Oppgave 8.1 fra COD2e
|
|
|
- Ole-Kristian Berge
- 9 år siden
- Visninger:
Transkript
1 Oppgave 8.1 fra COD2e To systemer brukes for transaksjonsprosessering: A kan utføre 1000 I/O operasjoner pr. sekund B kan utføre 750 I/O operasjoner pr. sekund Begge har samme prosessor som kan utføre 50 mill. instruksjoner pr. sekund. Hver transaksjon består av 5 I/O operasjoner, og hver I/O operasjon trenger instruksjoner. Hva er den maksimale transaksjonsraten disse to systemene kan opprettholde, hvis en ser bort ifra responstid og tillater vilkårlig overlapp mellom transaksjoner? CPU en kan håndtere 50E6/( ) = 1000 transaksjoner/s, men på maskin A er I/O begrenset til 1000/5 = 200 transaksjoner/s og maskin B er begrenset til 750/5 = 150 transaksjoner/s. Da hjelper det ikke at prosessorene er raskere!
2 Oppgave 8.4 fra COD2e Hvor store må meldingene være for at ATM skal være dobbelt så rask som Ethernet? Jo, når trans time E = 2 (623 + trans time A) dvs X/1.125 = 2 (623 + X/10) Dette gir X = 1138 bytes Eksempel på side 654 Characteristic Bandwidth from node to network Interconnect latency HW latency to/from network SW overhead sending to network SW overhead receiving from network Ethernet MB/sec 15µs 6µs 200µs 241µs ATM 10MB/sec 50µs 6µs 207µs 360µs pakkestørrelse: 250 byte overføringstid: pakkestørelse/overføringshastighet total forsinkelse: overføringstid + HW/SW forsinkelser overføringstid for Ethernet : 222µs overføringstid for ATM : 25µs total forsinkelse for Ethernet : 684µs total forsinkelse for ATM : 648µs Hvorfor?
3 Oppgave 8.5 fra COD2e Lysets hastighet er ca. 3E8 meter/s og elektriske signaler har ca. 50 % av denne hastigheten i en leder. Hvor lenge befinner en elektrisk signal seg på hhv. en kabel på 100 m og en på 5000 km? Jo, 100 meter kabel: 100 / (0,5 3E8) = 0,67 µs 5000 km kabel: 5000E3 / (0,5 3E8) = s Dette er «flight time», altså den tiden «noe» (en flanke) er på ledningen. Altså er «latency» fra eksemplet på side 654 dominert av helt andre ting!
4 Oppgave 8.6 fra COD2e Antall byte «i transit» er definert som «flight time» levert båndbredde. Hvor mange byte er da «i transit» for de to nettverkene i forrige oppgave hvis den leverte båndbredden er 5MB/s? Jo, 0,67 µs 5MB/s = 3,35 byte er «i transit» på kabelen på 100 m s 5MB/s = byte er «i transit» på kabelen på 5000 km
5 Oppgave 8.7 fra COD2e Overvåking av 100 mobiltelefoner over et nettverk med en båndbredde på 1 MB/s, der det er en overhead på 350µs for en melding på 1KB, og hver telefonsamtale samples med 16 bit med en samplingsfrekvens på 4KHz. Beregn overføringstid per melding og avgjør om det er tilstrekkelig båndbredde for denne anvendelsen. Mengde data som skal overføres: 2B 4KHz 100samtaler = B/s Tid for å overføre en pakke på 1KB: 1KB/1MB/s = 0,001s + Ekstra overhead pr. 1KB = 0,001s + 0,00035 s = 0,00135 s Overføring av 800 pakker, hver på 1KB: 800 0,00135 s = 1,08 s Altså må nettverket pr. sekund overføre data som krever 1.08 sekunder for å overføres! Dette går altså ikke!
