Cambridge Assessment International Education Cambridge International Advanced Subsidiary and Advanced Level

Like dokumenter
Cambridge Assessment International Education Cambridge International General Certificate of Secondary Education

Cambridge Assessment International Education Cambridge International Advanced Subsidiary and Advanced Level

Cambridge Assessment International Education Cambridge International General Certificate of Secondary Education

Cambridge Assessment International Education Cambridge International Advanced Subsidiary and Advanced Level

Cambridge Assessment International Education Cambridge International General Certificate of Secondary Education

Cambridge Assessment International Education Cambridge International Advanced Subsidiary and Advanced Level

Cambridge Assessment International Education Cambridge International Advanced Subsidiary and Advanced Level

Cambridge Assessment International Education Cambridge International General Certificate of Secondary Education

Cambridge Assessment International Education Cambridge International Advanced Subsidiary and Advanced Level

Cambridge Assessment International Education Cambridge International Advanced Subsidiary and Advanced Level

Slope-Intercept Formula

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

Exercise 1: Phase Splitter DC Operation

electron geometry (eg) Mother structure of VSEPR molecular geometry (mg) Daughter Structure

NO X -chemistry modeling for coal/biomass CFD

Sitronelement. Materiell: Sitroner Galvaniserte spiker Blank kobbertråd. Press inn i sitronen en galvanisert spiker og en kobbertråd.

Dynamic Programming Longest Common Subsequence. Class 27

KJ1000 Generell kjemi, General Chemistry Norsk og Engelsk Student no.: Studieprogram:

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

EN Skriving for kommunikasjon og tenkning

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Geografisk institutt

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

melting ECMI Modelling week 2008 Modelling and simulation of ice/snow melting Sabrina Wandl - University of Linz Tuomo Mäki-Marttunen - Tampere UT

Oppgave. føden)? i tråd med

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)

Neural Network. Sensors Sorter

TFY4170 Fysikk 2 Justin Wells

Examination paper for (BI 2015) (Molekylærbiologi, laboratoriekurs)

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F.

Information search for the research protocol in IIC/IID

Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet.

5 E Lesson: Solving Monohybrid Punnett Squares with Coding

Eksamen ENG1002/1003 Engelsk fellesfag Elevar og privatistar/elever og privatister. Nynorsk/Bokmål

1 User guide for the uioletter package

UNIVERSITETET I OSLO

Du må håndtere disse hendelsene ved å implementere funksjonene init(), changeh(), changev() og escape(), som beskrevet nedenfor.

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt)

Cambridge Assessment International Education Cambridge International General Certificate of Secondary Education

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

MID-TERM EXAM TDT4258 MICROCONTROLLER SYSTEM DESIGN. Wednesday 3 th Mars Time:

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Nærings-PhD i Aker Solutions

Graphs similar to strongly regular graphs

TDT4117 Information Retrieval - Autumn 2014

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Den som gjør godt, er av Gud (Multilingual Edition)

Hvordan føre reiseregninger i Unit4 Business World Forfatter:

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Medisinsk statistikk, KLH3004 Dmf, NTNU Styrke- og utvalgsberegning

Cambridge Assessment International Education Cambridge International General Certificate of Secondary Education

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

EKSAMENSOPPGAVE I FAG TKP 4105

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

MID-TERM EXAM IN TEP4125 THERMODYNAMICS 2 Friday 28 March 2014 Time: 10:30 11:30

Chemical Bonding. The Octet Rule. Lewis Dot Structures. Lewis Dot Structures. Lewis Dot Structures. Lewis Dot Structures 4/9/12

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences

Generalization of age-structured models in theory and practice

Databases 1. Extended Relational Algebra

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

GEF2200 Atmosfærefysikk 2017

Cambridge Assessment International Education Cambridge International General Certificate of Secondary Education

Examination paper for BI2034 Community Ecology and Ecosystems

Kartleggingsskjema / Survey

Trigonometric Substitution

Nøtteknekkeren fem år etter

UNIVERSITETET I OSLO

ADDENDUM SHAREHOLDERS AGREEMENT. by and between. Aker ASA ( Aker ) and. Investor Investments Holding AB ( Investor ) and. SAAB AB (publ.

