Dataøvelse 3 Histogram og normalplott
|
|
- Toralf Edvardsen
- 9 år siden
- Visninger:
Transkript
1 Matematisk institutt STAT200 Anvendt statistikk Universitetet i Bergen 18. februar 2004 Dataøvelse 3 Histogram og normalplott A. Formål med øvelsen Denne øvelsen skal vise hvordan man med SAS-systemet kan konstruere histogram og normalplott for gitte datasett. Sammen med andre resultater produsert av SAS kan disse figurene gi grunnlag for å avgjøre om det er realistisk å tro at observasjonene kan følge en normalfordeling. Øvelsen krever at man på egen hånd kan sette opp litt større SAS-program som består av flere steg. Oppsettet for hvert enkelt steg er relativt enkelt, og støter man på spesielle problemer, kan man utnytte manualen for SAS på Internett (jfr. punkt D i øvelse 2). Leter en etter opplysninger om en bestemt prosedyre, f. eks. proc rank, er det ofte lurt å starte med hjelpesiden med Overview for denne prosedyren. Deretter kan en se på Procedure Syntax og sider for de bestemte statements som er tillatt. Av prosedyrene som er aktuelle i denne øvelsen, ligger proc rank, proc plot og proc univariate under Base SAS Software, mens proc gchart og proc gplot befinner seg i modulen SAS/GRAPH. Ellers kan programmene som ble anvendt i de to første øvelsene, i mange tilfeller brukes som forbilder for denne øvelsen. Den generelle oppbygningen av SASprogram blir i stor grad diskutert i The Little SAS Book (LSB). Av de aktuelle prosedyrene behandles proc univariate på side 170 i LSB og proc plot på side 116. B. Histogrammer med proc gchart Vanlige histogrammer for numeriske variable kan lett settes opp med proc gchart i SAS. Denne prosedyren har innebygget muligheter for konstruksjon av flere forskjellige typer diagrammer. I Øvelse 1 brukte vi proc gchart til å sette opp et histogram med vertikale søyler, ved hjelp av beskjeden vbar. I denne oppgaven skal vi isteden lage histogrammer med horisontale søyler. Fordelen er at vi samtidig får en frekvensopptelling langs kanten av plottet. Slike Horizontal bar charts fås ved å ta med en egen setning HBAR variable/opsjoner; For variable setter man inn en liste med navn på variable som er aktuelle i det SAS-datasettet som behandles.
2 3.2 Opsjoner angir i SAS spesielle tilleggsopplysninger til setningene som inngår i et SAS-program. I dette tilfellet er det særlig aktuelt å utnytte en mulighet for å spesifisere klasseinndelingen som skal brukes for kontinuerlige variable. Man kan her skrive MIDPOINTS= etterfulgt av en oppramsning av verdiene som skal representere midtpunktene i intervallene som benyttes. Særlig nyttig er det at man her kan angi lister av verdier med spesifikasjoner av typen 10 TO 100 BY 5 Dette er en forkortet skrivemåte for oppramsningen 10, 15, 20, 25,..., 95, 100. C. Konstruksjon av spredningsdiagrammer med proc plot Mange observasjonssett vil bestå av flere variable der det er knyttet spesiell interesse til graden av samvariasjon mellom bestemte variabelpar. Anta f. eks. at variablene betegnes som X og Y. Enkle spredningsdiagrammer som viser observasjonspunktene representert ved X- og Y -koordinatene i et vanlig aksesystem kan fås med proc plot. Som vanlig skal kallet av prosedyren i SAS-programmet innledes med en setning der man kan oppgi hvilket datasett det dreier seg om. Man kan så angi hvilke variable som skal inngå med en egen setning PLOT Y X; (eller med andre aktuelle variabelnavn istedenfor Y og X). Man kan gjerne inkludere flere slike PLOT-setninger etter hverandre i samme kall av proc plot. Selve genereringen av plottene kan startes med setningen RUN. Hele prosedyren vil bli avsluttet dersom den etterfølges av en ny prosedyre i oppsettet. Hvis utførelsen av proc plot er det siste steget, kan det være en fordel å avslutte prosedyren med en egen setning QUIT. Denne prosedyren gir bare enkle plott, der observasjonene vanligvis representeres ved bokstaver A, B (hvis to observasjoner faller nesten oppå hverandre) osv. Det finnes også en tilsvarende grafikkprosedyre proc gplot som gir punkter avmerket med bestemte tegn. D. Normalplott i SAS Normalplott kan lettest konstrueres i SAS ved bruk av proc univariate, som samtidig gir mye annen verdifull informasjon om et datasett. Vil man gjøre bruk av denne muligheten, skal man som opsjon angi PLOT i samme setning som kaller opp selve prosedyren. SAS skriver i så fall bl. a. ut et diagram med med selve normalplottet representert ved stjerner, mens den teoretisk riktige rette linjen som tilsvarer en normalfordeling blir angitt ved plusstegn. Man bør likevel være klar over at de observerte verdiene (som i teorien ellers blir betegnet med x (j) ), er avsatt langs y-aksen i diagrammet, mens verdiene y (j) bestemt ut fra den inverse fordelingsfunksjonen i standardnormalfordelingen blir avsatt langs x-aksen.
