INF2820 Datalingvistikk V2016. Jan Tore Lønning
|
|
|
- Jakob Antonsen
- 9 år siden
- Visninger:
Transkript
1 INF2820 Datalingvistikk V2016 Jan Tore Lønning
2 I dag Automater og regulære uttrykk Litt Python Implementasjon av DFA i Python Naiv NFA-algoritme Smart NFA-algoritme Pythonimplementasjon av smart NFA 1. februar
3 DFA Hva har vi lært? Definisjon av deterministiske endelige tilstandsautomater Hvordan disse definerer et språk Hvordan vi kan konstruere en DFA for komplementet til et språk definert av en DFA Algoritme for anerkjenning med DFA går i linjær tid 1. februar
4 NFA Hva har vi lært? Definisjon av ikkedeterministiske endelige tilstandsautomater (NFA) Hvordan disse definerer et språk Hvordan vi gitt en NFA kan konstruere en DFA for det samme språket 1. februar
5 Regulære språk Følgende er ekvivalente: a) L kan beskrives med et regulært uttrykk. b) Det fins en NFA som anerkjenner L. c) Det fins en DFA som anerkjenner L. 1. Gjort ekvivalensen av (b) og (c). 2. Fra (a) til (b) forholdsvis greit å se. 3. Fra (b/c) til (a) er litt vanskeligere å vise Litt notasjon: Hvis R er et regulært uttrykk, er L(R) språket beskrevet av R. Hvis M er en FSA, så er L(M) språket anerkjent av M. 5
6 Lag automat for reg. uttrykk Eksempel: ((a c)*b(a c))* 6
7 2. Fra regulært uttrykk til NFA til til til JFLAP-algoritme litt annerledes: legger til flere ε-kanter 1. februar
8 2. Fra regulært uttrykk til NFA Gitt et regulært uttrykk r Lag en automat N med to tilstander: starttilstand og en sluttilstand en kant fra start til slutt merket med r Omform kantene trinn for trinn som vist på forrige side Da vil L(N)=L(r) Observasjon: N vil være ikke-deterministisk med ε-kanter 1. februar
9 3. Fra FSA til RE Hvorfor ikke bare reversere forrige algoritme? Kryssende løkker! 9
10 Legg til ny start og sluttilstand Fjern 1 og 1 tilstand 10
11 Ved fjerning av tilstand k: For alle tilstander i og j: new(i,j) := old(i,j) + old(i,k) old(k,k)*old(k,j) 11
12 Fra DFA til RE: 1. Lag: 1. Ny begynnertilstand med ε-kant til original begynnertilstand 2. Ny sluttilstand med ε-kant fra alle originale sluttilstander. (Dette er eneste sluttilstand.) 2. Omform alle til 3. Hvis det ikke går kant fra tilstand i til tilstand k, så er det det samme som en kant merket med Ø. 4. Fjern i tur og orden alle indre tilstander. Ved fjerning av tilstand k: For alle gjenværende tilstander i og j: new(i,j) := old(i,j) + old(i,k) old(k,k)* old(k,j) Ikke nødvendig å kunne konstruksjonen. Men vite at det er mulig! 12
13 Hva har vi lært? At DFA, NFA og regulære uttrykk definerer de samme språkene: de regulære språkene Hvordan vi gitt et regulært uttrykk kan konstruere en NFA for samme språk, og deretter en DFA for språket (Kjennskap til hvordan en DFA kan omformes til et regulært uttrykk, men ikke forventet å gjøre dette.) 1. februar
14 I dag Automater og regulære uttrykk Litt Python Implementasjon av DFA i Python Naiv NFA-algoritme Smart NFA-algoritme Pythonimplementasjon av smart NFA 3. februar
15 Python Gode strukturer for tekst: Strenger Lister Read-eval-print-loop Lesbar, strukturert kode: Kompakt, nesten pseudokode Gir gode programmeringsvaner Lett å lære Objektorientert Mye brukt: tilgjengelig, bibliotek, grensesnitt Nyttig senere i livet: scripting 1. februar