6 Oppgave 8.8 fra COD2e Programmet utfører følgende proses på tre trinn: 1) les inn en blokk på 4 KB fra disk 2) prosesser data i blokken 3) skriv blokken tilbake til disk (på et annet sted) Hver blokk er ligger kontinuerlig på disken, og hver blokk er plassert på et tilfeldig spor på disken. Disken roterer med en hastighet på 7200 RPM, gjennomsnittlig søketid er 8 ms, overføringsraten er 20MB/s, og diskkontrolleren bidrar med 2 ms overhead. Prosesseringen bruker 20 millioner klokkesykler pr. blokk, og prosessorens klokkerate er 400 MHz. Hva er hastigheten til systemet i form av antall blokker prosessert pr. sekund? Gjennomsnittlig aksesstid for disken (se side 648): 8ms + 4,2ms + 0,2ms + 2ms = 14.4 ms Dette gjøres både for read og write, altså 2 ganger. I tillegg kommer prosesseringen (20E6/400E6 s = 50ms). Totalt blir tiden pr. blokk da: 2 14,4 ms + 50 ms = 78.8ms. Antall slike som kan utføres pr. sekund: 1s/78.8ms = 12,7
7 Oppgave 8.9 fra COD2e Et transaksjonsprosesseringssystem benytter et nettverk til å transportere meldinger av to størrelser, forespørsler (request) på 10 byte og svar (responser) på 150 byte. Hvilket av nettverkene i eksemplet på side 654 har best ytelse, hvis hver transaksjon består av én forespørsel og et svar? Latency for Ethernet : transmisjonstiden (µs) Latency for ATM : transmisjonstiden (µs) transmisjonstider for Ethernet: 8,9 µs og 133,3µs transmisjonstider for ATM : 1 µs og 15 µs total latency for Ethernet: 2 462µs + 8,9µs + 133,3 µs = 1066,2 µs total latency for ATM: 2 623µs + 1µs + 15µs = 1262 µs Altså vinner Ethernet siden latency (forsinkelsen) er minst!
8 Operativsystem, multiprogrammering og avbrudd Køer: event venter på signal etc run kjørbare disk venter på side fra disk passiv ikke kjørbare kommandoer til disk pagein/pageout kommandoer klokkeavbrudd tastetrykk TLB miss pause() run kø hent neste fra run kø restore til CPU RFE konsumer fra disk op passiv kø sem_signal( semafor ) lagre event i event kø side i DRAM? ja TLB flytt fra disk kø til run kø nei semafor ledig? ja return flytt ventere fra passiv kø til run kø nei finn fysisk side (evt. pageout) page table kø disk op disk kø pid med sig kill( pid, sig ) disk sem_wait( semafor ) Når noe skjer som bringer kontrollen over til fordeleren er det nødvendig å lagre unna registre for å skape plass for den prosesseringen som behandlingen medfører. Når en page fault opptrer så må ikke bare den aktuelle siden bli hentet inn fra disk. Operativsystemet må også finne plass i den fysiske hukommelsen for siden som kommer fra disk [replacement]. Noen operativsystemer vil passe på å ha ledig plass mesteparten av tiden, for å ligge i forkant av fremtidige pagein operasjoner. Til hver prosess finnes det en «Process Control Block». Dette er en datastruktur (identifisert ved PID) som lagrer alt som vedkommer prosessen, f.eks. utestående signaler fildescriptorer sidetabell programmerbar tilstand når prosessen ikke kjører Når en prosess flyttes mellom køer så ligger PCB en fast i hukommelsen, men referanser til den flyttes omkring.
9 klokkeavbrudd tastetrykk TLB miss run kø side i DRAM? nei hent neste fra run kø lagre event i event kø ja TLB finn fysisk side (evt. pageout) restore til CPU kø disk op RFE disk kø konsumer fra disk op flytt fra disk kø til run kø page table disk passiv kø nei semafor ledig? ja sem_wait( semafor ) pause() return pid med sig sem_signal( semafor ) flytt ventere fra passiv kø til run kø kill( pid, sig )
! Ytelsen til I/O- systemer avhenger av flere faktorer: ! De to viktigste parametrene for ytelse til I/O er:
Dagens temaer! Ulike kategorier input/output! Programmert! Avbruddstyrt! med polling.! Direct Memory Access (DMA)! Asynkrone vs synkrone busser! Med! Fordi! -enheter menes de enheter og mekanismer som
INF2270. Input / Output (I/O)
INF2270 Input / Output (I/O) Hovedpunkter Innledning til Input / Output Ulike typer I/O I/O internt i datamaskinen I/O eksternt Omid Mirmotahari 3 Input / Output En datamaskin kommuniserer med omverdenen
Dagens temaer. Kort repetisjon. Mer om cache (1) Mer om cache (2) Read hit. Read miss. Write hit. Hurtig minne. Cache
Dagens temaer Dagens emner er hentet fra Englander kapittel side 338-35 (gammel utgave). Mer om design av cache. Kort repetisjon er en spesiell type rask hukommelse som inneholder et subsett av det som
Dagens tema. Flere teknikker for å øke hastigheten
Dagens tema Flere teknikker for å øke hastigheten Cache-hukommelse del 1 (fra kapittel 6.5 i Computer Organisation and Architecture ) Hvorfor cache Grunnleggende virkemåte Direkte-avbildet cache Cache-arkitekturer
Dagens temaer. Dagens emner er hentet fra Englander kapittel 11 (side ) Repetisjon av viktige emner i CPU-design.
