept Kan lage funksjoner mens matlab kjører Kan brukes for funksjoner med bare ett uttrykk som regner ut resultatet. Syntaks: min_funksjon = <uttrykk>; Eksempel: x_i_annen x^2; x_i_annen(2) x_i_annen(5)
65 43 Eksempel: parametriserte sannsynlighetsfordelinger 1. Plott flere normalfordelinger med forskjellige forventningsverdier og varianser Eksempelbilde på wikipedia.
66 44 Eksempel: generisk newtons metode 1. Modifiser newtons metode til å fungere for vilkårlige funksjoner Nytt navn: finn_nullpunkt(f, df) 2. Bruk den nye newtons metode-funksjonen til å implementere kvadratrot
67 45 Eksempel: arrayfun Matlabfunksjonen arrayfun kaller en gitt funksjon for hvert element i en gitt liste. Bruk arrayfun til å estimere flere verdier av e x ved hjelp av h(x, i) fra tidligere eksempel.
68 46 Oversikt Funksjoner av vektorer Plotting Gjennomgang av øving 5 Funksjonskall Preallokering (Funksjoner som variabler) Persistente variabler
69 47 Konsept Brukes til å lagre verdier i en funksjons skop på tvers av funksjonskall. function y = f(x) persistent i; if isempty(i) i = 0; end i = i + 1; fprintf( f() kalt for %d. gang\n, i); y = x+x; end
70 48 Eksempel: bruk raskeste implementasjon Lag en funksjon raskeste_fibonacci(n), som bruker en persistent variabel til å holde den raskeste implementasjonen og regner ut svaret ved å bruke denne. 1. Opprett en lokal persistent variabel impl. 2. Hvis impl ikke er satt, ta tiden på fibonacci med og uten preallokering. 3. Bind impl til den raskeste funksjonen. 4. Returner svaret ved å kalle impl.
Øvingsforelesning i Matlab TDT4105
Øvingsforelesning i Matlab TDT4105 Øving 6. Tema: funksjoner med vektorer, plotting, while Benjamin A. Bjørnseth 12. oktober 2015 2 Oversikt Funksjoner av vektorer Gjennomgang av øving 5 Plotting Preallokering
Øvingsforelesning i Matlab TDT4105
Øvingsforelesning i Matlab TDT4105 Øving 5. Pensum: for-løkker, fprintf, while-løkker. Benjamin A. Bjørnseth 5. oktober 2015 2 Oversikt Gjennomgang auditorieøving Repetisjon: for-løkke, fprintf While-løkker
Øvingsforelesning TDT4105 Matlab
Øvingsforelesning TDT4105 Matlab Øving 2. Pensum: Funksjoner, matriser, sannhetsuttrykk, if-setninger. Benjamin A. Bjørnseth 8. september 2015 2 Innhold Funksjoner Matriser Matriseoperasjoner Sannhetsuttrykk
Øvingsforelesning i Matlab (TDT4105)
Øvingsforelesning i Matlab (TDT4105) Øving 1. Frist: 15.09. Tema: matematiske uttrykk, variabler, vektorer, funksjoner. Sondre Wangenstein Baugstø 4. september 2017 2 Oversikt Praktisk informasjon Om øvingsforelesninger
Øvingsforelesning i Matlab (TDT4105)
Øvingsforelesning i Matlab (TDT4105) Øving 1. Frist: 11.09. Tema: matematiske uttrykk, variabler, vektorer, funksjoner. Benjamin A. Bjørnseth 1. september 2015 2 Oversikt Praktisk informasjon Om øvingsforelesninger
TMA Kræsjkurs i Matlab. Oppgavesett 1/3
TMA4123 - Kræsjkurs i Matlab. Oppgavesett 1/3 22.02.2013 Dette oppgavesettet omhandler grunnleggende Matlab-funksjonalitet, slik som variabler, matriser, matematiske funksjoner og plotting. Den aller viktigste
Matematikk Øvingsoppgaver i numerikk leksjon 4 m-ler