16 Vi antar at alle nå kan (Fra et eller annet p.språk) Variable og verdier Tilordninger og andre kommandoer Booleske tester If-uttrykk While-løkker For-løkker Funksjoner (sub-rutiner) And how to do it in Python a, bcd, alpha114 5, 5.0, abc,. a = 5, a = a+5 print(a) [python 2 også >>>print a] a == b, a >=b,.. if a == b: c = c+2 while for def f(x): 16
17 Python syntaks def f(i): for j in [2,3,4]: i=j+i print i def g(i): for j in [2,3,4]: i=j+i print i Python bruker indent som blokkavgrenser: Andre språk: begin-end, ( ) Hva tror du blir resultatet av kallene f(8) g(8) 17
18 Python datatyper integer float string: Hello world lister: [3, 4, 5] [ Hello, world ] [3, 4, c] Aksesseres med indekser mutable >>> a = "Hello world" >>> a 'Hello world' >>> len(a) 11 >>> a[0] 'H' >>> a[-1] 'd' >>> b = a[3:7] >>> b 'lo w' >>> type(b) <type 'str'> 18
19 Python er objektorientert Alt er objekter Som har sine metoder Eksempler med strenger: Hello world,.split() world,.strip(, ) Vi skal ikke bruke dette mye i egen kode Men vi vil se mange innebygde klasser i NLTK 20
20 I dag Automater og regulære uttrykk Litt Python Implementasjon av DFA i Python Naiv NFA-algoritme Smart NFA-algoritme Pythonimplementasjon av smart NFA 1. februar
21 DFA i Python def drec(tape, dfa): index = 0 state = dfa.start while True: if index == len(tape): if state in dfa.finals: return "accept" else: return "reject" elif not (state, tape[index]) in \ dfa.edge.keys(): return "reject" else: state = dfa.edge[(state,tape[index])] index += 1 Jurafsky & Martin, fig
22 DFA i Python datastruktur class DFA: def init (self): self.edge = {} self.finals = [] f = DFA() f.start = 0 f.finals.append(4) f.edge[(0,'b')] = 1 f.edge[(1,'a')] = 2 f.edge[(2,'a')] = 3 f.edge[(3,'a')] = 3 f.edge[(3,'!')] = 4 def drec(tape, dfa): index = 0 state = dfa.start while True: if index == len(tape): if state in dfa.finals: return "accept" else: return "reject" elif not (state, tape[index]) in \ dfa.edge.keys(): return "reject" else: state = dfa.edge[(state,tape[index])] index += 1 23
23 DFA i Python datastruktur class DFA: def init (self): self.edge = {} self.finals = [] f = DFA() Forenklet struktur f.start Bedre = 0 praksis f.finals.append(4) Lag rutiner i klassen for å konstruere objekt f.edge[(0,'b')] Beskytt objektenes = 1 indre f.edge[(1,'a')] Legg anerkjenning = 2 som en metode I klassen f.edge[(2,'a')] = 3 f.edge[(3,'a')] = 3 f.edge[(3,'!')] = 4 def drec(tape, dfa): index = 0 state = dfa.start while True: if index == len(tape): if state in dfa.finals: return "accept" else: return "reject" elif not (state, tape[index]) in \ dfa.edge.keys(): return "reject" else: state = dfa.edge[(state,tape[index])] index += 1 24
24 I dag Automater og regulære uttrykk Litt Python Implementasjon av DFA i Python Naiv NFA-algoritme Smart NFA-algoritme Pythonimplementasjon av smart NFA 3. februar
25 Søkerom 26
26 Breddeførst søk JFLAP 27
27 Dybdeførst søk m/ Backtracking 28
28 Egenskaper ved algoritmene Både dybde-først m/backtracking breddeførst vil i verste fall ha eksponentielt tidsforbruk proporsjonalt med k n, der n= w, lengden av input k 2 er maks antall kanter fra en node merket med samme symbol Med epsilontransisjoner Kan risikere ikke terminerer! Men vi vet jo at hvis vi først lager DFA får vi linjært tidsforbruk! 29
29 Jurafsky og Martins algoritme Bruker løkke+agenda Vår nfa_naive_recog.py Bruker rekursjon, men samme: hovedstruktur tidsforbruk 30
