Norsk informatikkolympiade runde
|
|
|
- Bodil Farstad
- 10 år siden
- Visninger:
Transkript
1 Norsk informatikkolympiade runde Uke 45, 2012 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler. Instruksjoner: Oppgavesettet består av 16 oppgaver, med fire svaralternativer på hver oppgave. Det er kun ett riktig svar på hver oppgave. Du får fire poeng for hvert riktige svar, null poeng for feil svar, og ett poeng for hver oppgave du ikke svarer på (det vil si at det ikke lønner seg å gjette dersom du ikke vet hva svaret er). Du kan godt krysse av på alternativene i oppgaveteksten underveis, men du må føre inn svarene på svararket helt bakerst. Oppgavene som handler om programmering starter med beskrivelser av temaet de handler om, slik at de som ikke har vært borti programmering før også kan prøve seg på disse oppgavene. De som kan programmere trenger ikke å lese disse beskrivelsene; all koden oppfører seg som i vanlige programmeringsspråk. Navn: Skole: Studieretning og årstrinn: Hvor gammel er du 30. juni 2013? Epostadresse: 1
2 1. Du har et Excel-regneark hvor de to øverste cellene begge inneholder tallet 1. I den tredje øverste cellen skriver du formelen =A1+A2 og kopierer denne nedover, slik at du får: A =A1+A2 4 =A2+A3 5 =A3+A4 6 =A4+A5 B Hva blir resultatet i celle A6? A. 1 B. 5 C. 8 D. 13 Løsningskommentar: Hver celle fra og med den tredje er summen av de to cellene rett ovenfor dette er kjent som Fibonacci-tallene: 1, 1, 2, 3, 5, 8, osv. 2. Hvert bildepunkt (piksel) på skjermen består av en rød, en grønn og en blå fargestripe som kan variere i lysstyrke. Hvilken farge får man hvis man skrur rødt og grønt på full styrke og skrur blått helt av? A. Fiolett B. Turkis C. Brunt D. Gult Løsningskommentar: Du kan selv teste dette i bildebehandlingsprogrammer eller i HTMLkode f.eks med RGB-verdien (Red, Green, Blue) #ffff00. Hvis du har en kraftig lupe, kan du prøve å se på en skjerm med den (gjerne en TV-skjerm, siden de har nokså store piksler); da vil du se at hver piksel faktisk består av en rød, en grønn og en blå stripe, og at rødt pluss grønt blir gult. Årsaken til at det fungerer slik er at øyet bare kan registrere rødt, grønt og blått, og at gult lys utløser de røde og grønne sensorene så hjernen tolker en blanding av rødt og grønt som gult. 3. Ola og Kari leker en gjettelek: Ola velger et hemmelig heltall som er større enn eller lik 1 og mindre enn eller lik 100, og Kari skal gjette hva det er. Hver gang Kari gjetter et tall, forteller Ola om tallet er for stort, for lite eller om det er riktig. Hvis Kari gjetter på smartest mulig måte, hvor mange gjetninger må hun i verste fall bruke (inkludert den siste gjetningen som treffer rett tall)? 2
3 A. 6 B. 7 C. 50 D. 100 Løsningskommentar: Den beste strategien er hele tiden å gjette slik at antallet alternativer i verste fall blir minst mulig etter gjetningen. I dette tilfellet er det å velge tallet på midten hele tiden. Å søke etter noe på denne måten ved stadig å halvere søkeintervallet kaller vi binærsøk, og det er en viktig ingrediens i svært mange algoritmer (fremgangsmåter for å løse problemer). Her bør Kari gjette 50 først, og så (hvis Ola sier at det for lite) 75, og så (hvis Ola igjen sier at det er for lite) 88, osv. Ved hjelp av denne strategien vil man ved hjelp av n gjetninger garantert finne rett tall hvis det er opptil 2 n 1 tall å velge mellom. Dermed trenger vi 7 gjetninger når det er 100 tall, siden 2 6 < 100 og I boolsk logikk jobber vi kun med verdiene true og false. Vi skal se på fire operatorer som kan brukes til å lage boolske uttrykk (formler): NOT-operatoren gir ut motsatt sannhetsverdi av det man mater inn i den: NOT a blir true dersom a er false, og false dersom a er true. AND-operatoren brukes med to verdier: a AND b, og gir ut true bare hvis både a og b er true. OR-operatoren brukes slik: a OR b, og gir ut true så lenge minst én av a og b (eller begge to) er true. Altså gir den ut false bare hvis både a og b er false. XOR-operatoren brukes slik: a XOR b, og gir ut true så lenge én av a og b er true og den andre er false. Hvis a og b har samme verdi, gir XOR ut false. Disse operatorene kan kombineres til større uttrykk. Parenteser angir rekkefølgen uttrykket skal evalueres i, slik som vi kjenner fra matematikken. Ola og Kari skal kjøpe bil. Det er veldig viktig for Ola at bilen er rød. Samtidig er det veldig viktig for Kari at bilen enten har soltak eller at den ikke er rød. De må selvfølgelig finne en bil som oppfyller begges ønsker. Dette kan uttrykkes som a AND (b XOR (NOT a)), hvor a betyr at bilen er rød og b betyr at bilen har soltak. Hvilken bil oppfyller kriteriet? A. En rød bil med soltak (a er true og b er true) B. En rød bil uten soltak (a er true og b er false) C. En svart bil med soltak (a er false og b er true) D. En svart bil uten soltak (a er false og b er false) 5. Vi har et boolsk uttrykk som vi vet at gir følgende resultater når vi mater inn forskjellige sannhetsverdier for a og b: 3