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 4 m-ler I denne øvinga skal vi lære oss å lage m-ler små tekstler som vi bruker i MATLAB-sammenheng. Der nst to typer m-ler: Funksjonsler og skript. Funksjonsler
Øvingsforelesning TDT4105 Matlab
Øvingsforelesning TDT4105 Matlab Øving 2. Pensum: Funksjoner, matriser, sannhetsuttrykk, if-setninger. Benjamin A. Bjørnseth 8. september 2015 2 Innhold Disclaimer Funksjoner Matriser Matriseoperasjoner
TDT4105 IT Grunnkurs Høst 2014
TDT4105 IT Grunnkurs Høst 2014 Norges teknisknaturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Øving 6 1 Teori a) Hva er 2-komplement? b) Hva er en sample innen digital
Matlab-tips til Oppgave 2
Matlab-tips til Oppgave 2 Numerisk integrasjon (a) Velg ut maks 10 passende punkter fra øvre og nedre del av hysteresekurven. Bruk punktene som input til Matlab og lag et plot. Vi definerer tre vektorer
TDT4105 IT Grunnkurs Høst 2016
TDT4105 IT Grunnkurs Høst 2016 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Auditorieøving 1 Vennligst fyll ut følge informasjon i blokkbokstaver Navn:
Noen innebygde funksjoner - Vektorisering
1 Kunnskap for en bedre verden TDT4110 Informasjonsteknologi grunnkurs: Uke 41: «Matlab programs» (kapittel 6) Amanuensis Terje Rydland Kontor: ITV-021 i IT-bygget vest (Gløshaugen) Epost: [email protected]
Øvingsforelesning TDT4105 Matlab
Øvingsforelesning TDT4105 Matlab Pensum fra øving 2 og 3: if, switch, for, matriser. Benjamin A. Bjørnseth 14. september 2015 2 Innhold If-setninger Switch For-løkker Diverse 3 Oversikt If-setninger Switch
Noen innebygde funksjoner - Vektorisering
1 Kunnskap for en bedre verden TDT4110 Informasjonsteknologi grunnkurs: Uke 41: «Matlab programs» (kapittel 6) Amanuensis Terje Rydland Kontor: ITV-021 i IT-bygget vest (Gløshaugen) Epost: [email protected]
Bootstrapping og simulering Tilleggslitteratur for STK1100
Bootstrapping og simulering Tilleggslitteratur for STK1100 Geir Storvik April 2014 (oppdatert April 2016) 1 Introduksjon Simulering av tilfeldige variable (stokastisk simulering) er et nyttig verktøy innenfor
ITGK - H2010, Matlab. Repetisjon
1 ITGK - H2010, Matlab Repetisjon 2 Variabler og tabeller Variabler brukes til å ta vare på/lagre resultater Datamaskinen setter av plass i minne for hver variabel En flyttallsvariabel tar 8 bytes i minne
Matematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Litt oppsummering undervegs Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon Litt oppsummering undervegs Løsningsforslag Oppgave 1 Et skjæringspunkt f(x) = x e x g(x) = 1 arctan x. a) Vi kan lage plottet slik i kommando-vinduet:
1. Finn egenverdiene og egenvektorene til matrisen A = 2 1 A =
Fasit MAT102 juni 2017 Oppgave 1 1. Finn egenverdiene og egenvektorene til matrisen ( ) 1 2 A = 2 1 Løsning: Egenverdiene er røttene til det karakteristiske polynom gitt ved determinanten av matrisen (
TDT4110 IT Grunnkurs Høst 2012
TDT4110 IT Grunnkurs Høst 2012 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Øving 7 Denne øvingen er en fellesøving laget i samarbeid med emnet TMA4100
Matematikk Øvingsoppgaver i numerikk leksjon 2 Funksjoner og plotting