UNIVERSITETET I OSLO

Dean Zollman, Kansas State University Mojgan Matloob-Haghanikar, Winona State University Sytil Murphy, Shepherd University

Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX)

KJ1000 Generell kjemi, General Chemistry

Endelig ikke-røyker for Kvinner! (Norwegian Edition)

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN

Moving Objects. We need to move our objects in 3D space.

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23

Sikkert Drillingnettverk på CAT-D Rig

Besvar tre 3 av følgende fire 4 oppgaver.

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Ringvorlesung Biophysik 2016

UNIVERSITY OF OSLO. Make sure that your copy of this examination paperis complete before answering.

Eksamen i TFY4230 STATISTISK FYSIKK Onsdag 21. desember, :00 19:00

Eksamensoppgave i GEOG1004 Geografi i praksis Tall, kart og bilder

EKSAMENSOPPGAVE I SØK 1002 INNFØRING I MIKROØKONOMISK ANALYSE

Assignment. Consequences. assignment 2. Consequences fabulous fantasy. Kunnskapsløftets Mål Eleven skal kunne

Perpetuum (im)mobile

International Economics

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Smart High-Side Power Switch BTS730

Høgskoleni Østfold UTSATT EKSAMEN. Emnekode: Course: Mikroøkonomi med anvendelser ( 10 ECTS) SFB 10804

Second Order ODE's (2P) Young Won Lim 7/1/14

Cambridge Assessment International Education Cambridge International General Certificate of Secondary Education

Eksamensoppgave i GEOG Geografi i praksis - Tall, kart og bilder

Transkript:

Cambridge Assessment International Education Cambridge International Advanced Subsidiary and Advanced Level *2283347273* CHEMISTRY 9701/42 Paper 4 A Level Structured Questions May/June 2019 2 hours Candidates answer on the Question Paper. Additional Materials: Data Booklet READ THESE INSTRUCTIONS FIRST Write your centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid. DO NOT WRITE IN ANY BARCODES. Answer all questions. Electronic calculators may be used. You may lose marks if you do not show your working or if you do not use appropriate units. A Data Booklet is provided. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [ ] at the end of each question or part question. This document consists of 23 printed pages and 1 blank page. IB19 06_9701_42/3RP [Turn over

2 Answer all the questions in the spaces provided. 1 (a) (i) Complete the electronic configuration of the copper(ii) ion. 1s 2 2s 2 2p 6... [1] State the colour of the solutions containing the following ions. [Cu(H 2 O) 6 ] 2+ (aq)... [CuCl 4 ] 2 (aq)... [1] (iii) Octahedral complexes of Cu 2+ with different ligands can have different colours. Explain why.... [2] (b) Copper(I) and silver(i) salts are colourless. Suggest why........... [2]

(c) Consider the following two equilibria and associated data values at 298 K. 3 AgBr(s) Ag + (aq) + Br (aq) equilibrium 1 K sp = 5.0 10 13 mol 2 dm 6 Ag + (aq) + 2NH 3 (aq) [Ag(NH 3 ) 2 ] + (aq) equilibrium 2 K stab = 1.7 10 7 mol 2 dm 6 The equilibrium constant for equilibrium 1 is the solubility product, K sp, of AgBr(s). The equilibrium constant for equilibrium 2 is the stability constant, K stab, for the formation of [Ag(NH 3 ) 2 ] + (aq). (i) Calculate the solubility of AgBr at 298 K in mol dm 3. solubility of AgBr =... mol dm 3 [1] Use Le Chatelier s principle as applied to equilibria 1 and 2 to suggest why AgBr(s) dissolves in concentrated NH 3 (aq).... [2] (iii) Use equilibria 1 and 2 to construct an equation for the reaction of AgBr(s) with concentrated NH 3 (aq). This is equilibrium 3.... equilibrium 3 [1] (iv) Write an expression for the equilibrium constant of equilibrium 3, K eq3, in terms of K sp for equilibrium 1 and K stab for equilibrium 2. K eq3 = [1] [Turn over