Dagens temaer Dagens emner er hentet fra Englander kapittel 11 (side 327-344 ) Repetisjon av viktige emner i CPU-design. Flere teknikker for å øke hastigheten Cache 03.10.03 INF 103 1 Hvordan øke hastigheten
INF2270. Input / Output (I/O)
INF2270 Input / Output (I/O) Hovedpunkter Innledning til Input / Output Ulike typer I/O I/O internt i datamaskinen I/O eksternt Omid Mirmotahari 3 Input / Output En datamaskin kommuniserer med omverdenen
Singletasking OS. Device minne Skjerm minne. Brukerprogram. Brukerdata/heap. Stack. Basis for flerprosess-systemer.
-OS i i L1 og L2 og og Basis for flerprosess-systemer. Adresser.. 2 1 0 OS Device minne Skjerm minne Brukerprogram Brukerdata/heap Stack Stack: brukes bl. a. til å lagre adressen som skal returneres til
hukommelse (kapittel 9.9 i læreboken) Dagens temaer Input-Output INF 1070
1 Dagens temaer Virtuell hukommelse (kapittel 9.9 i læreboken) Input-Output Virtuell hukommelse 2 Ofte trenger et program/prosess mer RAM enn det som er tilgjengelig fysisk i maskinen Et program deler
Eksamensoppgave i TDT4258 Energieffektive datamaskinsystemer
Institutt for datateknikk og informasjonsvitenskap Eksamensoppgave i TDT4258 Energieffektive datamaskinsystemer Faglig kontakt under eksamen: Asbjørn Djupdal Tlf.: 909 39452 Eksamensdato: 29. mai 2013
INF2270. Minnehierarki
INF2270 Minnehierarki Hovedpunkter Bakgrunn Kort repetisjon Motivasjon Teknikker for hastighetsøkning Multiprosessor Økt klokkehastighet Raskere disker Økt hurtigminne Bruksområder Lagringskapasitet Aksesstider
Dagens tema. Mer om cache-hukommelse Kapittel 6.5 i Computer Organisation and Architecture ) RAM. Typer, bruksområder og oppbygging 2008 ROM
Dagens tema Mer om cache-hukommelse Kapittel 6.5 i Computer Organisation and Architecture ) RAM ROM Typer, bruksområder og oppbygging Typer, bruksområder og oppbygging Virtuell hukommelse (kapittel 9.9
Hukommelseshierarki. 16/3 cache 7.1 7.2. 23/3 virtuell hukommelse 7.3 7.5. in 147, våren 1999 hukommelseshierarki 1
Hukommelseshierarki når tema pensum 16/3 cache 7.1 7.2 23/3 virtuell hukommelse 7.3 7.5 in 147, våren 1999 hukommelseshierarki 1 Tema for denne forelesningen: en enkel hukommelsesmodell hukommelseshierarki
Dagens temaer. Cache (repetisjon) Cache (repetisjon) Cache (repetisjon)
Dagens temaer Cache (repetisjon) Mer om cache-hukommelse (kapittel 6.5 i Computer Organisation and Architecture ) Typer, bruksområder og oppbygging ROM Typer, bruksområder og oppbygging Hukommelsesbusser
TDT4258 Eksamen vår 2013
Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Side 1 av 8 TDT4258 Eksamen vår 2013 Løsningsforslag Oppgave 1 Flervalgsoppgave (16 poeng) Du får 2 poeng
Scheduling og prosesshåndtering
Scheduling og prosesshåndtering Håndtering av prosesser i et OS OS må kontrollere og holde oversikt over alle prosessene som kjører på systemet samtidig Prosesshåndteringen må være: Korrekt Robust Feiltolerant
HØGSKOLEN I SØR-TRØNDELAG Avdeling for informatikk og e-læring
HØGSKOLEN I SØR-TRØNDELAG Avdeling for informatikk og e-læring Eksamensdato: 26. mai 2004 Varighet: 0900-200 Fagnummer: LO249D Fagnavn: Operativsystemer med Linux Klasse(r): ing, hk, fu Studiepoeng: 6
Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1060 Introduksjon til operativsystemer og datakommunikasjon Eksamensdag: 7. desember 2007 Tid for eksamen: 14.30 17.30 Oppgavesettet
Innhold. Virtuelt minne. Paging i mer detalj. Felles rammeverk for hukommelseshierarki. 02.04.2001 Hukommelseshierarki-2 1
Innhold Virtuelt minne Paging i mer detalj Felles rammeverk for hukommelseshierarki 02.04.200 Hukommelseshierarki-2 Virtuelt minne Lagringskapasiteten i RAM må deles mellom flere ulike prosesser: ûoperativsystemet
Oppsummering: Linjesvitsjing kapasiteten er reservert, og svitsjing skjer etter et fast mønster. Linjesvitsj
Oppsummering: Linjesvitsjing kapasiteten er reservert, og svitsjing skjer etter et fast mønster Linjesvitsj Pakkesvitsjing Ressursene er ikke reservert; de tildeles etter behov. Pakkesvitsjing er basert
