Exploratory Analysis of a Large Collection of Time-Series Using Automatic Smoothing Techniques



Like dokumenter
Stationary Phase Monte Carlo Methods

Generalization of age-structured models in theory and practice

Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen

Neural Network. Sensors Sorter

Eksamensoppgave i PSY3100 Forskningsmetode - Kvantitativ

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F.

GeWare: A data warehouse for gene expression analysis

Slope-Intercept Formula

Exercise 1: Phase Splitter DC Operation

HONSEL process monitoring

1. Explain the language model, what are the weaknesses and strengths of this model?

Checking Assumptions

Emneevaluering GEOV272 V17

Checking Assumptions

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl.

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

Forecast Methodology September LightCounting Market Research Notes

Datahandling and presentation. Themes. Respekt og redelighet Masterseminar, Frode Volden

EN Skriving for kommunikasjon og tenkning

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2

Moving Objects. We need to move our objects in 3D space.

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)

SVM and Complementary Slackness

TFY4170 Fysikk 2 Justin Wells

Eksamensoppgave i PSY3100 Forskningsmetode - Kvantitativ

UNIVERSITETET I OSLO

Public roadmap for information management, governance and exchange SINTEF

Eksamensoppgave i PSY3100 Forskningsmetode - Kvantitativ

TMA4245 Statistikk Eksamen 9. desember 2013

Minimumskrav bør være å etablere at samtykke ikke bare må være gitt frivillig, men også informert.

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Dean Zollman, Kansas State University Mojgan Matloob-Haghanikar, Winona State University Sytil Murphy, Shepherd University

Satellite Stereo Imagery. Synthetic Aperture Radar. Johnson et al., Geosphere (2014)

Level Set methods. Sandra Allaart-Bruin. Level Set methods p.1/24

Lineære modeller i praksis

Issues and challenges in compilation of activity accounts

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Hvordan ser pasientene oss?

OPPA European Social Fund Prague & EU: We invest in your future.

Databases 1. Extended Relational Algebra

Sensorveiledning SPED1200 vår 2018

Improving Customer Relationships

Splitting the differential Riccati equation

Eksamen ENG1002/1003 Engelsk fellesfag Elevar og privatistar/elever og privatister. Nynorsk/Bokmål

SCE1106 Control Theory

Digital Transformasjon

Accuracy of Alternative Baseline Methods

Hvor finner vi flått på vårbeiter? - og betydning av gjengroing for flåttangrep på lam på vårbeite

Generelle lineære modeller i praksis

Endelig ikke-røyker for Kvinner! (Norwegian Edition)

TMA4240 Statistikk 2014

Kjell Arne Mork, Francisco Rey, Henrik Søiland

Implementing Bayesian random-effects meta-analysis

OPPA European Social Fund Prague & EU: We invest in your future.

Analysis of ordinal data via heteroscedastic threshold models

TMA4240 Statistikk Høst 2013

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23

Little Mountain Housing

Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet.

Dynamic Programming Longest Common Subsequence. Class 27

Kritisk lesning og skriving To sider av samme sak? Geir Jacobsen. Institutt for samfunnsmedisin. Kritisk lesning. Med en glidende overgang vil denne

SFI-Norman presents Lean Product Development (LPD) adapted to Norwegian companies in a model consisting of six main components.

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Presenting a short overview of research and teaching

Eksamensoppgaver til SOSANT1101. Regional etnografi: jordens folk og kulturelt mangfold. Utsatt skoleeksamen 12. desember 2013 kl.

UNIVERSITETET I OSLO

Capturing the value of new technology How technology Qualification supports innovation

PSi Apollo. Technical Presentation

EXAMINATION PAPER. Exam in: STA-3300 Date: Wednesday 27. November 2013 Time: Kl 09:00 13:00 Place: Åsgårdsv All printed and written

Estimating Peer Similarity using. Yuval Shavitt, Ela Weinsberg, Udi Weinsberg Tel-Aviv University

STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD

Method validation for NO (10 ppm to 1000 ppm) in nitrogen using the Fischer Rosemount chemiluminescence analyser NOMPUMELELO LESHABANE

Ringvorlesung Biophysik 2016

Kartleggingsskjema / Survey

FIRST LEGO League. Härnösand 2012

UNIVERSITETET I OSLO

Øystein Haugen, Professor, Computer Science MASTER THESES Professor Øystein Haugen, room D

Molare forsterkningsbetingelser

Marmi Plus One. Sleek, Essential, Stunning

Call function of two parameters

Den som gjør godt, er av Gud (Multilingual Edition)

Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

TDT4117 Information Retrieval - Autumn 2014

Forbruk & Finansiering

Kritisk lesning og skriving To sider av samme sak?

