Energy Dissipation in Hybrid Stars. Sophia Han. Washington University

Like dokumenter
Slope-Intercept Formula

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt)

Generalization of age-structured models in theory and practice

Moving Objects. We need to move our objects in 3D space.

UNIVERSITETET I OSLO

Trigonometric Substitution

Oppgave. føden)? i tråd med

TFY4170 Fysikk 2 Justin Wells

GYRO MED SYKKELHJUL. Forsøk å tippe og vri på hjulet. Hva kjenner du? Hvorfor oppfører hjulet seg slik, og hva er egentlig en gyro?

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23

Neural Network. Sensors Sorter

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with.

REMOVE CONTENTS FROM BOX. VERIFY ALL PARTS ARE PRESENT READ INSTRUCTIONS CAREFULLY BEFORE STARTING INSTALLATION

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F.

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

Stationary Phase Monte Carlo Methods

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)

KROPPEN LEDER STRØM. Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal.

GEF2200 Atmosfærefysikk 2017

Ole Isak Eira Masters student Arctic agriculture and environmental management. University of Tromsø Sami University College

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5)

Exercise 1: Phase Splitter DC Operation

Graphs similar to strongly regular graphs

Level Set methods. Sandra Allaart-Bruin. Level Set methods p.1/24

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

HONSEL process monitoring

Data Sheet for Joysticks

5 E Lesson: Solving Monohybrid Punnett Squares with Coding

NO X -chemistry modeling for coal/biomass CFD

Data Sheet for Joysticks

Oppgavesett kap. 6 (3 av..) GEF2200

EKSAMENSOPPGAVE I FAG TKP 4105

SVM and Complementary Slackness

Perpetuum (im)mobile

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Second Order ODE's (2P) Young Won Lim 7/1/14

Justeringsanvisninger finnes på de to siste sidene.

Den som gjør godt, er av Gud (Multilingual Edition)

PARABOLSPEIL. Still deg bak krysset

Eksamen i TFY4230 STATISTISK FYSIKK Onsdag 21. desember, :00 19:00

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Institutt for biovitenskap

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Verifiable Secret-Sharing Schemes

Trust region methods: global/local convergence, approximate January methods 24, / 15

How Bridges Work Sgrad 2001

Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet.

Splitting the differential Riccati equation

melting ECMI Modelling week 2008 Modelling and simulation of ice/snow melting Sabrina Wandl - University of Linz Tuomo Mäki-Marttunen - Tampere UT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

RF Power Capacitors Class kV Discs with Moisture Protection

PrO-ASTM Centrifuges. Centurion. C1015 Micro Prime Centrifuge. A Micro that offers: Oil testing. Petroleum testing, ASTM methods

Public roadmap for information management, governance and exchange SINTEF

The internet of Health

Astro Calendar 2001 v 1.03 by Yasuji Yamanaka

Demografisk og økonomisk bærekraft av pensionsreformer i Norge, Sverige og Tyskland

Utsatt eksamen ECON2915

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Du må håndtere disse hendelsene ved å implementere funksjonene init(), changeh(), changev() og escape(), som beskrevet nedenfor.

Exam in Quantum Mechanics (phys201), 2010, Allowed: Calculator, standard formula book and up to 5 pages of own handwritten notes.

Administrasjon av postnummersystemet i Norge Post code administration in Norway. Frode Wold, Norway Post Nordic Address Forum, Iceland 5-6.

UNIVERSITETET I OSLO

C13 Kokstad. Svar på spørsmål til kvalifikasjonsfasen. Answers to question in the pre-qualification phase For English: See page 4 and forward

Eksamen vind og vannkraft 2013

PATIENCE TÅLMODIGHET. Is the ability to wait for something. Det trenger vi når vi må vente på noe

Lattice Simulations of Preheating. Gary Felder KITP February 2008

SRP s 4th Nordic Awards Methodology 2018

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Deepshikha Shukla (Daniel Phillips, Andreas Nogga)

Dagens tema: Eksempel Klisjéer (mønstre) Tommelfingerregler

RF Power Capacitors Class , 20 & 30 mm Barrel Transmitting Types

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

AvtaleGiro beskrivelse av feilmeldinger for oppdrag og transaksjoner kvitteringsliste L00202 levert i CSV fil

Continuity. Subtopics

Dynamic Programming Longest Common Subsequence. Class 27

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl.