3 3.3 Er det imidlertid relativt mange observasjoner i datasettet som studeres, vil dette enkle plottet i proc univariate lett bli overfylt, så det er vanskelig å avgjøre visuelt om punktene tilnærmet ligger på en rett linje. I mange situasjoner vil det derfor være mer tilfredsstillende å konstruere normalplott på en annen måte, der man først foretar utregningen av de spesielle normalscorene y (j) for seg. Dette kan foregå ved proc rank. Denne prosedyren er i SAS primært ment for helt andre formål, men med opsjonene NORMAL=BLOM, NORMAL=TUKEY eller NORMAL=VW, vil den gjennomgå datasettet og regne ut normalscorene y (j) etter den oppgitte metoden. (Valget av metode har her svært liten praktisk betydning, med mindre datasettet er meget lite.) De nye verdiene vil vanligvis bli plassert i et nytt SAS-datasett. Det enkleste er å oppgi som vanlig med en opsjon DATA= hvilket datasett beregningene skal ta utgangspunkt i. Dessuten kan man her med en opsjon OUT= (etterfulgt av navnet på et nytt SAS-datasett) angi hvor resultatene skal lagres. Denne opsjonen skal tas med i den samme første setningen som kaller opp proc rank, på samme måte som opsjonen DATA=. Senere setninger (atskilt med komma) som hører med til samme prosedyre, kan angi hvilke variable utregningene skal utføres for (med VAR), og hvilke navn som skal knyttes til de beregnede normalscorene y (j) (med RANKS). Variabelrekkefølgen må passe sammen i de to oppramsningene etter VAR og RANKS. De opprinnelige variablene spesifisert etter VAR blir også lagret i det nye datasettet. Når man først har beregnet normalscore y (j) sammen med x (j) -verdiene, kan man lett utnytte proc plot til å skrive ut det egentlige normalplottet. Normalscorene kan også være nyttige for helt andre formål, f. eks. ved forsøk på å transformere observasjonene så datasettet tvinges til å bli normalfordelt. E. Testing av normalitet I proc univariate tilbyr SAS fire signifikanstester tilsvarende en nullhypotese som går ut på at et datasett av uavhengige observasjoner følger en normalfordeling. Testresultatene blir skrevet ut med opsjonen NORMAL i kallet på prosedyren. SAS viser verdien av testobservatoren og P -verdien for disse metodene: Shapiro-Wilks test, Kologorov-Smirnovs test, Cramer-von Mises test og Anderson- Darlings test. F. Beskrivelse av den praktiske situasjonen som skal studeres Vi har målt størrelsen av en rekke ertebelger produsert på planter tilhørende et bestemt erteslag. På filen belger.dat ligger det verdier som viser lengden og vekten av hver belg. Tallene er plassert slik på hver datalinje: I posisjonene 3 til 6 er belglengden angitt i cm med desimalpunktum, og i posisjonene 8 til 11 er vekten av belgen i gram oppgitt høyrejustert som heltall. Noen av datalinjene er merket i første posisjon med en stjerne, men dette tegnet skal eventuelt ignoreres. Manglende verdier for bestemte belger er kodet med 99.0 for belglengde og 9999
4 3.4 for belgvekt. Vi vil nå vurdere om variablene belglengde og belgvekt kan anses som normalfordelt. G. Øvelsesopplegg Det følgende opplegget bør leses gjennom på forhånd, før den praktiske kjøringen på PC. Oppsettene som skal brukes som SAS-program, bør skrives ned på papir så det er noenlunde klart hva som skal foregå. 1. Hent ned filen datafilen belger.dat fra katalogen d3 på det vanlige stedet på Internett. Start SAS. Les så denne filen inn i Editor-vinduet. Selv om dette ikke er noe SAS-program, kan vi likevel bruke vinduet for vanlig redigering. Titt på organiseringen av datasettet, med bruk av spesielle koder for manglende verdier. 2. Åpn så et nytt Editor-vindu. (Velg Enhanced Editor i menyen for View.) Her skal det nå skrives inn et SAS-program som for det første setter riktig tittel på hele kjøringen. Så skal det følge et data-steg som produserer et nytt SASdatasett på grunnlag av filen belger.dat. Angi hvilke variable som skal leses inn, med angivelse av posisjonene på linjene (jfr. datainnlesningen i Øvelse 2). Velg selv rimelige variabelnavn. Foreta riktig rekoding til manglende verdier for de to variablene (jfr. også oppsettet i Øvelse 2). Kjør dette SAS-programmet. 3. Hvis data-steget har gått igjennom uten feil, kan vi se på verdiene i det nye SAS-datasettet. Finn datasettet ved hjelp av Explorer-vinduet og se på verdiene i VIEWTABLE. Kontroller at de riktige tallene er satt inn i forhold det som sto i den opprinnelige filen. Lukk så VIEWTABLE. 4. Åpn enda et nytt Editor-vindu. Her skal det settes inn et SAS-program som først skal plotte sammenhørende belglengder og belgvekter i et spredningsdiagram. Så skal begge de aktuelle variablene behandles i proc univariate. Pass på å få med resultatene for normaltestene. Deretter skal det settes opp histogrammer (med horisontale søyler) for begge variablene. Sørg for at histogrammene får rimelige klasseinndelinger. I denne forbindelsen blir det oppgitt at belglengden varierer fra 4.5 til 7.3, mens belgvektene varierer fra 15 til 64. Kjør SAS-programmet. 5. I et nytt Editor-vindu skal man nå skrive inn et SAS-program som genererer normalscore for belglengder og belgvekter i et eget SAS-datasett. Så skal SAS sette opp de to tilsvarende normalplottene. Anvend også proc univariate på normalscorene for belglengdene for en ekstra kontroll av utregningene. Utfør dette SAS-programmet. 6. Titt ved hjelp av VIEWTABLE på datasettet med normalscore for å kontrollere at verdiene virker rimelige. Hvis alt ser riktig ut, kan utskriften fra Logvinduet, fra Output-vinduet og fra de to histogrammene (i grafikkvinduet) sendes til skriveren. Avslutt deretter SAS.