4 a b Uttrykket gir... false false false false true false true false true true true false Hvilket av følgende uttrykk oppfører seg slik? A. a AND b B. a OR (NOT (a XOR b)) C. a XOR (NOT b) D. a AND (NOT b) 6. Google jobber i disse dager med å lage en selvkjørende bil. Vi har laget en enklere utgave med en robot som beveger seg basert på følgende tre kommandoer: F: fram en rute; V: sving 90 grader til venstre på stedet; H: sving 90 grader til høyre på stedet. Roboten vil nekte å kjøre inn i hindringer og befinner seg til å begynne med i ruten merket start med fronten rettet nordover (oppover på arket): Hva er det minste antallet kommandoer som må til for at roboten skal kunne komme seg fra start til mål (ruten som er merket med M)? A. 18 B. 22 C. 23 D. 24 Løsningskommentar: Husk å telle kommandoer i stedet for ruter. Det er en ekstra kommando for hver sving, fordi roboten bruker en kommando på å svinge uten at den forflytter seg. Den optimale kommandosekvensen er FFFFFHFFFHFFVFFFHFFVFVFF (evt. VFFHFHFF på slutten i stedet). 4
5 7. Roboten fra forrige oppgave skal brukes til å utforske Saturns måne Hyperion. Der er internett tregt, og overføringen av kommandoer fra jorda må skje på en mest mulig effektiv måte. Hver kommando må ha en unik kode som består av bits (nuller og ettall). Alle kodene skal ha like mange bits. Hvor mange bits trenger man per kommando når det finnes tre kommandoer (F, V og H)? A. 2 B. 3 C. 8 D. 32 Løsningskommentar: Vi trenger 2 bits. F.eks kan vi bruke disse kodene: 00 = F, 01 = V og 10 = H. Vi kommer uansett til å få en mulighet til overs (11 i dette eksempelet), men vi kan ikke klare oss med færre bits, for én bit holder bare til to kommandoer. 8. Kakemonsteret vil så veldig gjerne ha 119 kaker, men har litt problemer med å fortelle dette til datamaskinen sin (som skal bestille dem), ettersom datamaskinen til kakemonsteret bare forstår binære tall og ordet kake. Hvordan skriver man 119 binært? A B C D Løsningskommentar: Bakerste siffer er verdt 1, nest bakerste 2, tredje bakerste 4 osv. 119 = , altså I de fleste programmeringsspråk brukes operatoren = på en annen måte enn i matematikken. Den instruerer nemlig datamaskinen om å regne ut verdien av uttrykket på høyre side av likhetstegnet og legge den inn i variabelen på venstre side. (Verdien kopieres alltid, selv hvis høyresiden er en enkelt variabel den flyttes ikke.) En variabel holder på en verdi helt frem til du legger noe annet inn i den; da forsvinner den gamle verdien. Linjer som står etter hverandre utføres etter tur. For eksempel vil x = 4 x = x + 3 gjøre at variabelen x ender opp med å inneholde verdien 7. Hva blir verdien av x etter at følgende kode er utført? x = 10 x = x + x x = x - 5 5
6 A. 5 B. 10 C. 15 D. 20 Løsningskommentar: Etter første linje er utført har x fått verdien 10. Når andre linje kjøres, puttes denne verdien inn der x står på høyre side, slik at vi får som høyre side. Dette blir 20, og kopieres inn i x. På siste linje har x på høyre side verdien 20, som gjør at venstre side blir 20 5 = La oss si at x og y allerede inneholder hvert sitt tall, og at vi ønsker å bytte om på tallene i de to variablene (slik at hvis x inneholdt 4 og y inneholdt 7, skal x ende opp med 7 og y skal ende opp med 4). Hvilken av følgende kodesnutter gjør dette riktig? A. x = y B. x = y y = x C. y = x t = y x = y D. t = x x = y y = t Løsningskommentar: En vanlig feil her er å overskrive en av variablene før man leser den av husk at hvis man starter med x = y, vil x og y få samme verdi, og verdien som først lå i x er borte for alltid. Vi trenger en tredje variabel til å lagre en av verdiene midlertidig. 11. En funksjon er en navngitt samling med programinstruksjoner, som kan kalles (startes) med inndata og returnere (gi tilbake) utdata. Kommandoen if sjekker om uttrykket som står i parenteser er true eller false; hvis det er true, gjøres det som står i krøllparentesene etter if; hvis det er false, gjøres det som står i krøllparentesene etter den tilhørende else n. return avslutter funksjonen og returnerer resultatet av uttrykket som står på samme linje. < er den vanlige mindre-enn-operatoren f.eks. vil 3 < 4 bli true, og 4 < 3 blir false. 3 < 3 blir også false. Hva gjør funksjonen under? Merk at den første linjen bare oppgir navnet på funksjonen (f) og navnene på inndataene (x, y og z). f(x, y, z) { if (x < y) { if (x < z) 6