OECD GUIDELINE FOR THE TESTING OF CHEMICALS

Trigonometric Substitution

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

EUROPEAN UNIVERSITIES

Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

UNIVERSITETET I OSLO

Presenting a short overview of research and teaching

Verifiable Secret-Sharing Schemes

Software applications developed for the maritime service at the Danish Meteorological Institute

CAMES. Technical. Skills. Overskrift 27pt i to eller flere linjer teksten vokser opad. Brødtekst 22pt skrives her. Andet niveau.

PETROLEUMSPRISRÅDET. NORM PRICE FOR ALVHEIM AND NORNE CRUDE OIL PRODUCED ON THE NORWEGIAN CONTINENTAL SHELF 1st QUARTER 2016

Graphs similar to strongly regular graphs

L+T Data Processing and its Special Features

Salting of dry-cured ham

Transkript:

Exploratory Analysis of a Large Collection of Time-Series Using Automatic Smoothing Techniques Ravi Varadhan, Ganesh Subramaniam Johns Hopkins University AT&T Labs - Research 1 / 28

Introduction Goal: To extract summary measures and features from a large collection of time series. 1 Exploratory analysis (as opposed to inferential) 2 Hypothesis generation 3 Interesting (anomalous) time series 4 Common features among time series (e.g., critical points) Process to be as automatic as possible. 2 / 28

What do we mean by features? Scale of time series Mean value of function Values of derivatives Outliers Critical points Curvatures Signal/noise Others avi Varadhan, Ganesh Subramaniam ( Johns Hopkins University EDA of Large AT&T Time Labs series - Research Data ) 3 / 28

How do we do this? Features are defined on smooth curves. What we have is discretely sampled observations. We need functional data techniques to recover underlying smooth function. y(t i ) = f (t i ) + ε i ; E(ε i ) = 0 Automatic bandwidth selection procedures (e.g., cross-validation, plug-in) avi Varadhan, Ganesh Subramaniam ( Johns Hopkins University EDA of Large AT&T Time Labs series - Research Data ) 4 / 28

Challenge Optimal bandwidth selection is usually applied to the function. This may NOT be optimal for estimating derivatives. The relationship between optimal BWs for function estimation and derivative estimation is not clear. Here we evaluate 4 automatic smoothing techniques in terms of their accuracy for estimating functions and its first two derivatives via simulation studies. avi Varadhan, Ganesh Subramaniam ( Johns Hopkins University EDA of Large AT&T Time Labs series - Research Data ) 5 / 28

Smoothing techniques considered for study Smoothing splines with gcv for bw selection (stats::smooth.spline). Penalized splines with REML estimate(semipar::spm). Local polynomial with plugin bw (KernSmooth::locpoly). Gasser-Muller kernel global plug-in bw (lokern::glkerns). 6 / 28

Simulation study design Regression function. (4 functions with different characteristics) Error distribution. (t distribution 5 df) Grid layout. (either uniform random or equally spaced) Noise level. (σ = 0.5, 1.2) avi Varadhan, Ganesh Subramaniam ( Johns Hopkins University EDA of Large AT&T Time Labs series - Research Data ) 7 / 28

Regression Function Estimation MISE, Variance & Bias 2 Function SS SPM GLK LOC f 1 (x) = x + 2 exp( 400x 2 ), σ = 0.5, 2.60 0.36 0.16 0.18 2.600 0.100 0.100 0.069 0.031 0.250 0.057 0.110 f 2 (x) = [1 + exp ( 10x)] 1, σ = 0.5, 2.100 0.026 0.049 0.028 2.100 0.026 0.048 0.028 0.0041 0.0000 0.0000 0.0000 f 3 (x) = 10 exp( x/60) + 0.5 sin( 2π (x 10)) + sin( 2π (x 30)) 20 20 0.00540 0.02200 0.00081 0.00084 σ = 0.5 0.00540 0.00020 0.00068 0.00060 5.4e 05 0.021 0.00013 0.00025 f 4 (x) = sin(8πx 2 ), σ = 0.5, 0.048 0.640 0.068 0.089 0.043 0.120 0.042 0.027 0.0091 0.5200 0.0270 0.0620 8 / 28