5 3.5 H. Spørsmål som skal besvares ved innleveringen Avgjør på grunnlag av utskriften om det kan være rimelig å beskrive fordelingene for belglengde eller belgvekt ved normalfordelinger. Utnytt i tillegg til diagrammene også forskjellige tallmessige resultater produsert av SAS.
Dataøvelse 4 Kjikvadratfordeling
Matematisk institutt STAT200 Anvendt statistikk Universitetet i Bergen 3. mars 2004 Dataøvelse 4 Kjikvadratfordeling A. Formål med øvelsen Øvelsen skal vise hvordan SAS-systemet kan brukes til å generere
DetaljerDataøvelse 2 Utregning av enkle observatorer
Matematisk institutt STAT 200 Anvendt statistikk Universitetet i Bergen 11. februar 2004 Dataøvelse 2 Utregning av enkle observatorer A. Formål med øvelsen Denne øvelsen skal dels vise hvordan man kan
DetaljerDataøvelse 8 Toveis variansanalyse
Matematisk institutt STAT200 Anvendt statistikk Universitetet i Bergen 14. april 2004 Dataøvelse 8 Toveis variansanalyse A. Formål med øvelsen Øvelsen skal vise litt mer avansert bruk av metodene som er
DetaljerDataøvelse 1 Poissonmodeller
Matematisk institutt STAT200 Anvendt statistikk Universitetet i Bergen 28. januar 2004 Dataøvelse 1 Poissonmodeller A. Formål med øvelsen I første dataøvelse skal en ved hjelp av SAS avgjøre om bestemte
DetaljerEKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 12 Faglig kontakt under eksamen: Bo Lindqvist Tlf. 975 89 418 EKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK Onsdag
DetaljerEt lite notat om og rundt normalfordelingen.
Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver? Observasjoner Histogram Viser fordelingen av faktiske observerte
Detaljeri x i
TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 11, blokk II Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Øvelsesoppgave i: ECON30- Statistikk Dato for utlevering: 5.03.06 Dato for innlevering: 05.04.06 innen kl. 5:00 Innleveringssted: Ekspedisjonen i. etasje ES hus
DetaljerEt lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver?
Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver? Boka (Ch 1.4) motiverer dette ved å gå fra histogrammer til tetthetskurver.
DetaljerEt lite notat om og rundt normalfordelingen.
Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver? Observasjoner Histogram Viser fordelingen av faktiske observerte
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK 1000 Innføring i anvendt statistikk. Eksamensdag: Torsdag 1. juni 2006. Tid for eksamen: 09.00 12.00. Oppgavesettet er på
DetaljerKort overblikk over kurset sålangt
Kort overblikk over kurset sålangt Kapittel 1: Deskriptiv statististikk for en variabel Kapittel 2: Deskriptiv statistikk for samvariasjon mellom to variable (regresjon) Kapittel 3: Metoder for å innhente
DetaljerSTK1000 Uke 36, Studentene forventes å lese Ch 1.4 ( ) i læreboka (MMC). Tetthetskurver. Eksempel: Drivstofforbruk hos 32 biler
STK1000 Uke 36, 2016. Studentene forventes å lese Ch 1.4 (+ 3.1-3.3 + 3.5) i læreboka (MMC). Tetthetskurver Eksempel: Drivstofforbruk hos 32 biler Fra histogram til tetthetskurver Anta at vi har kontinuerlige
DetaljerForelesning 3. april, 2017
Forelesning 3. april, 2017 APPENDIX TIL KAP. 6 Sentralgrenseteoremet AVSNITT 6.3 Anvendelser av sentralgrenseteoremet Histogrammer S-kurver Q-Q-plot Diverse eksempler MGF for følger av uavhengige identisk
DetaljerEksamensoppgave i TMA4245 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4245 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland Tlf: 48 22 18 96 Eksamensdato:??. august 2014 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte
DetaljerTMA4240 Statistikk Høst 2016
TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 11 Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale begreper
DetaljerMAT-INF 1100: Obligatorisk oppgave 1
13. september, 2018 MAT-INF 1100: Obligatorisk oppgave 1 Innleveringsfrist: 27/9-2018, kl. 14:30 i Devilry Obligatoriske oppgaver («obliger») er en sentral del av MAT-INF1100 og er utmerket trening i å
DetaljerEksempel på data: Karakterer i «Stat class» Introduksjon
Eksempel på data: Karakterer i «Stat class» Introduksjon Viktige begreper for å beskrive data: Enheter som er objektene i datasettet «label» som av og til brukes for å skille enhetene En variabel er en
DetaljerMAT-INF 1100: Obligatorisk oppgave 1
22. september, 2016 MAT-INF 1100: Obligatorisk oppgave 1 Innleveringsfrist: 6/10-2016, kl. 14:30 i Devilry Obligatoriske oppgaver («obliger») er en sentral del av MAT-INF1100 og er utmerket trening i å
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
Øvelsesoppgave i: ECON30 Dato for utlevering: 7.03.04 Dato for innlevering: 07.04.04 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Innleveringssted: Ekspedisjonen, etasje innen kl 5:00 Øvrig informasjon: Denne
DetaljerInf109 Programmering for realister Uke 5. I denne leksjonen skal vi se på hvordan vi kan lage våre egne vinduer og hvordan vi bruker disse.