TDT4160 Datamaskiner Grunnkurs 2011. Gunnar Tufte
1 TDT4160 Datamaskiner Grunnkurs 2011 Gunnar Tufte 2 Lager 2.1 2.2 Hard disc Tape storage RAM Module Optical disc Register bank Core memory 3 Ein-prosessor maskin 4 Lager og prosessor overordna Tape Optical
Dagens temaer. Mer om cache-hukommelse (kapittel 6.5 i Computer Organisation and Architecture ) RAM ROM. Hukommelsesbusser
Dagens temaer Mer om cache-hukommelse (kapittel 6.5 i Computer Organisation and Architecture ) RAM Typer, bruksområder og oppbygging ROM Typer, bruksområder og oppbygging Hukommelsesbusser 1 Cache (repetisjon)
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1060 Introduksjon til operativsystemer og datakommunikasjon Eksamensdag: 8. desember 2004 Tid for eksamen: 14.30 17.30 Oppgavesettet
Tonje Thøgersen, Daniel Svensen Sundell, Henrik Smedstuen
Oppgave lab Tonje Thøgersen, Daniel Svensen Sundell, Henrik Smedstuen Vi anbefaler at du setter deg litt inn i maskinen pa forha nd. Det er en DELL Optiplex 620. Søk etter denne maskinen pa nettet. Alle
Del 2. Bak skallet. Avsette minne til et spesifikt OS Teste harddisk under oppstart Sette opp system logger
Del 1 Setup - BIOS Setup programmet brukes til å endre konfigurasjonen av BIOS og til å vise resultatene fra oppstartsprogrammet i BIOS. Vi kan bruke Setup programmet til å kontrollere at maskinen kan
Høgskolen i Molde Institutt for Informatikk Eksamen in270: Datakommunikasjon Våren 2003 Skisse til svar:
Høgskolen i Molde Institutt for Informatikk Eksamen in27: Datakommunikasjon Våren 23 Skisse til svar: Dato: 4.6.23, 6 timer skriftlig Hjelpemidler: Kalkulator (tomt minne) Oppgavesettet består av tre (3)
Computer Networks A. Tanenbaum
Computer Networks A. Tanenbaum Kjell Åge Bringsrud (med foiler fra Pål Spilling) Kapittel 1, del 2 INF3190 Våren 2004 Kjell Åge Bringsrud; kap.1 Foil 1 Direkte kommunikasjon: dedikert punkt-til-punkt samband
IN1020. Minnehierarki
IN1020 Minnehierarki Hovedpunkter Bakgrunn Kort repetisjon Motivasjon Teknikker for hastighetsøkning Multiprosessor Økt klokkehastighet Raskere disker Økt hurtigminne Bruksområder Lagringskapasitet Aksesstider
Fakultet for informasjonsteknologi, Oppgave 1 Flervalgsspørsmål ( multiple choice ) 15 %
Side 1 av 10 NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap Løsningsforslag til
Innhold. Oppgave 1 Oversettelse (vekt 15%)
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 147 Program- og maskinvare Eksamensdag: 29. mai 2001 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 10 sider. Vedlegg: Tillatte
TDT4160 Datamaskiner Grunnkurs 2008. Gunnar Tufte
1 TDT4160 Datamaskiner Grunnkurs 2008 Gunnar Tufte 2 Auka yting 3 Auka yting CPU 4 Parallellitet Essensielt for å øke ytelse To typer: 1) Instruksjonsnivåparallellitet Fleire instruksjonar utføres samtidig
SLA og KPIer i skytjenester
SLA og KPIer i skytjenester 26.11.2018 Håvard Reknes [email protected] Styringsparametere for skytjenester A. Generelle krav til tjenestenivå KPI Grunnleggende tjenester - Tilgjengelighet - Vedlikeholdstid
Cache (repetisjon) Cache (repetisjon) Cache (repetisjon) Dagens temaer. CPU Cache RAM. om cache-hukommelse (kapittel 6.5 i Computer Organisation
Dagens temaer Mer om cache-hukommelse (kapittel 6.5 i Computer Organisation and Architecture ) bruksområder og oppbygging ROM bruksområder og oppbygging Hukommelsesbusser Typer, Typer, Cache (repetisjon)
Internminnet. Håkon Tolsby. 22.09.2014 Håkon Tolsby
Internminnet Håkon Tolsby 22.09.2014 Håkon Tolsby 1 Innhold: Internminnet RAM DRAM - SDRAM - DDR (2og3) ROM Cache-minne 22.09.2014 Håkon Tolsby 2 Internminnet Minnebrikkene som finnes på hovedkortet. Vi
bruksområder og oppbygging om cache-hukommelse (kapittel 6.5 i Computer Organisation Dagens temaer and Architecture ) ROM RAM
1 Dagens temaer Mer om cache-hukommelse (kapittel 6.5 i Computer Organisation and Architecture ) RAM Typer, bruksområder og oppbygging ROM Typer, bruksområder og oppbygging 2 Cache (repetisjon) Formål:
Hvorfor lære om maskinvare*?