4 (d) Define the term standard electrode potential, E o........ [1] (e) (i) Complete and label the diagram to show how the standard electrode potential, E o, of Ag + (aq) / Ag(s) could be measured under standard conditions. [4] Use the Data Booklet to label the diagram in (e)(i) to show which is the positive electrode, the direction of electron flow in the external circuit when a current flows. [1] [Total: 17]

5 2 (a) Group 2 carbonates decompose when heated. Write an equation for the decomposition of the carbonate ion.. [1] (b) Describe and explain how the thermal stability of the Group 2 carbonates changes with increasing atomic number.............. [3] (c) Lead(II) carbonate, PbCO 3, and zinc carbonate, ZnCO 3, decompose on heating in a similar way to calcium carbonate, CaCO 3. State relevant data from the Data Booklet and use it to predict the order of thermal stability of these three carbonates. data...... (most stable)... >... >... (least stable) [2] (d) Dolomite contains the double carbonate of calcium and magnesium, CaMg(CO 3 ) 2, and some impurities. When 0.642 g of a sample of dolomite reacts with an excess of hydrochloric acid, 125.0 cm 3 of CO 2 is formed under room conditions. Calculate the percentage of CaMg(CO 3 ) 2 in the sample of dolomite. Show all your working. Assume that none of the impurities react with HCl. % of CaMg(CO 3 ) 2 in dolomite =... % [3] [Total: 9] [Turn over

6 3 (a) Sketch the shape of a d orbital. [1] (b) (i) Explain what is meant by the term transition element. Transition elements can form complex ions which contain ligands. Name the type of bonding that occurs between a ligand and a transition element. (c) Give the formulae of two oxides of iron. State the oxidation number of iron in each compound..... [1] (d) CO and CN are monodentate ligands. Complete the table for the following two complexes. metal ion ligand co-ordination number formula of complex ion charge of complex ion Ni 2+ CO 4 Fe 3+ CN 3- [2]

7 (e) Transition element complexes can exhibit stereoisomerism. [Cu(H 2 O) 4 (NH 3 ) 2 ] 2+ and Pt(NH 3 ) 2 Cl 2 show the same type of isomerism. (i) Name this type of isomerism. Complete the three-dimensional diagrams of the two isomers for [Cu(H 2 O) 4 (NH 3 ) 2 ] 2+ and Pt(NH 3 ) 2 Cl 2. Cu Cu Pt Pt [2] [Turn over

8 (f) Copper can form complexes with the ligands ammonia and en, H 2 NCH 2 CH 2 NH 2, as shown. [Cu(H 2 O) 6 ] 2+ (aq) + en(aq) [Cu(H 2 O) 4 (en)] 2+ (aq) + 2H 2 O(l) K stab = 3.98 10 10 equilibrium 4 [Cu(H 2 O) 6 ] 2+ (aq) + 2NH 3 (aq) [Cu(H 2 O) 4 (NH 3 ) 2 ] 2+ (aq) + 2H 2 O(l) K stab = 5.01 10 7 equilibrium 5 (i) Write an expression for the stability constant, K stab, for equilibrium 5. State its units. K stab = units =... [2] The standard entropy change, ΔS o, for equilibrium 4 is +23 J K 1 mol 1 and for equilibrium 5 is 8.4 J K 1 mol 1. Suggest an explanation for this difference by reference to both equilibria. (iii) Of the three copper complexes in equilibria 4 and 5, state the formula of the copper complex that is the most stable and explain your choice. copper complex... explanation... [1] [Total: 13]