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Merak Un-glazed Porcelain Wall and Floor Tiles

// Translation // KLART SVAR «Free-Range Employees»

Qi-Wu-Zhang model. 2D Chern insulator. León Martin. 19. November 2015

RF Power Capacitors Class1. 5kV Discs

Fagevalueringsrapport FYS Diffraksjonsmetoder og elektronmikroskopi

Gir vi de resterende 2 oppgavene til én prosess vil alle sitte å vente på de to potensielt tidskrevende prosessene.

Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen

Dean Zollman, Kansas State University Mojgan Matloob-Haghanikar, Winona State University Sytil Murphy, Shepherd University

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Maple Basics. K. Cooper

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Astro Calendar 2002 v 1.00 by Yasuji Yamanaka

Of all the places in the world, I love to stay at Grandma Genia and

Windlass Control Panel

Medisinsk statistikk, KLH3004 Dmf, NTNU Styrke- og utvalgsberegning

Transkript:

Energy Dissipation in Hybrid Stars Sophia Han Washington University Texas Symposium December 8-13, 2013 Mark Alford, Sophia Han, Kai Schwenzer 1

Context Nuclear Matter Crust Quark Matter Core -Sharp interface: -In reality: first-order transformation density oscillations form r-mode etc. -Periodic compression & decompression 2

Motivation -What are neutron stars made of? probes: different forms of matter have different dissipation behavior -Why is dissipation important? r-modes are subject to gravitationally driven instability without dissipation -Paradox: fast-rotating neutrons stars do exist! efficient damping mechanisms required to saturate r-modes at a fairly low amplitude -Novel scenario: compact star models with multi-components 3

Outline -One dimensional toy-model calculation of the dissipated energy in three different categories -Extension to r-mode oscillations multiple dissipation cases in the star; damping behavior and saturation amplitude in this mechanism -Discussion astrophysical observables and theoretical predictions -Future work 4

Toy Model: Piston Picture Newtonian gravitational field dp dr = gε -1-D simple model Assumptions -Incompressible matter -Harmonic pressure oscillation in NM -Work done by a piston in NM away from the interface (in reality: r-mode) 5

Toy Model: Piston Picture -Pressure at the piston p p (t) = p p gε N δ x p (t) + Δp N sin(ωt) -Baryon number conservation δ x p (t) = 1 n Q n N δ p N (t) harmonic δ x w(t) linear -Energy dissipation in one cycle out of phase! W = S τ 0 p p (t) dδ x p(t) dt dt the wall piston 6

Real wall and ideal wall ideal wall determined by pressure oscillation δ x iw (t) = Δp N gε N sin(ωt) harmonic! v iw max δ x iw (t) t real wall max maximal speed not always as fast as the ideal wall; lags behind sometimes real wall ideal wall 7

Three Dissipation Cases real wall -real wall moves with a constant speed whenever it lags behind -no acceleration/deceleration processes near turning points Assumptions stays on top (A) no dissipation partially overlapped (B) medium dissipation totally lags behind (C) large dissipation 8

Case A: No Dissipation -If the real wall always coincides with its ideal position δ x w (t) = δ x iw (t) > v iw max -Net contribution to dissipation is zero τ W = S p p (t) dδ x (t) p dt = 0 0 dt -Pressure oscillation and piston position are completely in phase 9

Case B: Medium Dissipation -Near the equilibrium position, real wall starts to lag behind (straight-line part of the solid curve) until it catches up with ideal wall again -In the limit W 2S n Q 1 n N v iw max, τ π Δp N dissipated energy 3 2 1 η ( ) v iw dis < v iw max slope: where η = / v iw max. -Dissipated energy rises so fast that damping would be strong enough to saturate oscillation modes -There is a lower limit on below which the overlapped region (sinusoidal part of the solid curve) disappears 10