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 2 Funksjoner og plotting I denne øvinga skal vi først og fremst lære oss å lage plott i MATLAB. I tillegg skal vi lære oss hvordan vi manøvrerer oss omkring
Matematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Skript
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 5 Skript I denne øvinga skal vi lære oss mer om skript. Et skript kan vi se på som et lite program altså en sekvens av kommandoer. Til sist skal vi se
MAT-INF 2360: Obligatorisk oppgave 1
6. februar, MAT-INF 36: Obligatorisk oppgave Oppgave I denne oppgaven skal vi sammenligne effektiviteten av FFT-algoritmen med en mer rett frem algoritme for DFT. Deloppgave a Lag en funksjon y=dftimpl(x)
Python: Intro til funksjoner. TDT4110 IT Grunnkurs Professor Guttorm Sindre
Python: Intro til funksjoner TDT4110 IT Grunnkurs Professor Guttorm Sindre Snart referansegruppemøte Viktig mulighet for å gi tilbakemelding på emnet Pensumbøker Forelesninger Øvingsforelesninger Veiledning
Øvingsforelesning i Matlab (TDT4105)
Øvingsforelesning i Matlab (TDT4105) Øving 1. Frist: 11.09. Tema: matematiske uttrykk, variabler, vektorer, funksjoner. Benjamin A. Bjørnseth 2. september 2016 2 Oversikt Praktisk informasjon Om øvingsforelesninger
Matematikk 1000. Øvingsoppgaver i numerikk leksjon 3. Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 3 Løsningsforslag Oppgave 1 Flo og fjære a) >> x=0:.1:24; >> y=3.2*sin(pi/6*(x-3)); Disse linjene burde vel være forståelige nå. >> plot(x,y,'linewidth',3)
TDT4110 Informasjonsteknologi grunnkurs: Uke 41: «Matlab programs» (kapittel 6)
1 TDT4110 Informasjonsteknologi grunnkurs: Uke 41: «Matlab programs» (kapittel 6) Anders Christensen [email protected] Rune Sætre [email protected] 2 Læringsmål og pensum Læringsmål: Synlighet av variabler
Bioberegninger - notat 4: Mer om sannsynlighetsmaksimering
Bioberegninger - notat 4: Mer om sannsynlighetsmaksimering 8. mars 2004 1 Kort om Newton s metode i flere dimensjoner Newton s metode kan generaliseres til å løse sett av n ligninger med n ukjente. Skal
Bootstrapping og simulering
Bootstrapping og simulering Tilleggslitteratur for STK1100 Geir Storvik April 2014 1 Introduksjon Simulering av tilfeldige variable (stokastisk simulering) er et nyttig verktøy innenfor statistikk, men
TDT4105 Informasjonsteknologi, grunnkurs. Introduksjon til programmering i Matlab. Forelesningsinfo. Tider Mandag Tirsdag Onsdag Torsdag Fredag
1 Kunnskap for en bedre verden TDT4105 Informasjonsteknologi, grunnkurs Introduksjon til programmering i Matlab Amanuensis Terje Rydland Kontor: ITV-021 i IT-bygget vest (Gløshaugen) Epost: [email protected]
Løsningsforslag. Innlevering i BYFE/EMFE 1000 Oppgavesett 1 Innleveringsfrist: 14. september klokka 14:00 Antall oppgaver: 3.
Innlevering i BYFE/EMFE 1000 Oppgavesett 1 Innleveringsfrist: 14. september klokka 14:00 Antall oppgaver: 3 Løsningsforslag Oppgave 1 a) ln a ln 3 a+ln 4 a = ln a 1/2 ln a 1/3 +ln a 1/4 = 1 2 ln a 1 3
Eksamen i TMA4123/TMA4125 Matematikk 4M/N
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Faglig kontakt under eksamen: Anne Kværnø: mobil 92663824 Eksamen i TMA423/TMA425 Matematikk 4M/N Bokmål Mandag 2.