30 I dag Automater og regulære uttrykk Litt Python Implementasjon av DFA i Python Naiv NFA-algoritme Smart NFA-algoritme Pythonimplementasjon av smart NFA 3. februar
31 En raskere algoritme En konfigurasjon består av: En mengde tilstander Resten av strengen Start: Q0 = E({q0}) (E er epsillontillukning) Oppdatering Gitt konfigurasjon: w n = s w Q n ={q1,, qk} La ny konfigurasjon være w n+1 = w Q n+1 =E(δN(q1,s) δn(q2,s) δn(qk,s)) Akseptering Konfigurasjonen w n = ε Q n ={q1,, qk} Aksepterer hvis minst en av q1,, qk er en sluttilstand. 32
32 I dag Automater og regulære uttrykk Litt Python Implementasjon av DFA i Python Naiv NFA-algoritme Smart NFA-algoritme Pythonimplementasjon av smart NFA 3. februar
33 Smart NFA-anerkjenning i Python def drec(tape, dfa): index = 0 state = dfa.start while True: if index == len(tape): if state in dfa.finals: return "accept" else: return "reject" elif not (state, tape[index]) in \ dfa.edge.keys(): return "reject" else: state = dfa.edge[(state,tape[index])] index += 1 def nrec(tape, nfa): index = 0 states = [nfa.start] while True: if index == len(tape): successtates = [s for s in states if s in nfa.finals] return len(successtates)> 0 elif len(states) == 0: return False else: states = set([e[2] for e in nfa.edges if e[0] in states and tape[index] == e[1] ]) index += 1 DFA NFA 34
34 NFA datastruktur class NFA: def init (self): self.edges = [] self.finals = [] f = NFA( ) f.start = 0 f.finals.append(4) f.edges= [ (0,'b',1), (1,'a',2), (2,'a',3), (3,'a',3), (3,'!',4) ] g=nfafromfile('template.nfa') def nrec(tape, nfa): index = 0 states = [nfa.start] while True: if index == len(tape): successtates = [s for s in states if s in nfa.finals] return len(successtates)> 0 elif len(states) == 0: return False else: states = set([e[2] for e in nfa.edges if e[0] in states and tape[index] == e[1] ]) index += 1 Så langt: NFA uten ε-transisjoner 35
35 Python: list comprehension successtates = [s for s in states if s in nfa.finals] { s states s nfa finals} success =. success = [] for s in states: if s in nfa.finals: success.append(e) 36
36 Python: list comprehension states = set([e[2] for e in nfa.edges if e[0] in states and tape[index] == e[1] ]) states = [] for e in nfa.edges: if e[0] in states and tape[index]==e[1]: states.append(e[2]) S { e[2] e E} = { e[ 2] e { e nfa. edges e[0] state e[1] tape[ index] } S = = 37
37 Egenskaper Svarer til underveis å bygge de delene vi trenger av DFA-ene som svarer til denne NFA-en. Algoritmen er linjær i w =n. Men kvadratisk i antall tilstander: m O(n m**2) Terminerer selv med epsilon transisjoner (hvis en passer på å bruke epsilontillukning) 38
38 Hva har vi lært: Gitt en NFA: N som beskriver et språk L=L(N) Da finnes det en DFA: D som beskriver samme språk, L=L(D) Skal vi implementere N, kan vi enten konstruere D (forrige gang) Eller prosessere direkte med N (som om det var D) Uansett er prosedyren Ikke flertydig Deterministisk Tidsforbruket er linjært i input 39
INF2820 Datalingvistikk V forelesning, 30.1 Jan Tore Lønning
INF2820 Datalingvistikk V2014 3. forelesning, 30.1 Jan Tore Lønning Idag Noen ord om Python Implementasjon av DFA J&Ms algoritme Oversatt til Python Rekursiv vs. Iterativ implementasjon Naiv NFA-algoritme
1/26/2012 LITT PYTHON. INF2820 Datalingvistikk V2012. Hvorfor Pyhton. Python syntaks. Python er objektorientert. Python datatyper.