First Derivative Estimation MISE, Variance & Bias 2 First Derivative SS SPM GLK LOC f 1 (x) = x + 2 exp( 400x 2 ), σ = 0.5, 44.00 0.80 0.47 0.66 44.00 0.11 0.16 0.28 0.21 0.69 0.30 0.38 f 2 (x) = [1 + exp ( 10x)] 1, σ = 0.5, 2600.00 0.67 3.20 2.90 2600.00 0.57 3.20 2.90 6.300 0.098 0.014 0.018 f 3 (x) = 10 exp( x/60) + 0.5 sin( 2π (x 10)) + sin( 2π (x 30)) 20 20 25.000 0.970 0.055 0.090 σ = 0.5 25.000 0.0023 0.0400 0.0820 0.047 0.970 0.015 0.008 f 4 (x) = sin(8πx 2 ), σ = 0.5, 0.13 0.73 0.17 0.15 0.098 0.130 0.041 0.047 0.037 0.610 0.130 0.110 9 / 28

Second Derivative Estimation MISE, Variance & Bias 2 Second Derivative SS SPM GLK LOC f 1 (x) = x + 2 exp( 400x 2 ), σ = 0.5, 230.00 1.00 0.99 1.00 230.00 0.001 0.015 0.079 1.00 1.00 0.97 0.96 f 2 (x) = [1 + exp ( 10x)] 1, σ = 0.5, 6.6e + 06 6.90 217.0 482.0 6.6e + 06 3.40 214.0 478.0 14000.0 3.50 3.00 3.6 f 3 (x) = 10 exp( x/60) + 0.5 sin( 2π (x 10)) + sin( 2π (x 30)) 20 20 4600.00 1.00 0.23 2.50 σ = 0.5 4.6e03 0.0015 0.11 2.50 7.800 1.000 0.120 0.019 f 4 (x) = sin(8πx 2 ), σ = 0.5, 0.81 0.80 0.32 0.41 0.730 0.160 0.035 0.280 0.084 0.640 0.290 0.130 10 / 28

Highlights Smoothing spline, with cross-validated optimal bandwidth, did poorly. Penalized splines, with REML penalty estimation, did well on smooth functions, and worse on functions with high frequency variations (high bias). Global plug-in bandwidth kernel methods, glkerns and locpoly generally did well (higher variance). glkerns seems to be a good choice for estimating lower-order derivatives. 11 / 28

Exploration of AT&T Time-Series Data. An R function to extract summary measures and features of a collection of time series. We demonstrate that with a large collection of time series data from AT&T. Over 1200 time-series with monthly MOU over a 3.5 year period. The data were transformed & scaled for proprietary reasons. avi Varadhan, Ganesh Subramaniam ( Johns Hopkins University EDA of Large AT&T Time Labs series - Research Data ) 12 / 28

Univariate View of Features 13 / 28

A Biplot on Features Figure: PCA of features Data ts: 1205 ts: 1140 14 / 28

Another Biplot on Features Figure: PCA of features Data ts: 139 ts: 936 Next 15 / 28

Figure: PCA of features Data Back to PCA 16 / 28

Figure: PCA of features Data Back to PCA 17 / 28

Figure: PCA of features Data Back to PCA 18 / 28

Figure: PCA of features Data Back to PCA 19 / 28

Future Work Release package. Add more visualization. Further testing on real data. avi Varadhan, Ganesh Subramaniam ( Johns Hopkins University EDA of Large AT&T Time Labs series - Research Data ) 20 / 28

THANK YOU! 21 / 28

Semiparametric Model Details Nonparametric regression models are used. Functional form of the models We consider a univariate scatterplot smoothing y i = f (x i ) + ɛ i where the (x i, y i ), 1 i n, are scatter plot data, ɛ i are zero mean random variables with variance σɛ 2 and f (x) = E(y x) is a smooth function. f is estimated using penalised spline smoothing using truncated polynomial basis functions. These involve f being modelled as a function of the form f (x) = β 0 + β 1 x + + βp x p K + u k (x x k ) p k=1 where u k are random coefficients u [u 1, u 2,..., u K ] T N(0, σ 2 u Ω 1/2 (Ω 1/2 ) T ), Ω [ x k x k 2p ] The mixed model representation of penalised spline smoothers allows for automatic fitting using the R linear mixed model function. Smoothing parameter selection is done using REML and ˆf (x) is obtained via best linear unbiased prediction. This class of penalised spline smoothers may also be expressed as ˆf = C(C T C + λ 2p D) 1 C T y where λ = σ2 u σɛ 2 is the smoothing parameter, and D ( 02x2 0 2xK 0 Kx2 (Ω 1/2 ) T Ω 1/2 ) C [1, x i,..., x m 1 x i i x k 2p ] avi Varadhan, Ganesh Subramaniam ( Johns Hopkins University EDA of Large AT&T Time Labs series - Research Data ) 22 / 28