Inf109 Programmering for realister Uke 5 I denne leksjonen skal vi se på hvordan vi kan lage våre egne vinduer og hvordan vi bruker disse. Før du starter må du kopiere filen graphics.py fra http://www.ii.uib.no/~matthew/inf1092014
DetaljerOm plotting. Knut Mørken. 31. oktober 2003
Om plotting Knut Mørken 31. oktober 2003 1 Innledning Dette lille notatet tar for seg primitiv plotting av funksjoner og visualisering av Newtons metode ved hjelp av Java-klassen PlotDisplayer. Merk at
DetaljerØving 1 TMA4245 - Grunnleggende dataanalyse i Matlab
Øving 1 TMA4245 - Grunnleggende dataanalyse i Matlab For grunnleggende bruk av Matlab vises til slides fra basisintroduksjon til Matlab som finnes på kursets hjemmeside. I denne øvingen skal vi analysere
DetaljerDrosjesentralen. I-120: Obligatorisk oppgave 2, 2000
Drosjesentralen I-120: Obligatorisk oppgave 2, 2000 Frist Mandag 20. November 2000 kl.10:00, i skuff merket I120 på UA. Krav Se seksjon 4 for kravene til innlevering. Merk krav om generisk løsning for
DetaljerAndre sett med obligatoriske oppgaver i STK1110 høsten 2010
Andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Dette er det andre settet med obligatoriske oppgaver i STK1110 høsten 2010. Oppgavesettet består av fire oppgaver. Det er valgfritt om du vil
DetaljerTMA4245 Statistikk Eksamen august 2014
TMA4245 Statistikk Eksamen august 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Oppgave 1 En bedrift produserer en type medisin i pulverform Medisinen selges på flasker
DetaljerSTK1000 Obligatorisk oppgave 1 av 2
6. september 2017 STK1000 Obligatorisk oppgave 1 av 2 Innleveringsfrist Torsdag 21. september 2017, klokken 14:30 i Devilry (https://devilry.ifi.uio.no). Instruksjoner Du velger selv om du skriver besvarelsen
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK2120 Statistiske metoder og dataanalyse 2. Eksamensdag: Fredag 7. juni 2013. Tid for eksamen: 14.30 18.30. Oppgavesettet er
DetaljerHøgskolen i Gjøviks notatserie, 2001 nr 5
Høgskolen i Gjøviks notatserie, 2001 nr 5 5 Java-applet s for faget Statistikk Tor Slind Avdeling for Teknologi Gjøvik 2001 ISSN 1501-3162 Sammendrag Dette notatet beskriver 5 JAVA-applets som demonstrerer
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
Øvelsesoppgave i: ECON2130 Statistikk 1 Dato for utlevering: Mandag 22. mars 2010 Dato for innlevering: Fredag 9. april 2010 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Innleveringssted: Ved siden av SV-info-senter
DetaljerEn kort innføring i Lotte-Typehushold
En kort innføring i Lotte-Typehushold Det forutsettes at du har kjennskap til ordinær Lotte dvs. Lotte-Trygd og Lotte-Skatt. Dvs. du må vite hva en skatteregel er og en skatterutine er og hvor du kan finne
DetaljerHamboHus 5.4 Rev. 1, 8. september 2005 A. Cordray
HamboHus Technical Note Nr 10: Terreng HamboHus 5.4 Rev. 1, 8. september 2005 A. Cordray I HamboHus 5.4 er implementasjonen av terreng utvidet og forbedret. Det er lettere å lage terrengpunkter, og mye
DetaljerEKSAMENSOPPGAVER STAT100 Vår 2011
EKSAMENSOPPGAVER STAT100 Vår 2011 Løsningsforslag Oppgave 1 (Med referanse til Tabell 1) a) De 3 fiskene på 2 år hadde lengder på henholdsvis 48, 46 og 35 cm. Finn de manglende tallene i Tabell 1. Test
DetaljerStatistikk og dataanalyse
Njål Foldnes, Steffen Grønneberg og Gudmund Horn Hermansen Statistikk og dataanalyse En moderne innføring Kapitteloversikt del 1 INTRODUKSJON TIL STATISTIKK Kapittel 1 Populasjon og utvalg 19 Kapittel
DetaljerMATLAB for STK1100. Matematisk institutt Univeristetet i Oslo Januar Enkel generering av stokastiske variabler
MATLAB for STK1100 Matematisk institutt Univeristetet i Oslo Januar 2014 1 Enkel generering av stokastiske variabler MATLAB har et stort antall funksjoner for å generere tilfeldige tall. Skriv help stats
DetaljerKanter, kanter, mange mangekanter
Kanter, kanter, mange mangekanter Nybegynner Processing PDF Introduksjon: Her skal vi se på litt mer avansert opptegning og bevegelse. Vi skal ta utgangspunkt i oppgaven om den sprettende ballen, men bytte