7 return x else return z else { if (y < z) return y else return z A. Finner den minste av x, y og z B. Løser en likning hvor x, y og z er de ukjente C. Finner gjennomsnittet av x, y og z D. Finner medianen av x, y og z 12. UKULT (Utrolig Kjedelige og Unaturlige LekeTøy) har produsert følgende spill for små barn. De har skrevet ut en haug papirbiter med bokstaven a på og en haug med ordet bc på. Fabrikanten bestemmer seg for å trykke noen fun facts på pakken, blant annet hvor mange forskjellige ord bestående av 9 bokstaver man kan lage ved å sette sammen lapper. Merk at aabcbcaaa er et veldig fint ord på lengde 9 etter UKULT sine standarder; ordene trenger altså ikke å eksistere i noe ordentlig språk. Hvor mange slike ord finnes det av lengde 9? A. 23 B. 34 C. 55 D. 63 Løsningskommentar: Denne oppgaven er inspirert av en teknikk som kalles dynamisk programmering, som er mye brukt i programmeringskonkurranser. Denne teknikken går ut på å løse mindre utgaver av samme problem, og bruke løsningen på de mindre problemene til å finne løsningen på det store problemet. Vi legger merke til at det vi like gjerne kunne laget en oppgave om å finne antallet ord av lengde 8 eller 10, eller et hvilket som helst annet tall. I stedet for å hoppe rett på problemet med å finne antall ord av lengde 9, skal vi løse et enklere slikt problem: antallet ord med lengde 1. Det finnes bare ett slikt ord: a. Så prøver vi oss på antall ord av lengde 2: aa og bc. Vi kan konstruere nye ord av lengde n ved å legge a på slutten av ord av lengde n 1 og ved å legge bc på slutten av ord av lengde n 2. Antallet ord av lengde n blir altså summen av antall ord av lengde n 1 og antall ord av lengde n 2, og som i oppgave 1 får vi Fibonacci-tallene (bortsett fra det første ettallet): 1, 2, 3, 5, 8, 13, 21, 34, 55. 7
8 13. I datasammenheng er en graf en samling av noder (punkter; her tegnet som sirkler) og kanter (streker) mellom nodene. Vi sier at en graf kan fargelegges med k farger dersom man kan fargelegge nodene ved hjelp av k forskjellige farger slik at hver kant går mellom noder med forskjellig farge (dvs. at noder med samme farge aldri er koblet direkte i hverandre). Grafen nedenfor er et eksempel på en graf som kan fargelegges med 2 farger. Hva er det minste antallet forskjellige farger man trenger for å fargelegge grafen nedenfor? A. 2 B. 3 C. 4 D. 5 Løsningskommentar: Algoritmen for å sjekke om vi kan farge en graf med to farger er ganske enkel når man først har kommet på den: Start på en vilkårlig node og farg den med 8
9 farge nummer 1. Så farger vi alle noder som er direkte koblet til denne med farge nummer 2. Så farger vi nabo-noder av disse nodene med farge 1, men vi passer på at vi aldri farger en node to ganger. Om dette fører til en konflikt, er det umulig å farge grafen med kun to farger. Slik fortsetter vi med å farge alle direkte nabo-noder av en farget node med den andre fargen, helt til vi blir ferdig eller det kommer en konflikt. I vår graf får vi en konflikt med to-farge-algoritmen. Men konfliktene kan løses ved å introdusere en tredje farge og farge konfliktnodene med den fargen. Siden vi fant en løsning med tre farger og vi vet at det er umulig med to, blir svaret tre. 14. Merk: De siste tre oppgavene vil være utfordrende for dem som ikke har erfaring med programmering fra før. Funksjoner i programmeringsspråk kan også inneholde kall til seg selv. Dette kalles rekursive funksjoner. Når en rekursiv funksjon kaller seg selv, starter en ny utgave av den samme funksjonen, og den gamle utgaven venter til den nye er blitt ferdig. Gitt følgende definisjon av funksjonen f: f(x) { if(x < 2) return 1 else return x * f(x - 1) Hva returnerer funksjonskallet f(7)? A. 720 B C D Løsningskommentar: Denne funksjonen regner ut fakultet av x, altså x!, som er produktet av alle heltallene fra og med 1 til og med x. 7! = = Matematisk sett kan også fakultet defineres ved rekursjon, ved at 0! = 1 og at x! = x (x 1)! når x er større enn eller lik 1. (Koden skriver x < 2 i stedet for x < 1 fordi 1! også blir 1). 15. Et array er en samling med et bestemt antall elementer. A[0] er det første elementet, A[1] er det andre osv. Antallet elementer totalt er length(a). Det siste elementet er dermed A[length(A) - 1]. Vi har et array som inneholder heltall, og vi ønsker å sortere elementene i stigende rekkefølge slik at A[0] er minst, A[1] er nest minst osv. Til å gjøre dette har vi laget følgende sorteringsfunksjon, der en av linjene dessverre har blitt overskrevet: insertionsort(a) { j = 1 9