Simulation Output: Integrated Mean Sq. error, Variance & Bias (for random interval) Function SS SPM GLK LOC f 1 (x) = x + 2 exp( 400x 2 ), σ = 0.5, (2.100) MISE = (0.026) MISE = (0.049) MISE = (0.028) MISE = (2.100) ivar +(0.0041) isb (0.026) ivar +(0.0000) isb (0.048) ivar +(0.0000) isb (0.028) ivar +(0.0000) isb f 2 (x) = [1 + exp 10x] 1, σ = 0.5, (1.30) MISE = (0.68) MISE = (0.31) MISE = (0.27) MISE = (1.30) ivar + (0.10) isb (0.21) ivar + (0.470) isb (0.25) ivar + (0.065) isb (0.22) ivar + (0.055) isb f 3 (x) = 0.3 exp( 4(x + 1) 2 ) + 0.7 exp(16(x 1) 2 ), σ = 0.4, (2.30) MISE = (2.20) ivar + (0.059) isb (0.48) MISE = (0.23) ivar + (0.260) isb (0.43) MISE = (0.34) ivar + (0.093) isb (0.36) MISE = (0.30) ivar + (0.060) isb f 4 (x) = 0.8 + sin(6x), σ = 4, (9.40) MISE = (0.63) MISE = (0.95) MISE = (0.89) MISE = (9.40) ivar + (0.0430) isb (0.63) ivar + (0.0000) isb (0.95) ivar + (0.0093) isb (0.89) ivar + (0.0078) isb f 5 (x) = a exp( bx) + k 1 sin( 2π T 1 (x 10) + k 2 sin( 2π T 2 (x 30)), σ = 0.5, (0.00540) MISE = (0.00540) ivar + (5.4e 05) isb (0.02200) MISE = (0.00020) ivar + (2.1e 02) isb (0.00081) MISE = (0.00068) ivar + (1.3e 04) isb (0.00084) MISE = (0.00060) ivar + (2.5e 04) isb f 6 (x) = sin(8πx 2 ), σ = 0.5, (0.048) MISE = (0.640) MISE = (0.068) MISE = (0.089) MISE = (0.043) ivar +(0.0091) isb (0.120) ivar +(0.5200) isb (0.042) ivar +(0.0270) isb (0.027) ivar +(0.0620) isb 23 / 28

Simulation Output: Integrated Mean Sq. error, Variance & Bias (for random interval) First Derivative SS SPM GLK LOC f 1 (x) = x + 2 exp( 400x 2 ), σ = 1.6, (44.00) MISE = (0.80) MISE = (0.47) MISE = (0.66) MISE = (44.00) ivar + (0.21) isb (0.11) ivar + (0.69) isb (0.16) ivar + (0.30) isb (0.28) ivar + (0.38) isb f 2 (x) = [1 + exp 10x] 1, σ = 1.2, (2600.00) MISE = (2600.00) ivar + (6.300) isb (0.67) MISE = (0.57) ivar + (0.098) isb (3.20) MISE = (3.20) ivar + (0.014) isb (2.90) MISE = (2.90) ivar + (0.018) isb f 3 (x) = 0.3 exp( 4(x + 1) 2 ) + 0.7 exp(16(x 1) 2 ), σ = 0.4, (490.00) MISE = (1.00) MISE = (0.95) MISE = (1.50) MISE = (490.00) ivar + (0.52) isb (0.26) ivar + (0.75) isb (0.62) ivar + (0.33) isb (1.20) ivar + (0.23) isb f 4 (x) = 0.8 + sin(6x), σ = 4, (33000.0) MISE = (33000.0) ivar + (20.000) isb f 5 (x) = a exp( bx) + k 1 sin( 2π (x 10) + k T 2 sin( 2π 1 T 2 (x 30)), σ = (25.000) MISE = (25.0000) ivar + 0.5, (0.047) isb (5.3) MISE = (5.2) ivar + (0.086) isb (26.0) MISE = (26.0) ivar + (0.033) isb (40.0) MISE = (40.0) ivar + (0.048) isb (0.970) MISE = (0.0023) ivar +(0.970) isb (0.055) MISE = (0.0400) ivar +(0.015) isb (0.090) MISE = (0.0820) ivar +(0.008) isb f 6 (x) = sin(8πx 2 ), σ = 0.5, (0.13) MISE = (0.73) MISE = (0.17) MISE = (0.15) MISE = (0.098) ivar + (0.037) isb (0.130) ivar + (0.610) isb (0.041) ivar + (0.130) isb (0.047) ivar + (0.110) isb 24 / 28