Matematikk Øvingsoppgaver i numerikk leksjon 9. Løsningsforslag
Matematikk 000 Øvingsoppgaver i numerikk leksjon 9 Løsningsforslag Oppgave Integral som en sum av rektangler a) 3 f(x) dx = 3 x 3 dx = [ ] 3 3 + x3+ = [ x 4 ] 3 4 = 34 = 20. 4 b) 0.5 f() + 0.5 f(.5) +
TDT4105 Informasjonsteknologi grunnkurs Øvingsforelesning 2. Iver Dihle Skjervum Vit.ass. ITGK
1 TDT4105 Informasjonsteknologi grunnkurs Øvingsforelesning 2 Iver Dihle Skjervum Vit.ass. ITGK 2 Program Praktisk informasjon Kollokvie If / else og logiske utrykk Funksjoner Formatert utskrift Lage et
Programmering i R. 6. mars 2004
Programmering i R 6. mars 2004 1 Funksjoner 1.1 Hensikt Vi har allerede sette på hvordan vi i et uttrykk kan inkludere kall til funksjoner som er innebygd i R slik som funksjonene sum, plot o.s.v. Generelt
Matematikk Øvingsoppgaver i numerikk leksjon 7 Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 7 Løsningsforslag Oppgave 1 Halveringsmetoden igjen a) I skriptet vårt fra leksjon 6 skal altså linje 16 erstattes med while abs(b-a)>1e-3. Når vi gjør
TDT4105 Informasjonsteknologi grunnkurs Øvingsforelesning 4. Iver Dihle Skjervum Vit.ass. ITGK
1 TDT4105 Informasjonsteknologi grunnkurs Øvingsforelesning 4 Iver Dihle Skjervum Vit.ass. ITGK 2 Program Auditorieøving Kollokvie Spørsmål fra øving 2 Matriser og operasjoner på de For løkker While løkker
Fasit eksamen i MAT102 4/6 2014
Fasit eksamen i MAT /6. (a Løs ligningssstemene. Svar: i ( x i = 3x + = 7 x + = ( 6, ii x z ii = x + z = 3x + 6 + z = +. er fri. (b Ved å bruke MATLAB-kommandoen rref på totalmatrisen til ligningssstemet
TDT4105 Informasjonsteknologi, grunnkurs (ITGK)
1 TDT4105 Informasjonsteknologi, grunnkurs (ITGK) Introduksjon til programmering i Matlab Rune Sætre [email protected] 2 Læringsmål og pensum Mål Lære om programmering og hva et program er Lære å designe
Om plotting. Knut Mørken. 31. oktober 2003
Om plotting Knut Mørken 31. oktober 2003 1 Innledning Dette lille notatet tar for seg primitiv plotting av funksjoner og visualisering av Newtons metode ved hjelp av Java-klassen PlotDisplayer. Merk at
TDT4105 Informasjonsteknologi, grunnkurs (ITGK)
1 TDT4105 Informasjonsteknologi, grunnkurs (ITGK) Introduksjon til programmering i Matlab Rune Sætre [email protected] 3 Læringsmål og pensum Mål Lære om programmering og hva et program er Lære om hvordan
Dagens tema. C-programmering. Nøkkelen til å forstå C-programmering ligger i å forstå hvordan minnet brukes.