INF2820 Datalingvistikk V2012 Jan Tore Lønning LITT PYTHON 2 Hvorfor Pyhton Python syntaks NLTK Natural Language Tool Kit: Omgivelser for å eksperimentere med datalingvistikk Diverse datalingvistiske algoritmer
INF2820 Datalingvistikk V2012. Jan Tore Lønning
INF2820 Datalingvistikk V2012 Jan Tore Lønning ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2 20. januar 2012 2 Non-Determinism Speech and Language Processing - Jurafsky and Martin
1/31/2011 SAMMENHENGER FSA OG REGULÆRE UTTRYKK. Regulære språk. Fra FSA til RE. Fra regulært uttrykk til NFA REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2
INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2 31. januar 2011 2 Regulære språk Følgende er ekvivalente: a) L kan
INF2820 Datalingvistikk V2017 Forelesning 1.2 Jan Tore Lønning
INF2820 Datalingvistikk V2017 Forelesning 1.2 Jan Tore Lønning ENDELIGE TILSTANDSMASKINER OG REGULÆRE SPRÅK 19. januar 2017 2 Fysisk modell En tape delt opp i ruter. I hver rute står det et symbol. En
INF 2820 V2016: Obligatorisk innleverinsoppgave 1
INF 2820 V2016: Obligatorisk innleverinsoppgave 1 OBS Korrigert eksemplene oppgave 2, 8.2 Besvarelsene skal leveres i devilry innen torsdag 18.2 kl 18.00 Filene det vises til finner du på /projects/nlp/inf2820/fsa
Skanning del I INF /01/15 1
Skanning del I INF 5110-2015 21/01/15 1 Skanning: innhold (begge forelesningene) Hva gjør en skanner? Input: Programteksten. Output: Ett og ett token fra programteksten (sekvensielt). Regulære uttrykk/definisjoner.
Typisk: Kan det være både nøkkelord og navn, så skal det ansees som nøkkelord
Scanning-I Kap. 2 Hovedmål Gå ut fra en beskrivelse av de enkelte leksemer (tokens), og hvordan de skal deles opp i klasser Lage et program (funksjon, prosedyre, metode) som leverer ett og ett token, med
Typisk: Kan det være både nøkkelord og navn, så skal det ansees som nøkkelord
Scanning - I Kap. 2 Hovedmål Gå ut fra en beskrivelse av de enkelte tokens, og hvordan de skal deles opp i klasser Lage et program (funksjon, prosedyre, metode) som leverer ett og ett token, med all nødvendig
Skanning del I. Kapittel 2 INF 3110/ INF
Skanning del I Kapittel 2 18.01.2013 1 Skanning: innhold (begge forelesningene) Hva gjør en skanner? Input: programteksten. Output: Ett og ett token fra programteksten (sekvensielt). Regulære uttrykk/definisjoner.
Scanning - I Kap. 2. Hva scanneren gjør
Scanning - I Kap. 2!! Hovedmål! Gå ut fra en beskrivelse av de enkelte tokens, og hvordan de skal deles opp i klasser! Lage et program (funksjon, prosedyre, metode) som leverer ett og ett token, med all
AlgDat - Øvingsforelesning 1 Introduksjon til Python, lenkede lister og øving 1
AlgDat - Øvingsforelesning 1 Introduksjon til Python, lenkede lister og øving 1 Ole Kristian Pedersen, Høst 2016 Agenda Introduksjon til Python for begynnere Intro til øving 1 Litt om lenkede lister Øvingssystemet
Informasjon Eksamen i IN1000 høsten 2017
Informasjon Eksamen i IN000 høsten 207 Tid 8. desember kl. 09.00 (4 timer) Faglærerne vil besøke lokalet ca kl 0. Oppgavene Oppgave 2b og 2c er flervalgsoppgaver. Her får man det angitte antall poeng om
Følger Sipsers bok tett både i stoff og oppgaver.