Case C: Large Dissipation -There is no overlap between real wall and ideal wall in one cycle 0 < v iw dis -In the limit 0, t 1 π / 2 and t 2 π, wall velocity is completely in phase with pressure oscillation, and dissipated energy W = 2S n Q 1 n N τ π Δp N -Dissipation vanishes if system barely responses to external driving force 11

R-mode Oscillations -Ideal wall oscillation amplitude function of r-mode amplitude the polar angle δ R iw (t) = C w α sin 2 θ cosθ sin(ωt) g w where frequency of the wall C w 1 4 and g w C w 105 2π θ Δx 3 8 Rw 189 Ω2 R, α Δx and is determined by rotation Ω Rw is a and equilibrium position is gravitational acceleration at equilibrium position of the wall. 12

Multiple Dissipation Cases -Given a fixed real wall speed, depending on the maximum of ideal wall speed v iw max we have different dissipation cases in the star. v iw max = C w g w αω sin 2 θ cosθ (A) no dissipation αω sin 2 θ cosθ < g w C w (B) medium dissipation g w C w αω sin 2 θ cosθ < g w 0.537C w (C) large dissipation αω sin 2 θ cosθ g w 0.537C w 13

Damping and Saturation -For small the star -If α is above the critical value v α crit = w g w C w ω sin 2 θ cosθ max then at [ θ 1,θ ] and [ 2 π θ 2,π θ ] 1 we have case B and other regions in the star case A -We found that r-mode is damped immediately after α rises above α crit, and the saturation amplitude α sat = (1+ ε sat )α crit,ε sat 10 3 ~ 10 4 α sat α crit α only case A exists in sensitive to wall speed and frequency! lower limit: ~10^(-4) 14

Concluding Remarks -A novel damping mechanism for hybrid stars generic for any compact star model with multiple components; different forms of quark matter etc. -Strong dissipation once above critical value Future Work a simple analytical prediction for the saturation amplitude; observation: gravitational waves; spin-down rate of pulsars -Interpretation of observational data frequency/temperature-dependence of the saturation amplitude; evolution of neutron stars 15

THANK YOU! Q & A 16

Misc.! crit =!! crit! f $ # & " 1kHz % '3! T # " 10 8 K $ & % '1 lower limit: 10^(-4) all! (7m/s) a 0 2! µ Q # 1! a " T 0 $ & % For T=10^8 K, the speed varies from 100km/s to 25m/s Olinto, Phys.Lett. B192 (1987) 71 R! 9km, Rw! 6.5km, M star! 1.9M solar ; n trans = 4n 0,"! /! trans = 0.4,c Q 2 = 1. parametrization of HS EoS arxiv:1302.4732 17

Case B: Medium Dissipation -Dissipated energy W = 2S n Q 1 n N τ π Δp N η + cosβ 2 ; β where η = / v max iw, and is the solution of v iw dis < v iw max 1 η 2 = sinβ η[arccos( η) β] v max iw (η 1), (1 η) -In the limit expand in powers of W 2S n Q v 1 w τ n N π Δp N if we, then 3 2 1 η ( ) -In this regime where dissipation begins to exist, dissipated energy rises so fast that damping would max be strong enough when is just slightly below v iw. 18

Case C: Large Dissipation -There is no overlap between real wall and ideal wall in one cycle Dissipated energy W = 2S n Q 1 n N where viw = 2 π v max iw > v dis iw. τ π Δp N 1 viw 2 -When 0, t 1 π / 2 and t 2 π, which means wall velocity is completely in phase with pressure oscillation W = 2S n Q v 1 w τ n N π Δp N -Dissipation vanishes if system barely responses to external driving force 0 < v iw dis 19

Case C: Large Dissipation -Small speed limit: v iw dis -Dissipated energy W = 2S n Q v 1 w τ n N π Δp N -Dissipation vanishes if system barely responses to external driving force 20