10 while (j < length(a)) { k = A[j] i = j - 1 while (i >= 0 AND A[i] > k) {?????????????????????????????????????????????????? i = i - 1 A[i+1] = k j = j + 1 Hva skal stå på linjen som har blitt overskrevet med spørsmålstegn for at A skal bli sortert i stigende rekkefølge? A. A[i] = k B. A[j] = A[i] C. k = A[i] D. A[i + 1] = A[i] Løsningskommentar: Insertion-sort fungerer ved å hele tiden sørge for at arrayet er sortert opp til (men ikke med) j. Når vi utvider dette sorterte området, tar vi det første tallet utenfor, altså A[j], lagrer det, og flytter alle tallene på lavere indeks enn j, og som har høyere verdi, ett hakk oppover for å gjøre plass til det nye tallet. Det er denne flyttingen ett hakk oppover som den manglende linjen utfører. 16. Merk: Denne oppgaven er ekstra utfordrende og tidkrevende forsøk å løse alle de andre oppgavene før du prøver deg på denne! Gitt følgende definisjon av funksjonen g: g(a, x) { if (a == 10) { // A == B sjekker om A og B er like store if (x % 2 == 0) // % er modulo-operatoren, se under return 1 else return 0 r = 0 s = 1 while ((x * 10) / s > 0) { // Vi bruker divisjon som alltid runder ned r = r + g(a + 1, (x / s) * 10 * s + s * a + x % s) s = s * 10 return r 10
11 Merk: == sjekker om to verdier er like % er modulo-operatoren: a % b gir resten etter å ha delt a på b; f.eks. vil 26 % 7 bli 5. / er heltallsdivisjon (dvs. at den alltid runder ned); f.eks. vil 26 / 7 bli 3. Hva returnerer kallet g(2, 1)? A B C D Løsningskommentar: g(2,1) generer alle permutasjoner (omstokkinger) av sifrene fra 1 til 9. Men den teller bare opp de permutasjonene som ender på et partall. Dette er 4/9 av det totale antallet, altså 9! 4/9 = 8! 4 =
12 Svarark Oppgave A B C D Poeng (til bruk for læreren) 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11 x 12 x 13 x 14 x 15 x 16 x Poengsum Til læreren: Husk at korrekt svar gir 4 poeng, feil svar gir 0 poeng, og fraværende svar gir 1 poeng. 12
Norsk informatikkolympiade 2012 2013 1. runde
Norsk informatikkolympiade 2012 2013 1. runde Uke 45, 2012 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler. Instruksjoner:
Norsk informatikkolympiade 2013 2014 1. runde
Norsk informatikkolympiade 2013 2014 1. runde Sponset av Uke 46, 2013 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.
Norsk informatikkolympiade runde
Norsk informatikkolympiade 2015 2016 1. runde Sponset av Uke 46, 2015 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.
Norsk informatikkolympiade runde
Norsk informatikkolympiade 2017 2018 1. runde Sponset av Uke 46, 2017 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.
Norsk informatikkolympiade runde
Norsk informatikkolympiade 2016 2017 1. runde Sponset av Uke 46, 2016 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.
Norsk informatikkolympiade 2014 2015 1. runde
Norsk informatikkolympiade 2014 2015 1. runde Sponset av Uke 46, 2014 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.
Norsk informatikkolympiade runde. Sponset av. Uke 46, 2017
Norsk informatikkolympiade 2017 2018 1. runde Sponset av Uke 46, 2017 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.
Norsk informatikkolympiade runde. Sponset av. Uke 46, 2013
Norsk informatikkolympiade 2013 2014 1. runde Sponset av Uke 46, 2013 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.
NIO 1. runde eksempeloppgaver
NIO 1. runde eksempeloppgaver Oppgave 1 (dersom du ikke klarer en oppgave, bare gå videre vanskelighetsgraden er varierende) Hva må til for at hele det følgende uttrykket skal bli sant? NOT(a OR (b AND
Det du skal gjøre i denne oppgava er først å sette opp bakgrunnen til spillet og så rett og slett å få firkanter til å falle over skjermen.
Tetris Introduksjon Processing Introduksjon Lag starten på ditt eget tetris spill! Det du skal gjøre i denne oppgava er først å sette opp bakgrunnen til spillet og så rett og slett å få firkanter til å
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO BOKMÅL Det matematisk-naturvitenskapelige fakultet Eksamen i : Eksamensdag : Torsdag 2. desember 2004 Tid for eksamen : 09.00 12.00 Oppgavesettet er på : Vedlegg : Tillatte hjelpemidler
Tetris. Introduksjon. Skrevet av: Kine Gjerstad Eide. Lag starten på ditt eget tetris spill!
Tetris Skrevet av: Kine Gjerstad Eide Kurs: Processing Introduksjon Lag starten på ditt eget tetris spill! Det du skal gjøre i denne oppgava er først å sette opp bakgrunnen til spillet og så rett og slett
INF1010 notat: Binærsøking og quicksort
INF1010 notat: Binærsøking og quicksort Ragnhild Kobro Runde Februar 2004 I dette notatet skal vi ta for oss ytterligere to eksempler der rekursjon har en naturlig anvendelse, nemlig binærsøking og quicksort.