Litt om maskinvare Hvorfor lære om maskinvare*? Hovedoppgaven til et OS er å styre maskinvare Må ha grunnleggende kjennskap til maskinvare for å forstå hvordan OS fungerer Skal bare se på grunnleggende
Innhold. Introduksjon til parallelle datamaskiner. Ulike typer parallelle arkitekturer. Prinsipper for synkronisering av felles hukommelse
Innhold Introduksjon til parallelle datamaskiner. Ulike typer parallelle arkitekturer Prinsipper for synkronisering av felles hukommelse Multiprosessorer koblet sammen av én buss 02.05 2001 Parallelle
Dagens temaer. Fra kapittel 4 i Computer Organisation and Architecture. Kort om hurtigminne (RAM) Organisering av CPU: von Neuman-modellen
Dagens temaer Fra kapittel 4 i Computer Organisation and Architecture Kort om hurtigminne (RAM) Organisering av CPU: von Neuman-modellen Register Transfer Language (RTL) Instruksjonseksekvering Pipelining
D: Ingen trykte eller håndskrevne hjelpemiddel tillatt. Bestemt, enkel kalkulator tillatt.
Side 1 av 5 Norges teknisk-naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Løsningsforslag til EKSAMENSOPPGAVE I FAG TDT4186 OPERATIVSYSTEMER Versjon: 17.jan 2013 Faglig
Datamaskinens oppbygning
Datamaskinens oppbygning Håkon Tolsby 18.09.2014 Håkon Tolsby 1 Innhold Hovedenheten Hovedkort Prosessor CISC og RISC 18.09.2014 Håkon Tolsby 2 Datamaskinens bestanddeler Hovedenhet Skjerm Tastatur Mus
DAT 103 - kandidatnummer: 142
DAT 103 - kandidatnummer: 142 Oppgave 1: 1) B 2) B 3) A 4) A 5) D 6) C 7) B 8) C 9) A 10) D Oppgave 2: a) Et operativsystem er en samling av systemprogrammer og brukes som et bindeledd mellom brukerprogrammer
HØGSKOLEN I SØR-TRØNDELAG
HØGSKOLEN I SØR-TRØNDELAG Eksamensdato: 26. mai 25 Varighet: 3 timer ( 9: 12: ) Avdeling for informatikk og e-læring Fagnummer: Fagnavn: LO249D Operativsystemer med Linux Klasser: BADR 1. ING FU Studiepoeng:
Tildeling av minne til prosesser
Tildeling av minne til prosesser Tildeling av minne til prosesser OS må hele tiden holde rede på hvilke deler av RAM som er ledig/opptatt Når (asynkrone) prosesser/run-time system krever tildeling av en
IT1101 Informatikk basisfag, dobbeltime 18/9. Kommunikasjon med perifere enheter. Kontrollere. Kontrollere (2) I/O-instruksjoner
IT1101 Informatikk basisfag, dobbeltime 18/9 I dag: Kommunikasjon med perifere enheter (på maskinspråknivå) Kommunikasjonsrater Kommunikasjonsfeil Feildetektering Feilkorrigering (Hammingdistanse) Operativsystemer
1)Gjør om desimal tallene til binære: a) 4 =0100. b) 17 = c) 34 = d) 128 = e) 255 =
1)Gjør om desimal tallene til binære: a) 4 b) 17 c) 34 =0100 d) 128 e) 255 = 0001 0001 = 0001 0010 =1000 0000 =1111 1111 2) Gjør om de binære tallene til desimal og heksadesimal. a) 1010 b) 101011001 c)
D: Ingen trykte eller håndskrevne hjelpemiddel tillatt. Bestemt, enkel kalkulator tillatt.