Dagens tema Dagens tema C-programmering Nøkkelen til å forstå C-programmering ligger i å forstå hvordan minnet brukes. Adresser og pekere Parametre Vektorer (array-er) Tekster (string-er) Hvordan ser minnet
Bootstrapping og stokatisk simulering Tilleggslitteratur for STK1100
Bootstrapping og stokatisk simulering Tilleggslitteratur for STK1100 Geir Storvik April 014 1 Introduksjon Simulering av tilfeldige variable (stokastisk simulering) er et nyttig verktøy innenfor statistikk
TMA4240 Statistikk Høst 2016
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 9 Løsningsskisse Oppgave 1 a) Vi lar her Y være antall fugler som kolliderer med vindmølla i løpet av den gitte
Øvingsforelesning i Python (TDT4110)
Øvingsforelesning i Python (TDT4110) Tema: Øving 2, Betingelser, if/elif/else Kristoffer Hagen Oversikt Praktisk informasjon Gjennomgang av Øving 1 Oppgaver for Øving 2 2 Praktisk Bruke andre studasser
Matematikk Øvingsoppgaver i numerikk leksjon 5 Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon Løsningsforslag Oppgave 1 Summer og for-løkker a) 10 i=1 i = 1 + + 3 + 4 + + 6 + 7 + 8 + 9 + 10 = 1 + 4 + 9 + 16 + + 36 + 49 + 64 + 81 + 100 = 38. c) I
Utførelse av programmer, funksjoner og synlighet av variabler (Matl.)
Utførelse av programmer, funksjoner og synlighet av variabler (Matl.) Av Jo Skjermo (basert på Alf Inge Wang sin versjon om JSP). 1. Utførelse av kode i kommando/kalkulatormodus Et dataprogram består oftest
Matematikk Øvingsoppgaver i numerikk leksjon 5 Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 5 Løsningsforslag Oppgave 1 Summer og for-løkker a) 10 i=1 i = 1 + + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 1 + 4 + 9 + 16 + 5 + 36 + 49 + 64 + 81 + 100 = 385.
Øvingsforelesning 5 Python (TDT4110)
Øvingsforelesning 5 Python (TDT4110) Repetisjon av løkker og funksjoner Ole-Magnus Pedersen Oversikt Praktisk Info Gjennomgang av Øving 3 Repetisjon 2 Praktisk info Prosjekter i PyCharm må startes med
Programmeringsspråket C Del 2
Programmeringsspråket C Del 2 Michael Welzl E-mail: [email protected] 8/25/10 inf1060 1 Et eksempel Dette er lite eksempel som ber om et tall, leser det og så teller fra det ned til 0. 8/25/10 inf1060
Løse reelle problemer
Løse reelle problemer Litt mer om løkker, prosedyrer, funksjoner, tekst og innlesing fra fil INF1000, uke4 Geir Kjetil Sandve 1 Tilbakeblikk Dere bør nå beherske det sentrale fra uke 1 og 2: Uttrykk, typer,
Matematikk Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag Oppgave 1 Tredjegradslikninga a) Vi viser her hvordan det kan gjøres både som funksjonsl og som skript. Vi starter med funksjonla: 1
Fasit til eksamen i emnet MAT102 - Brukerkurs i matematikk II Mandag 21.september 2015
Fasit til eksamen i emnet MAT02 - Brukerkurs i matematikk II Mandag 2.september 205 Fasit. (a) Løs ligningssystemene. i) 5x + 7y = 4 3x + 2y = ii) 3x + 4y + z = 2 2x + 3y + 3z = 7 Svar: i) x = 85/, y =
Oblig 2 - MAT1120. Fredrik Meyer 23. september 2009 A =
Oblig - MAT Fredrik Meyer. september 9 Oppgave Linkmatrise: A = En basis til nullrommet til matrisen A I kan finnes ved å bruke MATLAB. Jeg kjører kommandoen rref(a-i) og får følge: >> rref(a-i). -.875.