LØSNINGSFORSLAG, EKSAMEN I ALGORITMER OG DATASTRUKTURER (IT1105)
Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Side 1 av 8 Faglig kontakt under eksamen: Magnus Lie Hetland LØSNINGSFORSLAG, EKSAMEN I ALGORITMER OG DATASTRUKTURER
ToPlayer. Introduksjon: Skrevet av: Ruben Gjerstad Eide og Kine Gjerstad Eide
ToPlayer Skrevet av: Ruben Gjerstad Eide og Kine Gjerstad Eide Kurs: Processing Tema: Tekstbasert Fag: Matematikk, Programmering Klassetrinn: 8.-10. klasse, Videregående skole Introduksjon: Nå skal vi
Hvor i All Verden? Del 2 Erfaren Scratch PDF
Hvor i All Verden? Del 2 Erfaren Scratch PDF Introduksjon Hvor i All Verden? er et reise- og geografispill hvor man raskest mulig skal fly innom reisemål spredt rundt i Europa. Dette er den andre leksjonen
Kanter, kanter, mange mangekanter. Introduksjon: Steg 1: Enkle firkanter. Sjekkliste. Skrevet av: Sigmund Hansen
Kanter, kanter, mange mangekanter Skrevet av: Sigmund Hansen Kurs: Processing Tema: Tekstbasert, Animasjon Fag: Matematikk, Programmering, Kunst og håndverk Klassetrinn: 8.-10. klasse, Videregående skole
Løsnings forslag i java In115, Våren 1996
Løsnings forslag i java In115, Våren 1996 Oppgave 1a For å kunne kjøre Warshall-algoritmen, må man ha grafen på nabomatriseform, altså en boolsk matrise B, slik at B[i][j]=true hvis det går en kant fra
Sprettende ball Introduksjon Processing PDF
Sprettende ball Introduksjon Processing PDF Introduksjon: I denne modulen skal vi lære et programmeringsspråk som heter Processing. Det ble laget for å gjøre programmering lett for designere og andre som
EKSAMEN. Dato: 18. mai 2017 Eksamenstid: 09:00 13:00
EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 18. mai 2017 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Kalkulator Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet
ToPlayer. Steg 1: Kom i gang med metodene setup og draw. Gjør dette: Introduksjon:
ToPlayer Introduksjon Processing Introduksjon: Nå skal vi lage et spill som to personer kan spille mot hverandre. Vi har kalt det ToPlayer, men du kan kalle det hva du vil. Målet er å dytte en figur, eller
Kanter, kanter, mange mangekanter
Kanter, kanter, mange mangekanter Nybegynner Processing PDF Introduksjon: Her skal vi se på litt mer avansert opptegning og bevegelse. Vi skal ta utgangspunkt i oppgaven om den sprettende ballen, men bytte
KONTROLLSTRUKTURER. MAT1030 Diskret matematikk. Kontrollstrukturer. Kontrollstrukturer. Eksempel (Ubegrenset while-løkke)
KONTROLLSTRUKTURER MAT1030 Diskret matematikk Forelesning 2: Flere pseudokoder. Representasjoner av tall. Dag Normann Matematisk Institutt, Universitetet i Oslo 16. januar 2008 Mandag innførte vi pseudokoder
Bli Kjent med Datamaskinen Introduksjon ComputerCraft PDF
Bli Kjent med Datamaskinen Introduksjon ComputerCraft PDF Introduksjon Vi begynner med å bygge en enkel datamaskin. Etter å ha brukt litt tid på å bli kjent med hvordan datamaskinen virker, bruker vi den
E K S A M E N. Algoritmiske metoder I. EKSAMENSDATO: 11. desember HINDA / 00HINDB / 00HINEA ( 2DA / 2DB / 2EA ) TID:
Høgskolen i Gjøvik Avdeling for Teknologi E K S A M E N FAGNAVN: FAGNUMMER: Algoritmiske metoder I L 189 A EKSAMENSDATO: 11. desember 2001 KLASSE: 00HINDA / 00HINDB / 00HINEA ( 2DA / 2DB / 2EA ) TID: 09.00-14.00
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO BOKMÅL Det matematisk-naturvitenskapelige fakultet Kontinuasjonseksamen i : Eksamensdag : INF1000 Grunnkurs i objektorientert programmering Fredag 7. januar Tid for eksamen : 09.00
King Kong Erfaren Scratch PDF
King Kong Erfaren Scratch PDF Introduksjon I dette spillet inspirert av historien om King Kong, skal vi se hvor lett det er å bruke grafikk som ikke allerede ligger i Scratchbiblioteket. I spillet styrer
MAT1030 Diskret Matematikk
MAT1030 Diskret Matematikk Plenumsregning 1: Kapittel 1 Mathias Barra Matematisk institutt, Universitetet i Oslo 16. januar 2009 (Sist oppdatert: 2009-02-02 14:21) Plenumsregning 1 MAT1030 Diskret Matematikk
Ny/utsatt EKSAMEN. Dato: 6. januar 2017 Eksamenstid: 09:00 13:00
Ny/utsatt EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 6. januar 2017 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet
EKSAMEN med løsningsforslag
EKSAMEN med løsningsforslag Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: Eksamenstid: 20. mai 2009 kl 09.00 til kl 13.00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Kalkulator Faglærer:
MAT1030 Plenumsregning 1
MAT1030 Plenumsregning 1 Kapittel 1 Mathias Barra - 16. januar 2009 (Sist oppdatert: 2009-02-02 14:21) Plenumsregning 1 Velkommen til plenumsregning for MAT1030 Fredager 12:15 14:00 Vi vil gjennomgå utvalgte
Kodetime for Nordstrand barneskole
Kodetime for Nordstrand barneskole av Veronika Heimsbakk og Lars Erik Realfsen 1 Hva er Processing? Processing er et programmeringsspråk som er gratis, og tilgjengelig for alle! Man kan programmere i Processing
Mattespill Nybegynner Python PDF
Mattespill Nybegynner Python PDF Introduksjon I denne leksjonen vil vi se litt nærmere på hvordan Python jobber med tall, og vi vil lage et enkelt mattespill. Vi vil også se hvordan vi kan gjøre ting tilfeldige.