9 Question 4 starts on the next page. [Turn over

10 4 The initial rate of reaction for propanone and iodine in acid solution is measured in a series of experiments at a constant temperature. CO + I 2 H + catalyst COCH 2 I + HI The rate equation was determined experimentally to be as shown. (a) State the order of reaction with respect to rate = k [ CO ][H + ] CO... I 2... H +... and state the overall order of this reaction.... [2] (b) The rate of this reaction is 5.40 10 3 mol dm 3 s 1 when the concentration of CO is 1.50 10 2 mol dm 3 the concentration of I 2 is 1.25 10 2 mol dm 3 the concentration of H + is 7.75 10 1 mol dm 3. (i) Calculate the rate constant, k, for this reaction. State the units of k. k =... units =... [2] Complete the table by placing one tick ( ) in each row to describe the effect of decreasing the temperature on the rate constant and on the rate of reaction. decreases no change increases rate constant rate of reaction [1]

11 (c) From the results, a graph is produced which shows how the concentration of I 2 changes during the reaction. [I 2 ] 0 0 time Describe how this graph could be used to determine the initial rate of the reaction........ [2] (d) On the axes below, sketch a graph to show how the initial rate changes with different initial concentrations of CO in this reaction. rate 0 0 [ CO ] [1] [Turn over

12 (e) The rate of a reaction between metal ions was studied. The following three-step mechanism has been suggested for this reaction. Step 1 is the rate-determining step. step 1 Ce 4+ + Mn 2+ Ce 3+ + Mn 3+ step 2 Ce 4+ + Mn 3+ Ce 3+ + Mn 4+ step 3 Mn 4+ + Tl + Tl 3+ + Mn 2+ (i) Explain the meaning of the term rate-determining step. Use this mechanism to determine the overall equation for this reaction suggest the role of Mn 2+ ions in this mechanism. Explain your answer. [2] [Total: 11]

13 5 (a) Complete the table by placing one tick ( ) in each row to indicate the sign of each type of energy change under standard conditions. energy change always positive always negative either negative or positive lattice energy enthalpy change of neutralisation [1] (b) Define, in words, the term enthalpy change of solution..... [1] (c) The following enthalpy changes are given. enthalpy change value / kj mol 1 standard enthalpy change of formation,, for K 3 PO 4 (s) 2035 standard enthalpy change, H o, for P(s) + 2O 2 (g) + 3e 3 PO 4 (aq) 1284 standard enthalpy change, H o, for K(s) K + (aq) + e 251 Determine the standard enthalpy change of solution of potassium phosphate, K 3 PO 4 (s). It may be helpful to draw a labelled energy cycle. =... kj mol 1 [3] [Turn over

14 (d) Some lattice energy values are shown in the table. compound lattice energy value / kj mol 1 CaBr 2 (s) 2176 KBr(s) 679 Suggest an explanation for why CaBr 2 is more exothermic than KBr........ [2] (e) For a particular gas phase reaction the variation in standard Gibbs free energy change, ΔG o, with temperature is shown. Assume standard enthalpy change, ΔH o, and standard entropy change, ΔS o, remain constant with temperature. G o / kj mol 1 0 350 T / K 550 (i) Write the equation that relates ΔG o to ΔH o and ΔS o. Use this equation to explain why ΔG o becomes less positive as temperature increases in this reaction. [Total: 9]

15 Question 6 starts on the next page. [Turn over

16 6 (a) By reference to the formation of σ and π bonds, describe and explain the shape of a benzene molecule, C 6 H 6....................... [3] (b) 2,3-dimethylphenylamine can be prepared from 1,2-dimethylbenzene in two steps as shown. 1,2-dimethylbenzene CH3 M CH3 HNO 3 / H 2 SO 4 step 1 step 2 NO 2 2,3-dimethylphenylamine CH3 NH 2 Step 1 is catalysed by H 2 SO 4. (i) Write an equation to show how H 2 SO 4 generates the electrophile during step 1. Draw the mechanism of the reaction between this electrophile and 1,2-dimethylbenzene to form M. Include all relevant curly arrows and charges. intermediate M CH3 CH3 NO 2 [3]