DetaljerOPPGAVEHEFTE I STK1000 TIL KAPITTEL Regneoppgaver til kapittel 7. X 1,i, X 2 = 1 n 2. D = X 1 X 2. På onsdagsforelesningen påstod jeg at da må
OPPGAVEHEFTE I STK000 TIL KAPITTEL 7 Regneoppgaver til kapittel 7 Oppgave Anta at man har resultatet av et randomisert forsøk med to grupper, og observerer fra gruppe, mens man observerer X,, X,2,, X,n
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK 1000 Innføring i anvendt statistikk. Eksamensdag: Mandag 4. desember 2006. Tid for eksamen: 14.30 17.30. Oppgavesettet er
DetaljerSeksjon 1.3 Tetthetskurver og normalfordelingen
Seksjon 1.3 Tetthetskurver og normalfordelingen Har sett på ulike metoder for å plotte eller oppsummere data Vil nå starte på hvordan beskrive data ved modeller Hovedmetode er tetthetskurver Tetthetskurver
DetaljerLøsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår
Løsningsforslag ECON 130 Obligatorisk semesteroppgave 017 vår Andreas Myhre Oppgave 1 1. (i) Siden X og Z er uavhengige, vil den simultane fordelingen mellom X og Z kunne skrives som: f(x, z) = P(X = x
DetaljerMATLABs brukergrensesnitt
Kapittel 3 MATLABs brukergrensesnitt 3.1 Brukergrensesnittets vinduer Ved oppstart av MATLAB åpnes MATLAB-vinduet, se figur 1.1. MATLAB-vinduet inneholder forskjellige (under-)vinduer. De ulike vinduene
Detaljerting å gjøre å prøve å oppsummere informasjonen i Hva som er hensiktsmessig måter å beskrive dataene på en hensiktsmessig måte.
Kapittel : Beskrivende statistikk Etter at vi har samlet inn data er en naturlig første ting å gjøre å prøve å oppsummere informasjonen i dataene på en hensiktsmessig måte. Hva som er hensiktsmessig måter
DetaljerSnøtetthet. Institutt for matematiske fag, NTNU 15. august Notat for TMA4240/TMA4245 Statistikk
Snøtetthet Notat for TMA424/TMA4245 Statistikk Institutt for matematiske fag, NTNU 5. august 22 I forbindelse med varsling av om, klimaforskning og særlig kraftproduksjon er det viktig å kunne anslå hvor
DetaljerEksamensoppgave i TMA4255 Anvendt statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4255 Anvendt statistikk Faglig kontakt under eksamen: Anna Marie Holand Tlf: 951 38 038 Eksamensdato: 30. mai 2014 Eksamenstid (fra til): 09:00-13:00
DetaljerTMA4240 Statistikk Høst 2012
TMA424 Statistikk Høst 212 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving blokk II Oppgave 1 Oppgave 11.3 fra læreboka. Oppgave 2 Oppgave 11.19 fra læreboka. Oppgave
DetaljerKanter, kanter, mange mangekanter. Introduksjon: Steg 1: Enkle firkanter. Sjekkliste. Skrevet av: Sigmund Hansen
Kanter, kanter, mange mangekanter Skrevet av: Sigmund Hansen Kurs: Processing Tema: Tekstbasert, Animasjon Fag: Matematikk, Programmering, Kunst og håndverk Klassetrinn: 8.-10. klasse, Videregående skole
DetaljerØving 1 TMA4240 - Grunnleggende dataanalyse i Matlab
Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab For grunnleggende introduksjon til Matlab, se kursets hjemmeside https://wiki.math.ntnu.no/tma4240/2015h/matlab. I denne øvingen skal vi analysere to
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
Utsatt eksamen i: ECON2130 - Statistikk 1 Eksamensdag: 19.06.2014 Tid for eksamen: kl. 09:00 12:00 Oppgavesettet er på 4 sider UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Tillatte hjelpemidler: Alle trykte
DetaljerTMA4245 Statistikk Høst 2016
TMA5 Statistikk Høst 6 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving Løsningsskisse Oppgave a) Den tilfeldige variabelen X er kontinuerlig fordelt med sannsynlighetstetthet
DetaljerEKSAMEN I FAG TMA4255 FORSØKSPLANLEGGING OG ANVENDTE STATISTISKE METODER
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Faglig kontakt under eksamen: Bo Lindqvist Tlf. 975 89 418 EKSAMEN I FAG TMA4255 FORSØKSPLANLEGGING OG ANVENDTE
DetaljerGeoGebraøvelser i geometri
GeoGebraøvelser i geometri av Peer Andersen Peer Andersen 2014 Innhold Innledning... 3 Øvelse 1. Figurer i GeoGebra... 4 Øvelse 2. Noen funksjoner i GeoGebra... 8 Øvelse 3. Omskrevet sirkelen til en trekant...