MAT1030 Diskret matematikk
MAT1030 Diskret matematikk Plenumsregning 1: Kapittel 1 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 17. januar 2008 Velkommen til plenumsregning for MAT1030 Torsdager 10:15 12:00 Gjennomgang
Tryll bort heksa. Introduksjon. Sjekkliste Følg instruksjonene på lista. Huk av etter hvert. Test. Lagre 2/8
Innhold Innhold Tryll bort heksa Introduksjon Steg 1: Lag en flyvende heks Steg 2: Få heksa til å dukke opp og forsvinne Steg 3: Tryll bort heksa med et klikk! Steg 4: Legg til tid og poeng En ekstra utfordring:
Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.3
Delkapittel 1.3 Ordnede tabeller Side 1 av 70 Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.3 1.3 Ordnede tabeller 1.3.1 Permutasjoner En samling verdier kan settes opp i en rekkefølge. Hver
Plenumsregning 1. MAT1030 Diskret Matematikk. Repetisjon: Algoritmer og pseudokode. Velkommen til plenumsregning for MAT1030
MAT1030 Diskret Matematikk Plenumsregning 1: Kapittel 1 Mathias Barra Matematisk institutt, Universitetet i Oslo Plenumsregning 1 16. januar 2009 (Sist oppdatert: 2009-02-02 14:21) MAT1030 Diskret Matematikk
Plenumsregning 1. Kapittel 1. Roger Antonsen januar Velkommen til plenumsregning for MAT1030. Repetisjon: Algoritmer og pseudokode
Plenumsregning 1 Kapittel 1 Roger Antonsen - 17. januar 2008 Velkommen til plenumsregning for MAT1030 Torsdager 10:15 12:00 Gjennomgang av ukeoppgaver Gjennomgang av eksempler fra boka Litt repetisjon
En algoritme for permutasjonsgenerering
Innledning La oss tenke oss at vi har en grunnskole-klasse på 25 elever der enkelte av elever er uvenner med hverandre. Hvis uvenner sitter nær hverandre blir det bråk og slåssing. Er det mulig å plassere
Rekursiv programmering
Rekursiv programmering Babushka-dukker En russisk Babushkadukke er en sekvens av like dukker inne i hverandre, som kan åpnes Hver gang en dukke åpnes er det en mindre utgave av dukken inni, inntil man
TMA4140 Diskret Matematikk Høst 2016
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4140 Diskret Matematikk Høst 2016 Seksjon 10.2 18 La G = (V,E) være en enkel graf med V 2. Ettersom G er enkel er de mulige
UNIVERSITETET I OSLO
FASIT UNIVERSITETET I OSLO BOKMÅL Det matematisk-naturvitenskapelige fakultet Kontinuasjonseksamen i : Eksamensdag : INF1000 Grunnkurs i objektorientert programmering Fredag 7. januar Tid for eksamen :
EKSAMENSFORSIDE Skriftlig eksamen med tilsyn
BOKMÅL EKSAMENSFORSIDE Skriftlig eksamen med tilsyn Emnekode: 108 + 108N Dato: 19.12.201 Ansv. faglærer: Roy M. Istad Campus: Bø Antall oppgaver: 5 Tillatte hjelpemidler (jfr. emnebeskrivelse): Alt trykt
Løsnings forslag i java In115, Våren 1998
Løsnings forslag i java In115, Våren 1998 Oppgave 1 // Inne i en eller annen klasse private char S[]; private int pardybde; private int n; public void lagalle(int i) if (i==n) bruks(); else /* Sjekker
Verden - Del 2. Steg 0: Oppsummering fra introduksjonsoppgaven. Intro
Verden - Del 2 Nybegynner Processing Intro Denne oppgaven bygger på oppgaven med samme navn som ligger på introduksjonsnivå her i Processingoppgavene. Klikk her for å gå til introduksjonsoppgaven av verden.
Høgskolen i Gjøvik. Avdeling for elektro- og allmennfag K O N T I N U A S J O N S E K S A M E N. EKSAMENSDATO: 11. august 1995 TID:
Høgskolen i Gjøvik Avdeling for elektro- og allmennfag K O N T I N U A S J O N S E K S A M E N FAGNAVN: FAGNUMMER: Algoritmiske metoder LO 164A EKSAMENSDATO: 11. august 1995 TID: 09.00-14.00 FAGLÆRER:
TDT4102 Prosedyre og Objektorientert programmering Vår 2015
Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap TDT4102 Prosedyre og Objektorientert programmering Vår 2015 Øving 3 Frist: 2014-02-07 Mål for denne øvinga:
Bygg et Hus. Steg 1: Prøv selv først. Sjekkliste. Introduksjon. Prøv selv
Bygg et Hus Introduksjon I denne leksjonen vil vi se litt på hvordan vi kan få en robot til å bygge et hus for oss. Underveis vil vi lære hvordan vi kan bruke løkker og funksjoner for å gjenta ting som
KONTINUASJONSEKSAMEN
Høgskolen i Gjøvik Avdeling for Teknologi KONTINUASJONSEKSAMEN FAGNAVN: FAGNUMMER: Algoritmiske metoder I L 189 A EKSAMENSDATO: 13. august 2001 KLASSE: 99HINDA / 99HINDB / 99HINEA / 00HDESY ( 2DA / 2DB
Verden. Introduksjon. Skrevet av: Kine Gjerstad Eide og Ruben Gjerstad Eide