Side 1 av 8 Norges teknisk-naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Løsningsforslag til EKSAMENSOPPGAVE I FAG TDT4186 OPERATIVSYSTEMER Versjon: 13.des 2011 Faglig
TwidoSuite kommunikasjon
TwidoSuite kommunikasjon TwidoSuite kursunderlag: Kommunikasjon via Modbus seriell, Ethernet, Remote link, ASCII, CanOpen og AS-i. Macroer for kommunikasjon Modbus 2 Modbus port Bruk programmeringsporten
hvor mye hurtigminne (RAM) CPU en kan nyttiggjøre seg av. mens bit ene betraktet under ett kalles vanligvis et ord.
Oppbygging av RAM Sentrale begreper er adresserbarhet og adresserom Adresserbarhet: Antall bit som prosessoren kan tak samtidig i én operasjon (lese- eller skrive-operasjon). 9.. INF Antall bit som kan
Tildeling av minne til prosesser
Tildeling av minne til prosesser Tildeling av minne til en prosess Når en ny prosess opprettes har den et krav til hvor mye minne som skal reserveres for prosessen Memory Management System (MMS) i OS må
Eksamensoppgave i TDT4225 Lagring og behandling av store datamengder Kontinuasjonseksamen
Institutt for datateknikk og informasjonsvitenskap Eksamensoppgave i TDT4225 Lagring og behandling av store datamengder Kontinuasjonseksamen Faglig kontakt under eksamen: Kjell Bratbergsengen Tlf.: 906
Prosesstabeller (PCB - Prosess Control Block) Se på PD: kommandoene ps og top Bakgrunnsprosesser Opprettelse av prosesser:
Prosesser i Prosesstabeller (PCB - Prosess Control Block) Se på PD: kommandoene ps og top Bakgrunns Opprettelse av : fork og exec pid og ppid Foreldre, barn og barnebarn Utførelse av kommando i Eksempler
Internminnet. Håkon Tolsby Håkon Tolsby
Internminnet Håkon Tolsby 26.09.2017 Håkon Tolsby 1 Innhold: Internminnet RAM DRAM - SDRAM - DDR (2, 3, 4, 5) ROM Cache-minne 26.09.2017 Håkon Tolsby 2 Internminnet Minnebrikkene som finnes på hovedkortet.
Oppgave 2: Gå til roten (/) av systemet. Finn minst tre forskjellige måter å gå tilbake til hjemmekatalogen din på.
Løsningsforslag for oppgavene i operativsystemer, uke 43 (18.10-22.10) På terminalstue: Oppgave 1: List alle filer og kataloger under XVUELQ som har filnavn som begynner på b. OVXVUELQE Oppgave 2: Gå til
Setup programmet brukes til å endre konfigurasjonen av BIOS og til å vise resultatene fra
Laboppgave Del 1 Setup - BIOS Setup programmet brukes til å endre konfigurasjonen av BIOS og til å vise resultatene fra oppstartsprogrammet i BIOS. Vi kan bruke Setup programmet til å kontrollere at maskinen
Innhold. Oversikt over hukommelseshierakiet. Ulike typer minne. Innledning til cache. Konstruksjon av cache. 26.03.2001 Hukommelseshierarki-1 1
Innhold Oversikt over hukommelseshierakiet Ulike typer minne Innledning til cache Konstruksjon av cache 26.03.2001 Hukommelseshierarki-1 1 Hukommelseshierarki Ønsker ubegrenset mye minne som er like raskt
HØGSKOLEN I SØR-TRØNDELAG
HØGSKOLEN I SØR-TRØNDELAG Eksamensdato: 21. desember 2005 Varighet: 3 timer ( 9:00 12:00 ) Avdeling for informatikk og e-læring Fagnummer: Fagnavn: LO249D Operativsystemer med Linux Klasser: FU (1. ING)
Antall sider:5 (Inkludert denne) Alle skrevne og trykte hjelpemidler samt kalkulator
Avdeling for ingeniørutdanning Fag: lnformatikkm Groppe(r): 2ET Ek~nsoppgaveD består av Tillatte hjelpemidler: Antall sider:5 (Inkludert denne) Fagnr: SO654E Dato: 11.06.2002 Antall oppgaver: 7 Faglig
PXT: Hermegåsa. Introduksjon. Skrevet av: Felix Bjerke og Tjerand Silde
PXT: Hermegåsa Skrevet av: Felix Bjerke og Tjerand Silde Kurs: Microbit Introduksjon Hermegåsa er et spill der en person er spilleder, og går ut på at han utfører instruksjoner på micro:biten sin som de