Detaljerår i 1 2 3 4 5 6 7 8 9 alder x i 37 38 39 40 41 42 43 44 45 tid y i 45.54 41.38 42.50 38.80 41.26 37.20 38.19 38.05 37.45 i=1 (x i x) 2 = 60, 9
TMA424 Statistikk Vår 214 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 11, blokk II Oppgave 1 Matlabkoden linearreg.m, tilgjengelig fra emnets hjemmeside, utfører
DetaljerEKSAMEN I FAG TMA4255 FORSØKSPLANLEGGING OG ANVENDTE STATISTISKE METODER
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Faglig kontakt under eksamen: Bo Lindqvist Tlf. 975 89 418 BOKMÅL EKSAMEN I FAG TMA4255 FORSØKSPLANLEGGING OG ANVENDTE
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 7. oktober 2009. Tid for eksamen: 15:00 17:00. Oppgavesettet er på
DetaljerTDT4110 Informasjonsteknologi, grunnkurs Uke 35 Introduksjon til programmering i Python
TDT4110 Informasjonsteknologi, grunnkurs Uke 35 Introduksjon til programmering i Python Professor Guttorm Sindre Institutt for datateknikk og informasjonsvitenskap Læringsmål og pensum Mål Vite hva et
DetaljerTMA4240 Statistikk H2017 [15]
TMA4240 Statistikk H207 [5] Del 2: Statistisk inferens Populasjon og utvalg [8.] Observatorer og utvalgsfordelinger [8.2-8.3] Fordeling til gjennomsnittet og sentralgrenseteoremet [8.4] Normalplott [8.8]
DetaljerSTK1000 Obligatorisk oppgave 2 av 2
STK1000 Obligatorisk oppgave 2 av 2 Innleveringsfrist Torsdag 16. november 2017, klokken 14:30 i Devilry (https://devilry.ifi.uio.no). Instruksjoner Du velger selv om du skriver besvarelsen for hånd og
DetaljerIllustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.20).
Econ 130 HG mars 017 Supplement til forelesningen 7. februar Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.0). Regel 5.19 sier at summer, Y X1 X X
DetaljerAndre obligatoriske oppgave i STK1000 H2016: Innlevering: Besvarelsen leveres på instituttkontoret ved Matematisk institutt i 7.
Andre obligatoriske oppgave i STK1000 H2016: Oppgavesettet har fire oppgaver. Oppgave 1 består av oppgaver fra boka. Disse ligner på ukesoppgavene for uke 43 og 44, og gir nyttig øvelse for eksamen og
DetaljerMedisinsk statistikk Del I høsten 2009:
Medisinsk statistikk Del I høsten 2009: Kontinuerlige sannsynlighetsfordelinger Pål Romundstad Beregning av sannsynlighet i en binomisk forsøksrekke generelt Sannsynligheten for at suksess intreffer X
DetaljerKapittel 1: Data og fordelinger
STK Innføring i anvendt statistikk Mandag 8. august 8 Ingrid K. lad I løpet av dette kurset skal dere bli fortrolig med statistisk tenkemåte forstå teori og metoder som ligger bak knappene/menyene i vanlige
DetaljerSeksjon 1.3 Tetthetskurver og normalfordelingen
Seksjon 1.3 Tetthetskurver og normalfordelingen Har sett på ulike metoder for å plotte eller oppsummere data ved tall Vil nå starte på hvordan beskrive data ved modeller Hovedmetode er tetthetskurver Tetthetskurver
DetaljerØgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Microsoft Excel
Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Microsoft Excel Innhold 1 Om Excel 4 2 Regning 4 2.1 Tallregning................................... 4 2.2
DetaljerUNIVERSITETET I OSLO
Deleksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 13. oktober 2010. Tid for eksamen: 15:00 17:00. Oppgavesettet
DetaljerECON2130 Kommentarer til oblig
ECON2130 Kommentarer til oblig Her har jeg skrevet ganske utfyllende kommentarer til en del oppgaver som mange slet med. Har noen steder gått en del utover det som det strengt tatt ble spurt om i oppgaven,
DetaljerTMA4245 Statistikk Eksamen desember 2016
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer
DetaljerTDT4102 Prosedyre og Objektorientert programmering Vår 2015
Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap TDT4102 Prosedyre og Objektorientert programmering Vår 2015 Øving 3 Frist: 2014-02-07 Mål for denne øvinga:
DetaljerHjemmeeksamen 2 i INF3110/4110
Hjemmeeksamen 2 i INF3110/4110 Innleveringsfrist: onsdag 19. november kl. 1400 Innlevering Besvarelsen av oppgave 2,3,4 og 5 skal leveres skriftlig på papir i IFI-ekspedisjonen. Merk denne med navn, kurskode,
DetaljerBinomisk sannsynlighetsfunksjon
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Binomisk sannsynlighetsfunksjon La det være n forsøk, sannsynlighet p for suksess og sannsynlighet q for fiasko. Den tilfeldige
DetaljerSprettende ball Introduksjon Processing PDF
Sprettende ball Introduksjon Processing PDF Introduksjon: I denne modulen skal vi lære et programmeringsspråk som heter Processing. Det ble laget for å gjøre programmering lett for designere og andre som