Verden Skrevet av: Kine Gjerstad Eide og Ruben Gjerstad Eide Kurs: Processing Tema: Tekstbasert Fag: Matematikk, Programmering, Samfunnsfag Klassetrinn: 8.-10. klasse, Videregående skole Introduksjon Velkommen
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Kandidatnr Eksamen i INF1000 Grunnkurs i objektorientert programmering Eksamensdag: Onsdag 10. juni 2009 Tid for eksamen: 9.00 12.00 Oppgavesettet
UNIVERSITETET I OSLO
1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : IN 115 Eksamensdag : Lørdag 20 mai, 2000 Tid for eksamen : 09.00-15.00 Oppgavesettet er på : 5 sider Vedlegg : Intet. Tillatte
Hvorfor sortering og søking? Søking og sortering. Binære søketrær. Ordnet innsetting forbereder for mer effektiv søking og sortering INF1010 INF1010
Hvorfor sortering og søking? Man bør ha orden i dataene umulig å leve uten i informasjonssamfunnet vi blir fort lei av å lete poleksempel internett alt er søking og sortering alternativer til sortering
Hangman. Level. Introduksjon
Level 2 Hangman All Code Clubs must be registered. Registered clubs appear on the map at codeclubworld.org - if your club is not on the map then visit jumpto.cc/ccwreg to register your club. Introduksjon
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1000 Grunnkurs i objektorientert programmering Eksamensdag: 11. juni 2004 Tid for eksamen: 9.00 12.00 Oppgavesettet er på 8
Python: Valg og betingelser. TDT4110 IT Grunnkurs Professor Guttorm Sindre
Python: Valg og betingelser TDT4110 IT Grunnkurs Professor Guttorm Sindre Læringsmål og pensum Mål Kunne forstå og bruke if-setninger sammenlikning av strenger nøstede beslutningsstrukturer betingelser
Start et nytt Scratch-prosjekt. Slett kattefiguren, for eksempel ved å høyreklikke på den og velge slett.
Norgestur Introduksjon Bli med på en rundreise i Norge! Vi skal lage et spill hvor du styrer et helikopter rundt omkring et kart over Norge, mens du prøver å raskest mulig finne steder og byer du blir
Rekursjon. Binærsøk. Hanois tårn.
Rekursjon Binærsøk. Hanois tårn. Hvorfor sortering (og søking) er viktig i programmering «orden» i dataene vi blir fort lei av å lete poleksempel internett «alt» er søking og sortering alternativer til
TDT4110 IT Grunnkurs Høst 2014
TDT4110 IT Grunnkurs Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Øving 10 Denne øvingen er en to-ukers øving (prosjekt) og inneholder én
Farger. Introduksjon. Skrevet av: Sigmund Hansen
Farger Skrevet av: Sigmund Hansen Kurs: Processing Tema: Tekstbasert Fag: Matematikk, Programmering, Kunst og håndverk Klassetrinn: 8.-10. klasse, Videregående skole Introduksjon På skolen lærer man om
Løpende strekmann Erfaren Videregående Python PDF
Løpende strekmann Erfaren Videregående Python PDF Introduksjon I denne oppgaven skal du lage et spill der du styrer en strekmann som hopper over hindringer. Steg 1: Ny fil Begynn med å lage en fil som
Programmering Høst 2017
Programmering Høst 2017 Tommy Abelsen Ingeniørfag - Data Innledning Dette er et dokument med litt informasjon og eksempler om kontrollstrukturer, samt oppgaver til forskjellige kontrollstrukturer. Spør
Matematikk Øvingsoppgaver i numerikk leksjon 5 for-løkker
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 5 for-løkker I dette settet skal vi introdusere for-løkker. Først vil vi bruke for-løkker til å regne ut summer. Vi skal også se på hvordan vi kan implementere
TDT4102 Prosedyreog objektorientert programmering Vår 2016
Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap TDT4102 Prosedyreog objektorientert programmering Vår 2016 Øving 4 Frist: 2016-02-12 Mål for denne øvingen:
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Kandidatnr Eksamen i INF1000 Grunnkurs i objektorientert programmering Eksamensdag: Onsdag 1. desember 2010 Tid for eksamen: 14.00 18.00
Verden. Steg 1: Vinduet. Introduksjon
Verden Introduksjon Processing Introduksjon Velkommen til verdensspillet! Her skal vi lage begynnelsen av et spill hvor man skal gjette hvilke verdensdeler som er hvor. Så kan du utvide oppgava til å heller
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 11 Modellering og beregninger. Eksamensdag: Torsdag 12. oktober 26. Tid for eksamen: 9: 11:. Oppgavesettet er på 8 sider.