1 - hrj 1 Følger Sipsers bok tett både i stoff og oppgaver. Tirsdag forelesninger, nytt stoff Onsdag eksempler og utfyllende stoff Torsdag oppgaver fra uka før Start: kapittel 1 (2uker), 2 (2uker),3 (2uker),4
INF2820 Datalingvistikk V2014. Jan Tore Lønning
INF2820 Datalingvistikk V2014 Jan Tore Lønning INF2820 Datalingvistikk 19. januar 2014 2 I dag: 1. Time: Datalingvistikk: motivasjon og eksempler Praktisk informasjon 2. Time: Endelige tilstandsteknikker
INF 2820 V2018: Innleveringsoppgave 1
INF 2820 V2018: Innleveringsoppgave 1 Besvarelsene skal leveres i devilry innen fredag 9.2 kl 18.00 Det blir 5 sett med innleveringsoppgaver. Hvert sett gir inntil 100 poeng. Til sammen kan en få inntil
Objektorientert programmering i Python
Objektorientert programmering i Python IN1000 Høst 2019 uke 8 Siri Moe Jensen Læringsmål uke 8 Repetisjon fra forrige uke Definere en klasse, opprette og arbeide med objekter: How-to
INF2820 Datalingvistikk V2016. Jan Tore Lønning
INF2820 Datalingvistikk V2016 Jan Tore Lønning INF2820 Datalingvistikk 20. januar 2016 2 I dag: 1. Time: Datalingvistikk: motivasjon og eksempler Praktisk informasjon 2. Time: Regulære språk OBS: Lov å
Informasjon Prøveeksamen i IN1000 høsten 2018
Prøveeksamen IN1000-INF1001-H18 Informasjon Prøveeksamen i IN1000 høsten 2018 Tid Fra tirsdag 6.11 kl. 14:15 til tirsdag 13.11 kl. 12:00 (Normal eksamenstid er 4 timer) Oppgavene Oppgave 2b og 2c er flervalgsoppgaver.
2/24/2012. Context-Free Grammars. I dag. Avledning. Eksempel: grammar1 PARSING. Jan Tore Lønning
INF2820 Datalingvistikk V2012 Jan Tore Lønning KONTEKSTFRIE GRAMMATIKKER OG PARSING 24. februar 2012 2 Context-Free Grammars Det mest sentrale verktøyet i datalingvistikk 24. februar 2012 3 2/24/2012 Speech
INF2820 Datalingvistikk V Gang 9.3 Jan Tore Lønning
INF2820 Datalingvistikk V2016 8. Gang 9.3 Jan Tore Lønning CHART-PARSING 2 I dag Bakgrunn Svakheter med andre parsere CKY og Chart Chart-parsing: hovedideer BU chart-parsing algoritmen Algoritmen uttrykt
Dagens tema: Regulære språk og uttrykk
IN 2 Programmeringsspråk Dagens tema: Regulære språk og uttrykk Ulike typer språk (Kompendium 47: 23) Hvorfor er regulære uttrykk så interessante? Ulike representasjoner av regulære språk (Kompendium 47:
Oppgave 1. Spørsmål 1.1 (10%) Gitt det regulære uttrykket: a((bcd)+(cd))*cd
2 Du kan svare på norsk, dansk, svensk eller engelsk. Du skal besvare alle spørsmålene. Vekten på de ulike spørsmålene er oppgitt. Du bør lese gjennom hele settet slik at du kan stille spørsmål til faglærerne
MAT1030 Plenumsregning 1
MAT1030 Plenumsregning 1 Kapittel 1 Mathias Barra - 16. januar 2009 (Sist oppdatert: 2009-02-02 14:21) Plenumsregning 1 Velkommen til plenumsregning for MAT1030 Fredager 12:15 14:00 Vi vil gjennomgå utvalgte