TDT4105 Informasjonsteknologi, grunnkurs. Introduksjon til programmering i Matlab. Rune Sætre / Anders Christensen {satre,
1 TDT4105 Informasjonsteknologi, grunnkurs Introduksjon til programmering i Matlab Rune Sætre / Anders Christensen {satre, anders}@idi.ntnu.no 2 Frist for øving 1: Fredag 16. Sept. Noen oppstartsproblemer
Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab
Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab For grunnleggende introduksjon til Matlab, se kursets hjemmeside https://wiki.math.ntnu.no/tma4240/2015h/matlab. I denne øvingen skal vi analysere to
Fasit MAT102 juni 2016
Fasit MAT02 juni 206. (a) Finn egenverdiene og egenvektorene til matrisen ( ) 6 A = 2 7 Svar: λ = 8 og ( ) x = y y ( ) /2, λ = 5 og ( ) x = y y ( ) for alle y 0. (b) Finn den generelle løsningen på systemet
TMA4245 Statistikk Høst 2016
TMA5 Statistikk Høst 6 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving Løsningsskisse Oppgave a) Den tilfeldige variabelen X er kontinuerlig fordelt med sannsynlighetstetthet
Matematikk 1000. Øvingsoppgaver i numerikk leksjon 6. Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag Oppgave 1 Funksjoner og tangenter 2.1: 15 a) Vi plotter grafen med et rutenett: > x=-3:.1:3; > y=x.^2; > plot(x,y) > grid on > axis([-2
x λe λt dt = 1 e λx for x > 0 uavh = P (X 1 v)p (X 2 v) = F X (v) 2 = (1 e λv ) 2 = 1 2e λv + e 2λv = 2 1 λ 1 2λ = 3
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 7 Løsningsskisse Oppgave 1 a) Regner først ut den kumulative fordelingsfunksjonen til X: F X (x) = x λe λt dt
Matematikk 1000. Øvingsoppgaver i numerikk leksjon 11 Eulers metode. Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 11 Eulers metode Løsningsforslag Oppgave 1 Samanlikning med analytisk løsning y = 3 2 x y, y(0) = 1. a) Kandidat til løsning: y = e x3/2. Vi deriverer
Øvingsforelesning 5 Python (TDT4110)
Øvingsforelesning 5 Python (TDT4110) Repetisjon av løkker og funksjoner Ole-Magnus Pedersen Oversikt Praktisk Info Gjennomgang av Øving 3 Repetisjon 2 Praktisk info Prosjekter i PyCharm må startes med
Control Engineering. MathScript. Hans-Petter Halvorsen
Control Engineering MathScript Hans-Petter Halvorsen Dataverktøy MathScript LabVIEW Differensial -likninger Tidsplanet Laplace 2.orden 1.orden Realisering/ Implementering Reguleringsteknikk Serie, Parallel,
Løse reelle problemer
Løse reelle problemer Løse problemer med data fra fil, samt litt mer om funksjoner IN1000, uke6 Geir Kjetil Sandve Mål for uken Få enda mer trening i hvordan bruke løkker, samlinger og beslutninger for
Finne ut om en løsning er helt riktig og korrigere ved behov
Finne ut om en løsning er helt riktig og korrigere ved behov Finurlige feil og debugging av kode IN1000, uke5 Geir Kjetil Sandve Oppgave (Lett modifisert fra eksamen 2014) Skriv en funksjon Dersom parameteren
Løsningsforslag øving 8, ST1301
Løsningsforslag øving 8, ST3 Oppgave Hva gjør følgende funksjon? Hvilken fordeling har variabelen n som returneres som funksjonsverdi? Forklar hvorfor. Forutsett at to enkle positive tall blir oppgitt
Dagens tema. C-programmering. Nøkkelen til å forstå C-programmering ligger i å forstå hvordan minnet brukes.