DetaljerEksamensoppgave i TMA4255 Anvendt statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4255 Anvendt statistikk Faglig kontakt under eksamen: Anna Marie Holand Tlf: 951 38 038 Eksamensdato: 16. mai 2015 Eksamenstid (fra til): 09:00-13:00
DetaljerDATAUTFORSKNING I EG, EG 7.1 OG EGENDEFINERTE FUNKSJONER SAS FANS I STAVANGER 4. MARS 2014, MARIT FISKAAEN
DATAUTFORSKNING I EG, EG 7.1 OG EGENDEFINERTE FUNKSJONER SAS FANS I STAVANGER 4. MARS 2014, MARIT FISKAAEN 2 INNLEDNING TEMA I SAS Enterprise Guide versjon 5.1 (februar 2012) kom det et nytt datautforskingsverktøy,
Detaljer6.2 Signifikanstester
6.2 Signifikanstester Konfidensintervaller er nyttige når vi ønsker å estimere en populasjonsparameter Signifikanstester er nyttige dersom vi ønsker å teste en hypotese om en parameter i en populasjon
DetaljerOppgaver til Studentveiledning I MET 3431 Statistikk
Oppgaver til Studentveiledning I MET 3431 Statistikk 20. mars 2012 kl 17.15-20.15 i B2 Handelshøyskolen BI 2 Oppgaver 1. Konfidensintervaller Vi ser på inntekten til en tilfeldig valgt person (i tusen
DetaljerEt lite oppdrag i bakgrunnen
Et lite oppdrag i bakgrunnen Under pultene på bakerste rad er det klistret post-it lapper med to tall skrevet på Regn ut summen av to nederste tall, skriv denne summen under de andre tallene, og send lappen
DetaljerEksamensoppgave i TMA4275 Levetidsanalyse
Institutt for matematiske fag Eksamensoppgave i TMA4275 Levetidsanalyse Faglig kontakt under eksamen: Bo Lindqvist Tlf: 975 89 418 Eksamensdato: Lørdag 31. mai 2014 Eksamenstid (fra til): 09:00-13:00 Hjelpemiddelkode/Tillatte
DetaljerTMA4105 Matematikk 2 Vår 2008
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4105 Matematikk 2 Vår 2008 Øving 1 Navn/kursparallell skrives her (ved gruppearbeid er det viktig at alle fyller ut): 1.
DetaljerINSTALLASJONSVEILEDNING OPPDATERING TIL VERSJON Mamut datax Software DETALJERT STEG-FOR-STEG VEILEDNING FOR HVORDAN
Mamut datax Software INSTALLASJONSVEILEDNING OPPDATERING TIL VERSJON 4.1.1300 DETALJERT STEG-FOR-STEG VEILEDNING FOR HVORDAN OPPDATERE DIN VERSJON AV MAMUT DATAX SOFTWARE Mamut Kunnskapsserie, nr. 2-2004
DetaljerBetinget eksekvering og logiske tester i shell
Betinget eksekvering og logiske tester i shell Betinget eksekvering *? Programmet utfører operasjon(er) bare hvis en logisk betingelse er sann Bash tilbyr to kontrollstrukturer for å kunne gjøre betinget
DetaljerTMA4245 Statistikk. Innlevering 3. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag
TMA4245 Statistikk Vår 2017 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Innlevering 3 Dette er den første av to innleveringer i blokk 2 Denne øvingen skal oppsummere pensum
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag Situasjonen er som i quiz-eksempelet: n = 4, p = 1/3 ( suksess betyr å gjette riktig alternativ), q = 2/3. Oppgave: Finn
DetaljerEksamensoppgave i TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland a, Sara Martino b Tlf: a 48 22 18 96, b 99 40 33 30 Eksamensdato: 30. november 2017 Eksamenstid
DetaljerTMA4240 Statistikk Eksamen desember 2015
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4240 Statistikk Eksamen desember 15 Oppgave 1 La den kontinuerlige stokastiske variabelen X ha fordelingsfunksjon (sannsynlighetstetthet
DetaljerINF109 - Uke 1a
INF109 - Uke 1a 19.01.16 NOTE: Download the latest version of python: 3.5.1. 1 Introduksjon 1.1 Goodbye world! For å komme i gang, start IDLE fra Start Programs Python3.5.1 IDLE. (Varierer litt fra datamaskin
DetaljerAnalyse av kontinuerlige data. Intro til hypotesetesting. 21. april 2005. Seksjon for medisinsk statistikk, UIO. Tron Anders Moger
Intro til hypotesetesting Analyse av kontinuerlige data 21. april 2005 Tron Anders Moger Seksjon for medisinsk statistikk, UIO 1 Repetisjon fra i går: Normalfordelingen Variasjon i målinger kan ofte beskrives
DetaljerTMA4240 Statistikk Høst 2016
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 9 Løsningsskisse Oppgave 1 a) Vi lar her Y være antall fugler som kolliderer med vindmølla i løpet av den gitte
DetaljerST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper
ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper Bo Lindqvist Institutt for matematiske fag 2 Kapittel 8: Sammenligning av grupper Situasjon: Vi ønsker
Detaljer8 Likninger med to ukjente rette linjer
8 Likninger med to ukjente rette linjer 8. Likninger med to ukjente Per vil teste kameratens matematiske kunnskaper. Han forteller at han har ni mnter med en samlet verdi på 40 kroner i lommeboken sin.