PXT: Hermegåsa. Steg 1: Sjekk at du har riktig utstyr. Sjekkliste. Introduksjon
PXT: Hermegåsa Nybegynner Micro:bit Introduksjon Hermegåsa er et spill der en person er spilleder, og går ut på at han utfører instruksjoner på micro:biten sin som de andre spillerene skal gjenta, altså
Dagems temaer. kapittel 4 i Computer Organisation and Architecture. av CPU: von Neuman-modellen. Transfer Language (RTL) om hurtigminne (RAM)
Dagems temaer Fra Kort Organisering Register kapittel 4 i Computer Organisation and Architecture om hurtigminne (RAM) av CPU: von Neuman-modellen Transfer Language (RTL) Instruksjonseksekvering Pipelining
Lars Vidar Magnusson. October 11, Lars Vidar Magnusson () Forelesning i Operativsystemer October 11, / 28
Tråder Lars Vidar Magnusson October 11, 2011 Lars Vidar Magnusson () Forelesning i Operativsystemer 09.09.2011 October 11, 2011 1 / 28 Oversikt Tråder 1 Tråder Introduksjon Multithreading Prosesser og
Gjennomgang av kap. 1-4. Kommunikasjonsformer Typer av nettverk Adressering og routing Ytelse Protokoller
Uke 6 - gruppe Gjennomgang av kap. 1-4 Kommunikasjonsformer Typer av nettverk Adressering og routing Ytelse Protokoller Gruppearbeid Diskusjon Tavle Gi en kort definisjon av følgende: 1. Linje/pakkesvitsjing
Eksamensoppgave i TDT4258 Energieffektive Datamaskinsystemer
Institutt for Datateknikk og Informasjonsvitenskap Eksamensoppgave i TDT4258 Energieffektive Datamaskinsystemer Faglig kontakt under eksamen: Magnus Jahre Tlf.: 952 22 309 Eksamensdato: 19. Mai 2014 Eksamenstid
Operativsystemets ansvar er å koordinere. programmers bruk av I/O
Operativsystemets ansvar er å koordinere programmers bruk av systemet blir delt av flere programmer som også deler prosessoren bruker ofte avbrudd for å melde tilbake om status til operasjoner avbrudd
Forelesning Instruksjonstyper Kap 5.5
TDT4160 Datamaskiner Grunnkurs Forelesning 22.11 Instruksjonstyper Kap 5.5 Dagens tema Instruksjonstyper (5.5) Datatransport Datamanipulering Betingede hoppinstruksjoner Prosedyrekall Løkker I/O Eksempler
Memory Access) Figure: DMA kommuniserer med disk-controlleren og sørger for at det OS ønsker blir kopiert mellom harddisken og internminnet.
I 3 og CPU DMA Direct Memory Access RAM Harddisk Disk Cache Disk Controller System buss Figure: DMA kommuniserer med disk-controlleren og sørger for at det OS ønsker blir kopiert mellom harddisken og internminnet.
Dagens temaer. Virtuell hukommelse. Sidetabell. Virtuell hukommelse (forts.)
Dagens temaer Virtuell hukommelse Virtuell hukommelse (kapittel 9.9 i læreboken) Pentium-arkitekturen i mer detalj Ofte trenger et program/prosess mer RAM enn det som er tilgjengelig fysisk i maskinen
Faglig kontakt under eksamen: Orestis Gkorgkas
Side 1 av 5 Norges teknisk-naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Løsningsforslag til EKSAMENSOPPGAVE I FAG TDT4186 OPERATIVSYSTEMER Faglig kontakt under eksamen:
Oppgave lab. 2. Hvor mye Internminne har den? - Maskinen har 2GB internminne.
Oppgave lab Vi anbefaler at du setter deg litt inn i maskinen på forhånd. Det er en DELL Optiplex 620. Søk etter denne maskinen på nettet. Alle oppgavene skal dokumenteres på din studieweb med tekst og
IN1020. Datamaskinarkitektur
IN1020 Datamaskinarkitektur Hovedpunkter Von Neumann Arkitektur BUS Pipeline Hazarder Intel Core i7 Omid Mirmotahari 4 Von Neumann Arkitektur John von Neumann publiserte i 1945 en model for datamaskin
Seksjon 1. INF2270-V16 Forside. Eksamen INF2270. Dato 1. juni 2016 Tid Alle trykte og skrevne hjelpemidler, og en kalkulator, er tillatt.