Simulation Output: Integrated Mean Sq. error, Variance & Bias (for random interval) Second Derivative SS SPM GLK LOC f 1 (x) = x + 2 exp( 400x 2 ), σ = 1.6, (230.00) MISE = (1.00) MISE = (0.99) MISE = (1.00) MISE = (230.00) ivar + (1.00) isb (0.001) ivar + (1.00) isb (0.015) ivar + (0.97) isb (0.079) ivar + (0.96) isb f 2 (x) = [1 + exp 10x] 1, σ = 1.2, (6.6e + 06) MISE = (6.6e + 06) ivar + (14000.0) isb f 3 (x) = 0.3 exp( 4(x + 1) 2 ) + 0.7 exp(16(x 1) 2 ), σ = 0.4, (1.4e + 05) MISE = (1.4e + 05) ivar + (95.00) isb f 4 (x) = 0.8 + sin(6x), σ = 4, (3.7e + 10) MISE = (3.7e + 10) ivar + (1.4e + 07) isb f 5 (x) = a exp( bx) + k 1 sin( 2π (x 10) + k T 2 sin( 2π 1 T 2 (x 30)), σ = (4600.00) MISE = (4.6e + 03) + ivar 0.5, (7.800) isb (6.9e + 00) MISE = (4.8e +02) ivar +(3.6) isb (4.8e + 02) MISE = (2.2e + 02) MISE = (1.1e + 00) MISE = (1.5e 01) ivar + (0.94) isb (6.5e + 01) MISE = (6.5e +01) ivar +(6.6e 01) isb (1.8e + 00) MISE = (1.2e + 00) ivar + (0.62) isb (1.0e + 03) MISE = (1.0e + 03) ivar + (1.0e + 00) isb (3.7e + 01) MISE = (3.7e + 01) ivar + (0.44) isb (3.4e + 04) MISE = (3.4e + 04) ivar + (3.2e + 01) isb (1.00) MISE = (1.5e 03) ivar + (1.000) isb (0.231.) MISE = (1e 01) ivar + (0.120) isb (2.50) MISE = (2.5e + 00) ivar + (0.019) isb f 6 (x) = sin(8πx 2 ), σ = 0.5, (0.81) MISE = (0.80) MISE = (0.32) MISE = (0.41) MISE = (0.730) ivar + (0.084) isb (0.160) ivar + (0.640) isb (0.035) ivar + (0.290) isb (0.280) ivar + (0.130) isb 25 / 28

Simulation Output: Integrated Mean Sq. error, Variance & Bias (for random interval) Function SS SPM GLK LOC f 1 (x) = x + 2 exp( 16x 2 ), σ = 0.4, (0.083) MISE = (0.031) MISE = (0.022) MISE = (0.021) MISE = (0.080) ivar +(0.0029) isb (0.015) ivar +(0.0160) isb (0.017) ivar +(0.0043) isb (0.014) ivar +(0.0071) isb f 2 (x) = sin(2πx) + 2 exp( 16x 2 ), σ = 0.3, (0.092) MISE = (0.079) MISE = (0.035) MISE = (0.033) MISE = (0.089) ivar +(0.0034) isb (0.046) ivar +(0.0320) isb (0.026) ivar +(0.0091) isb (0.023) ivar + (0.100) isb f 3 (x) = 0.3 exp( 4(x + 1) 2 ) + 0.7 exp(16(x 1) 2 ), σ = 0.1, f 4 (x) = 0.8 + sin(6x), σ = 1, (0.600) MISE = (0.600) ivar + (0.00180) isb f 5 (x) = a exp( bx) + k 1 sin( 2π T 1 (x 10) + k 2 sin( 2π T 2 (x 30)), σ = 0.5, (0.160) MISE = (0.150) ivar + (0.000) isb (0.055) MISE = (0.049) ivar + (0.012) isb (0.051) MISE = (0.050) ivar + (0.000) isb (0.050) MISE = (0.050) ivar + (0.001) isb (2.020293e 07) MISE = (1.930502e 07) ivar + (1.032594e 08) isb (0.041) MISE = (0.039) ivar + (0.00000) isb (1.526443e 07) MISE = (1.481548e 079) ivar + (6.734309e 0) isb (0.078) MISE = (0.073) ivar + (0.00055) isb (2.379456e 07) MISE = (2.020293e 07) ivar + (3.456945e 08) isb (0.064) MISE = (0.060) ivar + (0.00018) isb (2.469247e 07) MISE = (1.795816e 07) ivar + (6.734309e 08) isb 26 / 28