Syntax/semantics - I INF 3110/ /29/2005 1
Syntax/semantics - I Program program execution Compiling/interpretation Syntax Classes of langauges Regular langauges Context-free langauges Scanning/Parsing Meta models INF 3/4-25 8/29/25 Program
3/5/2012. Chart alternativ datastruktur. Fundamentalregelen. Chart-parsing. Bottom-up FORMELL SPRÅKTEORI. Jan Tore Lønning
INF2820 Datalingvistikk V2012 Jan Tore Lønning CHART-PARSING FORMELL SPRÅKTEORI 5. mars 2012 2 Chart alternativ datastruktur NP Det Nom Fundamentalregelen NP Det Nom Nom Nom PP Nom Nom PP NP PP P NP Det
TDT4110 IT Grunnkurs Høst 2015
TDT4110 IT Grunnkurs Høst 2015 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Løsningsforlag Auditorieøving 1 1 Teori Løsning er skrevet med uthevet tekst
MAT1030 Diskret Matematikk
MAT1030 Diskret Matematikk Plenumsregning 1: Kapittel 1 Mathias Barra Matematisk institutt, Universitetet i Oslo 16. januar 2009 (Sist oppdatert: 2009-02-02 14:21) Plenumsregning 1 MAT1030 Diskret Matematikk
Magnus Moan (Undertegnede) Enkle datastrukturer, trær, traversering og rekursjon
1 Enkle datastrukturer, trær, traversering og rekursjon Magnus Moan (Undertegnede) [email protected] Enkle datastrukturer, trær, traversering og rekursjon 2 Dagens plan Praktisk Enkle datastrukturer Stack
INF2820 Datalingvistikk V2012. Jan Tore Lønning
INF2820 Datalingvistikk V2012 Jan Tore Lønning CHART-PARSING FORMELL SPRÅKTEORI 5. mars 2012 2 Chart alternativ datastruktur NP Det Nom Nom Nom PP NP PP P NP Det Nom, N P NP, PN 0 book 1 the 2 flight 3
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF3110/4110 Programmeringsspråk Eksamensdag: 2. desember 2003 Tid for eksamen: 14.30 17.30 Oppgavesettet er på 7 sider. Vedlegg:
Dagens tema Grundig repetisjon og utdyping: Syntaks kontra semantikk
Dagens tema Grundig repetisjon og utdyping: Syntaks kontra semantikk Regulære uttrykk og automataer Ulike typer språk Ulike representasjoner av regulære språk Endelige tilstandsmaskiner (FSM-er) Deterministiske
INF2220: Forelesning 1. Praktisk informasjon Analyse av algoritmer (kapittel 2) (Binær)trær (kapittel )
INF2220: Forelesning 1 Praktisk informasjon Analyse av algoritmer (kapittel 2) (Binær)trær (kapittel 4.1-4.3 + 4.6) PRAKTISK INFORMASJON 2 Praktisk informasjon Kursansvarlige Ragnhild Kobro Runde ([email protected])
Kondisjonstest. Algoritmer og datastrukturer. Python-oppgaver - LF. Onsdag 6. oktober Her er noen repetisjonsoppgaver i Python.
Algoritmer og datastrukturer Kondisjonstest Python-oppgaver - LF Onsdag 6. oktober 2004 Her er noen repetisjonsoppgaver i Python. Som alltid er den beste måten å lære å programmere på å sette seg ned og
Kondisjonstest. Algoritmer og datastrukturer. Python-oppgaver. Onsdag 6. oktober Her er noen repetisjonsoppgaver i Python.