17 (iii) Write an equation to show how the H 2 SO 4 catalyst is reformed. (iv) For step 2, suggest the reagents and conditions and name the type of reaction. reagents and conditions... type of reaction... [2] (c) The drug mefenamic acid can be made using 2,3-dimethylphenylamine in an excess of 2 chlorobenzoic acid. 2,3-dimethylphenylamine 2-chlorobenzoic acid CO 2 H mefenamic acid CH3 NH 2 Cl CH3 + + HCl N H CO 2 H (i) Deduce the molecular formula of mefenamic acid. Name the functional groups, apart from the benzene ring, in mefenamic acid. (iii) Calculate the maximum mass of mefenamic acid that could be formed from 5.00 g of 2,3 dimethylphenylamine in this reaction. Give your answer to three significant figures. mass of mefenamic acid =... g [2] [Turn over

18 (d) The position of substitution in the electrophilic substitution of arenes can be explained based on the stability of the intermediate cations formed in the first step. The example given involves the bromination of methylbenzene. + Br H 2-position 3-position methylbenzene + H Br 4-position + H Br Use this information and your knowledge about the stability of cations to suggest why the group directs incoming electrophiles to the 2- and 4-positions in preference to the 3-position........... [2] [Total: 16]

19 7 (a) Amino acids can be separated by thin-layer chromatography. A mixture of amino acids is analysed using this technique. The chromatogram obtained is shown, drawn to scale. The table shows some R f values for different amino acids in the solvent used. cm 5 4 3 2 1 0 solvent front A B baseline amino acid R f value alanine 0.40 glutamic acid 0.29 leucine 0.71 valine 0.61 (i) Use the chromatogram and the R f values to deduce the amino acid responsible for spot A and spot B. amino acid responsible for spot A... amino acid responsible for spot B... [1] A second chromatogram of the same mixture is taken using a more polar solvent. Predict the effect on the R f values of the amino acids. Explain your reasoning. (b) Glycine, H 2 NCH 2 CO 2 H, is the simplest amino acid. (i) Complete the equations to show the acid-base properties of glycine. H 2 NCH 2 CO 2 H(aq) + HCl (aq)... H 2 NCH 2 CO 2 H(aq) + NaOH(aq)... [2] [Turn over

20 In aqueous solution, amino acids exist as zwitterions. Draw the zwitterionic structure of glycine. Explain how the zwitterion for glycine is formed. [2] (c) Apart from glycine, all naturally occurring amino acids have a chiral centre and exhibit stereoisomerism. Draw the two stereoisomers of alanine, CH(NH 2 )CO 2 H. C C [1] (d) The amino acid alanine can be synthesised from 2 chloropropanoic acid, CHCl CO 2 H. (i) State the reagents and conditions and name the mechanism for this reaction. reagents and conditions... name of mechanism... [2] State and explain the relative acidities of trichloroethanoic acid, chloroethanoic acid and ethanoic acid.... [3]

21 (e) Serine, HOCH 2 CH(NH 2 )CO 2 H, can react with alanine, CH(NH 2 )CO 2 H, to form three different structural isomers, each with the molecular formula C 6 H 12 N 2 O 4. Draw the structures of these three structural isomers. isomer 1 (C 6 H 12 N 2 O 4 ) isomer 2 (C 6 H 12 N 2 O 4 ) isomer 3 (C 6 H 12 N 2 O 4 ) [3] [Total: 15] [Turn over

22 8 Compound R is shown. R HO Cl (a) State the systematic name of compound R.. [1] (b) (i) R is dissolved in CDCl 3 and analysed using carbon 13 and proton NMR spectroscopy. Predict the number of peaks that are seen in the carbon-13 NMR spectrum of R. Predict the number of peaks that are seen in the proton NMR spectrum of R. [2] A separate sample of R is dissolved in D 2 O. The proton NMR spectrum of this solution shows one less peak than is obtained in CDCl 3. Explain why.

(c) Compound R reacts separately with the four reagents shown in the table. 23 Complete the table by drawing the structures of the organic products formed, stating the type of reaction. reagent organic product structure type of reaction Na COCl Br 2 (aq) + N N Cl [6] [Total: 10] [Turn over

24 BLANK PAGE Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series. Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.