DetaljerMA155 Statistikk TI-nspire cx Kalkulator Guide
MA155 Statistikk TI-nspire cx Kalkulator Guide Magnus T. Ekløff, Kristoffer S. Tronstad, Henrik G. Fauske, Omer A. Zec Våren 2016 1 Innhold 1 Basics... 4 2 1.1 Dokumenter... 4 1.1.1 Regneark... 4 1.1.2
DetaljerKontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt.
Eksamen i: MET040 Statistikk for økonomer Eksamensdag: 4. juni 2008 Tid for eksamen: 09.00-13.00 Oppgavesettet er på 5 sider. Tillatte hjelpemidler: Alle trykte eller egenskrevne hjelpemidler og kalkulator.
DetaljerØgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Microsoft Excel
Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Microsoft Excel Innhold 1 Om Excel 4 2 Regning 4 2.1 Tallregning................................... 4 2.2
DetaljerTestmodulen med «Resultater»
Testmodulen med «Resultater» [Oppdatert 22.6.2012 av Daniel Gjestvang] Extensor Testregistrering er en modul som muliggjør avansert registrering av tester og parametere. Den kan benyttes både til registrering
DetaljerTegnbaserte skjermer via Telnet
Tegnbaserte skjermer via Telnet Brukerhåndbok Oppdatert: 2004-12-28 2004-12-28: Nye skjermbilder og små justeringer. Dette dokumentet har tidligere vært navngitt som: "BIBSYS-grensesnittet: Tegnbaserte
DetaljerTabell 1: Beskrivende statistikker for dataene
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7, blokk II Løsningsskisse Oppgave 1 a) Utfør en beskrivende analyse av datasettet % Data for Trondheim: TRD_mean=mean(TRD);
DetaljerHvordan lage en PDF. 1. CutePDF og tilleggsprogrammet lastes ned fra følgende side: http://www.cutepdf.com/products/cutepdf/writer.
Hvordan lage en PDF Alle mastergradsoppgaver skal nå innleveres elektronisk gjennom Munin på internett (http://www.ub.uit.no/munin/ ). Før den kan leveres inn gjennom Munin, må dokumentet konverteres til
DetaljerEksamensoppgave i TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806
DetaljerObligatorisk oppgave 1 INF1020 h2005
Obligatorisk oppgave 1 INF1020 h2005 Frist: fredag 7. oktober Oppgaven skal løses individuelt, og må være godkjent for å kunne gå opp til eksamen. Før innlevering må retningslinjene Krav til innleverte
DetaljerMEK1100, vår Obligatorisk oppgave 1 av 2. Torsdag 28. februar 2019, klokken 14:30 i Devilry (devilry.ifi.uio.no).
28. februar 2019 Innleveringsfrist MEK1100, vår 2019 Obligatorisk oppgave 1 av 2 Torsdag 28. februar 2019, klokken 14:30 i Devilry (devilry.ifi.uio.no). Instruksjoner Du velger selv om du skriver besvarelsen
DetaljerHvordan installere Java og easyio på Windows
Hvordan installere Java og easyio på Windows Denne veiledningen forklarer en enkel måte å installere Java og easyio på din egen Windows-datamaskin. Du kan finne veiledninger for andre operativsystemer
DetaljerHvordan lage kontrolldiagrammer legge inn tall i Epidata. Eksempel I-diagram
Hvordan lage kontrolldiagrammer legge inn tall i Epidata Eksempel I-diagram Hvordan laste ned EpiData? 1. Gå til www.epidata.dk 2. Klikk på download 3. Scroll ned til EpiData Analysis klikk på setup.exe
Detaljer