Algoritmer og datastrukturer Kondisjonstest Python-oppgaver Onsdag 6. oktober 2004 Her er noen repetisjonsoppgaver i Python. Som alltid er den beste måten å lære å programmere på å sette seg ned og programmere
Læringsmål uke 7. Introduksjon til objektorientert programmering. Paradigmet objektorientering. Objektreferanser. INF1001 Høst 2016 Uke 7
Læringsmål uke 7 Introduksjon til objektorientert programmering INF1001 Høst 2016 Uke 7 Forstå (mer av) hva som skjer bak kulissene når vi oppretter og bruker objekter Kunne manipulere referanser og vite
INF2820 Datalingvistikk V Gang Jan Tore Lønning
INF2820 Datalingvistikk V2017 6. Gang - 20.2 Jan Tore Lønning I dag Kontekstfrie grammatikker og naturlige språk (fortsatt fra sist) Kontekstfrie grammatikker og regulære språk Grammatikker og trær i NLTK
Plenumsregning 1. MAT1030 Diskret Matematikk. Repetisjon: Algoritmer og pseudokode. Velkommen til plenumsregning for MAT1030
MAT1030 Diskret Matematikk Plenumsregning 1: Kapittel 1 Mathias Barra Matematisk institutt, Universitetet i Oslo Plenumsregning 1 16. januar 2009 (Sist oppdatert: 2009-02-02 14:21) MAT1030 Diskret Matematikk
INF1820: Introduksjon til språk-og kommunikasjonsteknologi
INF1820: Introduksjon til språk-og kommunikasjonsteknologi Fjerde forelesning Lilja Øvrelid 6 februar, 2014 OVERSIKT Såkalt endelig tilstand (finite-state) -teknologi er kjapp og effektiv nyttig for et
INF1820: Introduksjon til språk-og kommunikasjonsteknologi
INF1820: Introduksjon til språk-og kommunikasjonsteknologi Fjerde forelesning Lilja Øvrelid 6 februar, 2014 OVERSIKT Såkalt endelig tilstand (finite-state) -teknologi er kjapp og effektiv nyttig for et
Plenumsregning 1. Kapittel 1. Roger Antonsen januar Velkommen til plenumsregning for MAT1030. Repetisjon: Algoritmer og pseudokode
Plenumsregning 1 Kapittel 1 Roger Antonsen - 17. januar 2008 Velkommen til plenumsregning for MAT1030 Torsdager 10:15 12:00 Gjennomgang av ukeoppgaver Gjennomgang av eksempler fra boka Litt repetisjon
INF2810: Funksjonell Programmering. Lokale variabler. Og trær.
INF2810: Funksjonell Programmering Lokale variabler. Og trær. Erik Velldal Universitetet i Oslo 11. september 2019 Tema forrige uke 2 Lister som datastruktur quote Rekursjon på lister Høyereordens prosedyrer
Objektorientert programmering i Python. Resten av semesteret. Innhold uke 9 Mer komplekse strukturer. Referanser og objekter, inkl Mentimeter spørsmål
Innhold uke 9 Mer komplekse strukturer Objektorientert programmering i Python IN1000 Høst 2018 uke 9 Siri Moe Jensen Referanser versus objekter (repetisjon) "Dot-notasjon" Spesielle metoder i egendefinerte
Etter uke 9 skal du. Introduksjon til objektorientert programmering. Innhold. Klasser som abstraksjoner
Etter uke 9 skal du Introduksjon til objektorientert programmering INF1001 Høst 2016 Uke 9 Kunne designe og implementere en programstruktur med flere klasser Kunne etablere og manipulere objekter i (sammensatte)
Øvingsforelesning 5 Python (TDT4110)
Øvingsforelesning 5 Python (TDT4110) Repetisjon av løkker og funksjoner Ole-Magnus Pedersen Oversikt Praktisk Info Gjennomgang av Øving 3 Repetisjon 2 Praktisk info Prosjekter i PyCharm må startes med
Anatomien til en kompilator - I
Anatomien til en kompilator - I program Symboltabell tekst tokens syntaks-tre beriket syntaks-tre Finne struktur i programmet OK i henhold til grammatikk? Preprocessor Makroer Betinget kompilering Filer
Løsnings forslag i java In115, Våren 1996
Løsnings forslag i java In115, Våren 1996 Oppgave 1a For å kunne kjøre Warshall-algoritmen, må man ha grafen på nabomatriseform, altså en boolsk matrise B, slik at B[i][j]=true hvis det går en kant fra
IN1000 Obligatorisk innlevering 7
IN1000 Obligatorisk innlevering 7 Frist for innlevering: 23.10. kl 12:00 Introduksjon I denne innleveringen skal du lage et program som simulerer cellers liv og død. Dette skal du gjøre ved hjelp av en
Øvingsforelesning 2 - TDT4120. Grafer og hashing. Benjamin Bjørnseth
Øvingsforelesning 2 - TDT4120 Grafer og hashing Benjamin Bjørnseth Informasjon Studasser [email protected] Program Presentasjon av øving 2 Grafer og traverseringsalgoritmer BFS, DFS Hashing Gjennomgang
Informasjon Eksamen i IN1000 og IN1001 høsten a) 1 poeng. 1b) 1 poeng. Tid. Oppgavene. Tillatte hjelpemidler. 30. november kl. 14.