Seksjon 1 INF2270-V16 Forside Eksamen INF2270 Dato 1. juni 2016 Tid 14.30-18.30 Alle trykte og skrevne hjelpemidler, og en kalkulator, er tillatt. Dette oppgavesettet består av 14 oppgaver som kan løses
Kapittel 7, Minne RAM DIMM, SIMM ROM, PROM, EPROM, EEPROM FLASH DIM SUM. Cache Virtuelt minne
Kapittel 7, Minne RAM DIMM, SIMM ROM, PROM, EPROM, EEPROM FLASH DIM SUM Cache Virtuelt minne 26.04.2013 Data Cache Les adresse 99 Adresse 99 Prosessor med registre Cache Cache L2 Data Data Les side Adresse
TDT4225 Lagring og behandling av store datamengder
Eksamensoppgave i TDT4225 Lagring og behandling av store datamengder Lørdag 18. mai 2013, kl. 0900-1300 Oppgaven er utarbeidet av faglærer Kjell Bratbergsengen og kvalitetssikrer Svein-Olaf Hvasshovd Kontaktperson
Intel Core i7. Omid Mirmotahari 4
INF2270 Pipeline Hovedpunkter Oppsummering av én-sykel implementasjon Forbedring av én-sykel designet Introduksjon til pipelining Oppbygning av datapath med pipelining Intel Core i7 Omid Mirmotahari 4
! Sentrale begreper er adresserbarhet og adresserom. ! Adresserbarhet: Antall bit som prosessoren kan tak samtidig i én operasjon
agems temaer Oppbygging av RAM! ra kapittel i Computer Organisation and Architecture! Kort om hurtigminne (RAM)! Organisering av CPU: von Neuman-modellen! Register Transfer Language (RTL)! Instruksjonseksekvering!
2. Hvor mye Internminne har den? Svar: 2GB
Del 1 Setup - BIOS I setup skal dere finne ut: 1. Hva slags CPU har maskinen? Beskriv de tekniske egenskapene ved CPU en. Intel Pentium D Processor clock speed: 3GHz Processor bus speed: 800 MHz Processor
Martin Olsen, Lars- Petter Ahlsen og Jon- Håkon Rabben
Martin Olsen, Lars- Petter Ahlsen og Jon- Håkon Rabben Oppgave lab Del 1 Setup - BIOS 1. Hva slags CPU har maskinen? Beskriv de tekniske egenskapene ved CPU en. Intel(R) Pentium(R) D CPU 3.00 GHz 800MHz
CPU-Scheduling. Fag: Operativsystemer
CPU-Scheduling Fag: Operativsystemer 1 Innhold: Scheduling (tidsplanlegger) Prosesstilstander, bakgrunn, begreper Kriterier for scheduling rettferdighet, - utnyttelse Responstid Throughput (antal prosesser
Dagems temaer INF ! Fra kapittel 4 i Computer Organisation and Architecture. ! Kort om hurtigminne (RAM)
Dagems temaer! ra kapittel 4 i Computer Organisation and Architecture! Kort om hurtigminne (RAM)! Organisering av CPU: von Neuman-modellen! Register Transfer Language (RTL)! Instruksjonseksekvering! Pipelining
Obligatorisk oppgave 1: Regneklynge
Obligatorisk oppgave 1: Regneklynge INF1010 Frist: mandag 6. februar 2017 kl. 12:00 Versjon 1.0 (62f8e31 ) Innhold 1 Innledning 1 2 Regneklyngens bestanddeler 2 3 Datastrukturtegning 3 4 Maksimal teoretisk
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1060 Introduksjon til operativsystemer og datakommunikasjon Eksamensdag: 6. desember 2012 Tid for eksamen: 14.30 18.30 Oppgavesettet
Datamaskinens oppbygning og virkemåte
Datamaskinens oppbygning og virkemåte Laboppgave Sasa Bakija, 08DAT Del 1: Setup BIOS 1. DELL Optiplex GX270 har en Intel Pentium 4 CPU med buss speed på 800 Mhz og klokkefrekvens på 2.80 Ghz. 2. Internminne
MatteKverna. Figur 1: Tynn klient vs tykk klient
MatteKverna Bakgrunn Firmaet MatteKverna har spesialisert seg på å lage programmer for effektiv utførelse av matematiske beregninger. Forretningsideen er at kundene betaler et forholdsvis lavt startbeløp
Overordnet maskinarkitektur. Maskinarkitektur zoomet inn. I CPU: Kontrollenheten (CU) IT1101 Informatikk basisfag, dobbeltime 11/9
IT1101 Informatikk basisfag, dobbeltime 11/9 Hittil: sett på representasjon av informasjon og manipulering av bits i kretser Idag: hever oss til nivået over og ser på hvordan program kjører i maskinen