Dagens tema C-programmering Nøkkelen til å forstå C-programmering ligger i å forstå hvordan minnet brukes. Adresser og pekere Parametre Vektorer (array-er) Tekster (string-er) Hvordan ser minnet ut? Variabler,
Informasjon Eksamen i IN1000 høsten 2017
Informasjon Eksamen i IN000 høsten 207 Tid 8. desember kl. 09.00 (4 timer) Faglærerne vil besøke lokalet ca kl 0. Oppgavene Oppgave 2b og 2c er flervalgsoppgaver. Her får man det angitte antall poeng om
Læringsmål og pensum. Oversikt
1 2 Læringsmål og pensum TDT4105 Informasjonsteknologi grunnkurs: Uke 39 Betingede løkker og vektorisering Læringsmål Skal kunne forstå og programmere betingede løkker med while Skal kunne utnytte plassallokering
Matematikk Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag Oppgave 1 Summer og for-løkker a) 10 i=1 i 2 = 1 2 + 2 2 + 3 2 + 4 2 + 5 2 + 6 2 + 7 2 + 8 2 + 9 2 + 10 2 = 1 + 4 + 9 + 16 + 25 + 36
Stive differensialligninger
Stive differensialligninger Dette notatet er egentlig en fortsettelse av notatet om ordinære differensialligninger. Vi kommer til å bruke kodene utviklet i det notatet i dette også. For å bedre flyten
Punktestimator. STK Bootstrapping og simulering - Kap 7 og eget notat. Bootstrapping - eksempel Hovedide: Siden λ er ukjent, bruk ˆλ:
Punktestimator STK00 - Bootstrapping og simulering - Kap 7 og eget notat Geir Storvik 8. april 206 Trekke ut informasjon om parametre fra data x,..., x n Parameter av interesse: θ Punktestimator: Observator,
TDT4105 Informasjonsteknologi, grunnkurs. Introduksjon til programmering i Matlab. Rune Sætre / Anders Christensen {satre, anders}@idi.ntnu.
1 TDT4105 Informasjonsteknologi, grunnkurs Introduksjon til programmering i Matlab Rune Sætre / Anders Christensen {satre, anders}@idi.ntnu.no 2 Frist for øving 1: Fredag 11. Sept. Noen oppstartsproblemer
Vektorer. Dagens tema. Deklarasjon. Bruk
Dagens tema Dagens tema Deklarasjon Vektorer Vektorer (array-er) Tekster (string-er) Adresser og pekere Dynamisk allokering Alle programmeringsspråk har mulighet til å definere en såkalte vektor (også
Dette kan selvfølgelig brukes direkte som en numerisk tilnærmelse til den deriverte i et gitt punkt.
Numerisk derivasjon Anne Kværnø Problemstilling Gitt en tilstrekkelig glatt funksjon. Finn en tilnærmelse til i et gitt punkt. Den deriverte av (https://wiki.math.ntnu.no/tma4100/tema/differentiation?
lage og bruke funksjoner som tar argumenter lage og bruke funksjoner med returverdier forklare forskjellen mellom globale og lokale variabler
42 Funksjoner Kapittel 4 Funksjoner Etter dette kapitlet skal du kunne lage og bruke enkle funksjoner lage og bruke funksjoner som tar argumenter lage og bruke funksjoner med returverdier forklare forskjellen
EKSAMENSOPPGAVE / EKSAMENSOPPGÅVE
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE / EKSAMENSOPPGÅVE Eksamen i: Inf-1049, Introduksjon til beregningsorientert programmering Dato: 14. desember 2018 Klokkeslett: 09.00 13.00 Sted
11. september Institutt for geofag Universitetet i Oslo. GEO En Introduksjon til MatLab. Kapittel 5 (del 2) Ada Gjermundsen
, Institutt for geofag Universitetet i Oslo 11. september 2012 Litt repetisjon: Array, En array er en variabel som inneholder flere objekter (verdier) En endimensjonal array er en vektor En array med to
Matematikk Øvingsoppgaver i numerikk leksjon 8. Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 8 Løsningsforslag Oppgave 1 Riemann-summer a) b) f(x) = 1/x P = {1, 6/5, 7/5, 8/5, 9/5, 2} S = {6/5, 7/5, 8/5, 9/5, 2} (x i = x i ) Her kan partisjon og