IN1000-INF1001-2018 Informasjon Eksamen i IN1000 og IN1001 høsten 2018 Tid 30. november kl. 14.30 (4 timer) Faglærere vil besøke lokalet ca kl 15-16. Oppgavene Oppgave 1a-f er kortsvarsoppgaver som rettes
IN1140, H2018 gruppetime oppgaver Introduksjon til Tekst i Python
IN1140, H2018 gruppetime oppgaver Introduksjon til Tekst i Python I disse oppgavene skal vi introdusere Python, og vise hvordan vi kan jobbe med tekst i Python. Vi skal se på hva et programmeringsspråk
Øvingsforelesning 5 Python (TDT4110)
Øvingsforelesning 5 Python (TDT4110) Repetisjon av løkker og funksjoner Ole-Magnus Pedersen Oversikt Praktisk Info Gjennomgang av Øving 3 Repetisjon 2 Praktisk info Prosjekter i PyCharm må startes med
INF2080 Logikk og beregninger
INF2080 Logikk og beregninger Forelesning 4: Regulære uttrykk Sist oppdatert: 2012-01-24 12:05 4.1 Regulære uttrykk Beskrive aksepterte ord 4.1 Regulære uttrykk Beskrive aksepterte ord INF2080 Logikk og
TMA4140 Diskret Matematikk Høst 2016
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA44 Diskret Matematikk Høst 26 Seksjon 3. Husk at w = λ, den tomme strengen, for enhver streng w. 4 a) Følgende utledning/derivasjon
Algoritmer og datastrukturer Kapittel 11 - Delkapittel 11.2
Algoritmer og datastrukturer Kapittel 11 - Delkapittel 11.2 11.2 Korteste vei i en graf 11.2.1 Dijkstras metode En graf er et system med noder og kanter mellom noder. Grafen kalles rettet Notasjon Verdien
Etter uke 6 skal du. Introduksjon til objektorientert programmering. Hva skjedde ~1967? INF1001. Grunnkurs i objektorientert programmering
Etter uke 6 skal du Kjenne til motivasjonen for objektorientert programmering Introduksjon til objektorientert programmering INF1001 Høst 2016 Forstå hva en klasse er, og forskjellen på klasse og objekt
INF 2820 V2015: Obligatorisk innleveringsoppgave 3
INF 2820 V2015: Obligatorisk innleveringsoppgave 3 Besvarelsene skal leveres i devilry innen fredag 17.4 kl 18.00 Filene det vises til finner du i o /projects/nlp/inf2820/cfg Del 1 RD Parsing Oppgave 1:
Innhold uke 7. Objektorientert programmering i Python: Introduksjon. Lite tilbakeblikk: Programflyt og skop. Lite tilbakeblikk: Funksjoner er uttrykk
Innhold uke 7 Objektorientert programmering i Python: Introduksjon IN1000 Høst 2017 uke 7 Siri Moe Jensen Lite tilbakeblikk: Prosedyrer og funksjoner Objektorientert programmering Introduksjon: Hvorfor,
TDT4120 Øvingsforelesning 1 Introduksjon til Python
TDT4120 Øvingsforelesning 1 Introduksjon til Python Basert på foiler av Åsmund Eldhuset Presentert av Martin Gammelsæter Python! A C program is like a fast dance on a newly waxed dance floor by people