Visuell Programmering: Kom i gang med Processing
Visuell Programmering: Kom i gang med Processing Et enkelt program: Syntaks introdusert: Kommentarer, print(), println(), size(). + Start opp processing + Skriv en åpningskommentar på toppen av programmet
Informasjon Eksamen i IN1000 høsten 2017
Informasjon Eksamen i IN000 høsten 207 Tid 8. desember kl. 09.00 (4 timer) Faglærerne vil besøke lokalet ca kl 0. Oppgavene Oppgave 2b og 2c er flervalgsoppgaver. Her får man det angitte antall poeng om
ALGORITMER OG DATASTRUKTURER
Stud. nr: Side 1 av 6 NTNU Norges teknisk-naturvitenskapelige universitet BOKMÅL Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap AVSLUTTENDE
Oppgave 1. Sekvenser (20%)
Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I BERGEN Eksamen i emnet I 20 - Algoritmer, datastrukturer og programmering Mandag 2.Mai 200, kl. 09-5. Ingen hjelpemidler tillatt. Oppgavesettet
Steg 1: Hente grafikk fra nettet
Scratch King Kong Skrevet av: Samuel Erik Abildsø og Geir Arne Hjelle Kurs: Scratch Tema: Blokkbasert, Spill, Animasjon Fag: Engelsk, Kunst og håndverk, Matematikk, Programmering Klassetrinn: 1.-4. klasse,
Oppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Eksempel
MAT1030 Diskret matematikk Forelesning 26: Trær Sist forelesning snakket vi i hovedsak om trær med rot, og om praktisk bruk av slike. rot Dag Normann Matematisk Institutt, Universitetet i Oslo barn barn
Vet du hva vi kan bruke et regneark på pc-en til?
Vet du hva vi kan bruke et regneark på pc-en til? 14 Vi starter med blanke regneark! Regneark MÅL I dette kapitlet skal du lære om hva et regneark er budsjett og regnskap hvordan du kan gjøre enkle utregninger
HØGSKOLEN I SØR-TRØNDELAG Avdeling for informatikk og e-læring - AITeL
HØGSKOLEN I SØR-TRØNDELAG Avdeling for informatikk og e-læring - AITeL Kandidatnr: Eksamensdato:. desember 00 Varighet: timer (9:00 1:00) Fagnummer: LO117D Fagnavn: Algoritmiske metoder Klasse(r): DA DB
I Kapittel 3 så vi på hvordan data, som hele tall og reelle tall, kan representeres som bitsekvenser
Forelesning 5 Logikk Dag Normann - 28. januar 2008 Oppsummering av Kapittel 3 I Kapittel 3 så vi på hvordan data, som hele tall og reelle tall, kan representeres som bitsekvenser i en datamaskin. Stoffet
Longest. increasing. subsequence. Betingelser. Matrise- common. Grådig vs. DP. Forside. Intro. Fibonacci-tall. Memoisering DP
og dynamisk Matrisemultiplikasjomultiplikasjon programmering Matrise- Åsmund Eldhuset og Dette er to ganske like teknikker for å lage algoritmer De kan brukes på svært mange tilsynelatende forskjellige
Sprettball Erfaren ComputerCraft PDF
Sprettball Erfaren ComputerCraft PDF Introduksjon Nå skal vi lære hvordan vi kan koble en skjerm til datamaskinen. Med en ekstra skjerm kan vi bruke datamaskinen til å kommunisere med verden rundt oss.
Algoritmer og Datastrukturer
Eksamen i Algoritmer og Datastrukturer IAI 21899 Høgskolen i Østfold Avdeling for informatikk og automatisering Lørdag 15. desember 2001, kl. 09.00-14.00 Hjelpemidler: Alle trykte og skrevne hjelpemidler.
Eksamen 27.05.2008. MAT1003 Matematikk 2P Elevar/Elever, Privatistar/Privatister. Nynorsk/Bokmål
Eksamen 27.05.2008 MAT1003 Matematikk 2P Elevar/Elever, Privatistar/Privatister Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på del 1: Hjelpemidler på del 2: Vedlegg: 5 timer Del
E K S A M E N. Algoritmiske metoder I. EKSAMENSDATO: 11. desember HINDA / 99HINDB / 99HINEA / 00HDESY ( 2DA / 2DB / 2EA / DESY )
Høgskolen i Gjøvik Avdeling for Teknologi E K S A M E N FAGNAVN: FAGNUMMER: Algoritmiske metoder I L 189 A EKSAMENSDATO: 11. desember 2000 KLASSE: 99HINDA / 99HINDB / 99HINEA / 00HDESY ( 2DA / 2DB / 2EA
Binære søketrær. Et notat for INF1010 Stein Michael Storleer 16. mai 2013
Binære søketrær Et notat for INF Stein Michael Storleer 6. mai 3 Dette notatet er nyskrevet og inneholder sikkert feil. Disse vil bli fortløpende rettet og datoen over blir oppdatert samtidig. Hvis du
INF1010 Sortering. Marit Nybakken 1. mars 2004
INF1010 Sortering Marit Nybakken [email protected] 1. mars 2004 Dette dokumentet skal tas med en klype salt og forfatter sier fra seg alt ansvar. Dere bør ikke bruke definisjonene i dette dokumentet
Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.2
Delkapittel 9.2 Rød-svarte og 2-3-4 trær Side 1 av 16 Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.2 9.2 Rød-svarte og 2-3-4 trær 9.2.1 B-tre av orden 4 eller 2-3-4 tre Et rød-svart tre og et
"Hjerneteppe!" er en huskelek hvor du skal huske stadig lengre rekker med bokstaver!
PXT: Hjerneteppe! Skrevet av: Helene Isnes Kurs: Microbit Tema: Blokkbasert, Spill Fag: Programmering Klassetrinn: 5.-7. klasse, 8.-10. klasse Introduksjon "Hjerneteppe!" er en huskelek hvor du skal huske
Niels Henrik Abels matematikkonkurranse 2014 2015
Niels Henrik Abels matematikkonkurranse 204 205 Første runde. november 204 Ikke bla om før læreren sier fra! Abelkonkurransens første runde består av 20 flervalgsoppgaver som skal løses i løpet av 00 minutter.