START MED MATLAB. Når du starter Matlab, kommer du inn i kommandovinduet. Dersom du har versjon 6.1, ser du dette :
1 START MED MATLAB Disse sidene er hovedsakelig ment for dem som ikke har brukt Matlab eller som trenger en oppfriskning. Start fra toppen og gå systematisk nedover. I tillegg brukes Matlablefsa. Noe av
Høgskolen i Oslo og Akershus. a) Finn den deriverte av disse funksjonene: b) Finn disse ubestemte integralene: c) Finn disse bestemte integralene:
Oppgave 1 a) Finn den deriverte av disse funksjonene: i) f(x) = x x 2 + 1 ii) g(x) = ln x sin x x 2 b) Finn disse ubestemte integralene: i) (2x + ) dx ii) 6 cos(x) sin 5 (x) dx c) Finn disse bestemte integralene:
Løsningsforslag Eksamen S2, våren 2016 Laget av Tommy Odland Dato: 29. januar 2017
Løsningsforslag Eksamen S, våren 016 Laget av Tommy Odland Dato: 9. januar 017 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere f(x) = e x. Den generelle regelen er at (e ax ) = ae ax, i vårt tilfelle
TDT4105 Informasjonsteknologi, grunnkurs. Mer om funksjoner: - rekursive funksjoner
1 TDT4105 Informasjonsteknologi, grunnkurs Mer om funksjoner: - rekursive funksjoner Pensum: 10.5 i Matlab-boka 10.1-10.4 er orienteringsstoff og ikke aktuelt til eksamen Kunnskap for en bedre verden Amanuensis
TDT4105 Informasjonsteknologi, grunnkurs MatLab: Filbehandling - load, save, type - fopen, fgetl, feof, fprintf, fclose
1 TDT4105 Informasjonsteknologi, grunnkurs MatLab: Filbehandling - load, save, type - fopen, fgetl, feof, fprintf, fclose Anders Christensen ([email protected]) Rune Sætre ([email protected]) TDT4105 IT Grunnkurs
TMA4122/TMA4130 Matematikk 4M/4N Høsten 2010
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4122/TMA410 Matematikk 4M/4N Høsten 2010 1 Oppgave: Løs følgende ligningssystemer ved hjelp av Gauss-eliminasjon med delvis
Matematikk Øvingsoppgaver i numerikk leksjon 4 Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 4 Løsningsforslag Oppgave 1 Funksjonsler b) Kommandoen ` help FunksjonenMin' gjør at dette blir skrevet til skjerm: Funksjonen f(x)=sin(x) - x^. Funksjonen
Matematikk Øvingsoppgaver i numerikk leksjon 5 for-løkker
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 5 for-løkker I dette settet skal vi introdusere for-løkker. Først vil vi bruke for-løkker til å regne ut summer. Vi skal også se på hvordan vi kan implementere
Løsningsforslag eksamen i TMA4123/25 Matematikk 4M/N
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 8 Løsningsforslag eksamen i TMA3/5 Matematikk M/N Mandag. mai TMA3 Matematikk M; Alt unntatt oppgave 5 (Laplace. TMA5
Noen MATLAB-koder. 1 Plotte en vanlig funksjon. Fredrik Meyer. 23. april 2013
Noen MATLAB-koder Fredrik Meyer 23. april 2013 1 Plotte en vanlig funksjon Anta at f : [a, b] R er en vanlig funksjon. La for eksempel f(x) = sin x+x for x i intervallet [2, 5]. Da kan vi bruke følgende
Programmeringsspråket C Del 3
Programmeringsspråket C Del 3 Michael Welzl E-mail: [email protected] 29.08.13 inf1060 1 Dynamisk allokering Ofte trenger man å opprette objekter under kjøringen i tillegg til variablene. Standardfunksjonen
Dagens tema INF1070. Vektorer (array er) Tekster (string er) Adresser og pekere. Dynamisk allokering
Dagens tema Vektorer (array er) Tekster (string er) Adresser og pekere Dynamisk allokering Dag Langmyhr,Ifi,UiO: Forelesning 23. januar 2006 Ark 1 av 23 Vektorer Alle programmeringsspråk har mulighet til