Simulation Output: Integrated Mean Sq. error, Variance & Bias (for random interval) First Derivative SS SPM GLK LOC f 1 (x) = x + 2 exp( 16x 2 ), σ = 0.4, (55.00) MISE = (0.36) MISE = (0.27) MISE = (0.38) MISE = (55.00) ivar + (0.086) isb (0.12) ivar + (0.240) isb (0.15) ivar + (0.120) isb (0.28) ivar + (0.099) isb f 2 (x) = sin(2πx) + 2 exp( 16x 2 ), σ = 0.3, (8.0) MISE = (0.13) MISE = (0.08) MISE = (0.19) MISE = (8.000) ivar + (0.013) isb (0.071) ivar + (0.055) isb (0.048) ivar + (0.032) isb (0.170) ivar + (0.013) isb f 3 (x) = 0.3 exp( 4(x + 1) 2 ) + 0.7 exp(16(x 1) 2 ), σ = 0.1, (31.00) MISE = (0.24) MISE = (0.20) MISE = (0.32) MISE = (31.00) ivar + (0.049) isb (0.10) ivar + (0.140) isb (0.12) ivar + (0.084) isb (0.27) ivar + (0.048) isb f 4 (x) = 0.8 + sin(6x), σ = 1, (2100.00) MISE = (2100.00) ivar + (1.3000) isb f 5 (x) = a exp( bx) + k 1 sin( 2π (x 10) + k T 2 sin( 2π 1 T 2 (x 30)), σ = (0.25882353) MISE = (0.25882353) ivar + 0.5, (0.0001176471) isb (0.41) MISE = (0.34) ivar + (0.0750) isb (1.80) MISE = (1.80) ivar + (0.0087) isb (2.80) MISE = (2.80) ivar + (0.0077) isb (0.01411765) MISE = (0.00917647) ivar + (0.0057647059) isb (0.03176471) MISE = (0.02235294) ivar + (0.0092941176) isb (0.30588235) MISE = (0.30588235) ivar + (0.0006705882) isb 27 / 28

Simulation Output: Integrated Mean Sq. error, Variance & Bias (for random interval) Second Derivative SS SPM GLK LOC f 1 (x) = x + 2 exp( 16x 2 ), σ = 0.4, 1.8e + 04 8.7e 01 8.8e 01.0e + 01 1.8 (+04) 1.5 10 01 2.4e 01 8.0e + 01 12.00 0.72 0.63 0.50 f 2 (x) = sin(2πx) + 2 exp( 16x 2 ), σ = 0.3, (2400.00) MISE = (2.4e + 03) + ivar (1.60) isb (0.24) MISE = (1.1e 01) ivar + (0.13) isb (0.24) MISE = (8.3e 02) ivar + (0.16) isb (12.00) MISE = (7.9e + 02) ivar + (0.88) isb f 3 (x) = 0.3 exp( 4(x + 1) 2 ) + 0.7 exp(16(x 1) 2 ), σ = 0.1, (8900.00) MISE = (0.52) MISE = (0.51) MISE = (15.00) MISE = (8900.00) ivar +(6.00) isb (0.16) ivar + (0.35) isb (0.19) ivar + (0.32) isb (14.00) ivar + (0.12) isb f 4 (x) = 0.8 + sin(6x), σ = 1, (2.3e + 09) MISE = (2.3e + 09) ivar + (8.7e + 05) isb f 5 (x) = a exp( bx) + k 1 sin( 2π (x 10) + k T 2 sin( 2π 1 T 2 (x 30)), σ = (0.25882353) MISE = (0.25882353) ivar + 0.5, (0.0001176471) isb (4.6e + 00) MISE = (4.1e +00) ivar +(5.4e 01) isb (0.01411765) MISE = (0.00917647) ivar + (0.0057647059) isb (6.5e + 01) MISE = (6.5e +01) ivar +(1.2e 01) isb (0.03176471) MISE = (0.02235294) ivar + (0.0092941176) isb (2.1e + 03) MISE = (2.1e + 03) ivar + (2.1e + 00) isb (0.30588235) MISE = (0.30588235) ivar + (0.0006705882) isb 28 / 28