Rotation-driven Magnetohydrodynamic Flow Using Local Ensemble Transform Kalman Filtering

Like dokumenter
Numerical Simulation of Shock Waves and Nonlinear PDE

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Generalization of age-structured models in theory and practice

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl.

Stationary Phase Monte Carlo Methods

melting ECMI Modelling week 2008 Modelling and simulation of ice/snow melting Sabrina Wandl - University of Linz Tuomo Mäki-Marttunen - Tampere UT

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Qi-Wu-Zhang model. 2D Chern insulator. León Martin. 19. November 2015

Optimale pådriv for endringer i hyppigheten av atmosfæriske strømningsmønstre, spesielt COWL

Level Set methods. Sandra Allaart-Bruin. Level Set methods p.1/24

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Splitting the differential Riccati equation

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Medisinsk statistikk, KLH3004 Dmf, NTNU Styrke- og utvalgsberegning

Graphs similar to strongly regular graphs

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN

Neural Network. Sensors Sorter

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with.

TFY4170 Fysikk 2 Justin Wells

Data Assimilation. Second Edition

Trigonometric Substitution

SVM and Complementary Slackness

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23

Call function of two parameters

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

A Benchmark of Selected Algorithmic. Machine Learning and Computer Vision

Jeroen Stil Institute for Space Imaging Science. University of Calgary

Oppgavesett kap. 6 (3 av..) GEF2200

Dean Zollman, Kansas State University Mojgan Matloob-Haghanikar, Winona State University Sytil Murphy, Shepherd University

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt)

Second Order ODE's (2P) Young Won Lim 7/1/14

Modeling Longitudinal Dyadic Data in the SEM Framework

Slope-Intercept Formula

Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen

Finite Elements Methods. Formulary for Prof. Estor's exam

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F.

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Oppgave. føden)? i tråd med

Moving Objects. We need to move our objects in 3D space.

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5)

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Implementering av korreksjonsfaktorer for temperatur og trykkeffekter i ultralyd gassmålere Løypemelding fra OD-prosjekt

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO

Energy Calibration for the Forward Detector at WASA-at-COSY

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)

Trust region methods: global/local convergence, approximate January methods 24, / 15

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

Ma Flerdimensjonal Analyse Øving 11

Løsningsførslag i Matematikk 4D, 4N, 4M

NO X -chemistry modeling for coal/biomass CFD

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

EN Skriving for kommunikasjon og tenkning

Dynamic Programming Longest Common Subsequence. Class 27

Ringvorlesung Biophysik 2016

Exploratory Analysis of a Large Collection of Time-Series Using Automatic Smoothing Techniques

Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet.

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

Simon Fraser University

Abstract. i x + a x +. a = (a x, a y ) z γ + 1 γ + z )

SCE1106 Control Theory

IN 211 Programmeringsspråk. Dokumentasjon. Hvorfor skrive dokumentasjon? For hvem? «Lesbar programmering» Ark 1 av 11

Eksamen i TMA4190 Mangfoldigheter Onsdag 4 juni, Tid :

Prosjektet Digital kontaktinformasjon og fullmakter for virksomheter Digital contact information and mandates for entities

Verifiable Secret-Sharing Schemes

RF Power Capacitors Class kV Discs with Moisture Protection

Satellite Stereo Imagery. Synthetic Aperture Radar. Johnson et al., Geosphere (2014)

Introduction to thermal physics - Short course in thermodynamics

Eksamensoppgave i TMA4135 Matematikk 4D

EKSAMENSOPPGAVE I FAG TKP 4105

Existence of resistance forms in some (non self-similar) fractal spaces

Kartleggingsskjema / Survey

Solution Assignment 10 TEP 4100

Ma Flerdimensjonal Analyse Øving 1

Hvordan føre reiseregninger i Unit4 Business World Forfatter:

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Eksamensoppgave i TMA4123/TMA4125 Matematikk 4M/4N

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes

Energy Dissipation in Hybrid Stars. Sophia Han. Washington University

Lattice Simulations of Preheating. Gary Felder KITP February 2008

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Optical Properties of Plasmas Based on an Average-Atom Model

Hvor finner vi flått på vårbeiter? - og betydning av gjengroing for flåttangrep på lam på vårbeite

RF Power Capacitors Class , 20 & 30 mm Barrel Transmitting Types

kpmg AS Senior revisor

Exercise 1: Phase Splitter DC Operation

Forecast Methodology September LightCounting Market Research Notes

KROPPEN LEDER STRØM. Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal.

Exam in Quantum Mechanics (phys201), 2010, Allowed: Calculator, standard formula book and up to 5 pages of own handwritten notes.

RF Power Capacitors Class1. 5kV Discs

Øystein Haugen, Professor, Computer Science MASTER THESES Professor Øystein Haugen, room D

Unfoldable Self-Avoiding Walks

TMA4240 Statistikk 2014

Transkript:

Rotation-driven Magnetohydrodynamic Flow Using Local Ensemble Transform Kalman Filtering Kayo Ide 2 ide@umd.edu Sarah Burnett 1 burnetts@math.umd.edu Nathanaël Schaeffer 4 nathanael.schaeffer@ univ-grenoble-alpes.fr Daniel Lathrop 3 lathrop@umd.edu 1 Department of Mathematics, University of Maryland 2 Department of Atmospheric and Oceanic Sciences, University of Maryland 3 Department of Physics, University of Maryland 4 ISTerre lab of the CNRS, Grenoble, France Sarah Burnett (UMD) LETKF on Dynamo flow 1 / 23

Purpose Dynamo action The Sun The Earth Other celestial bodies NASA s SDO AIA 171 Telescope Sarah Burnett (UMD) LETKF on Dynamo flow 2 / 23

Background E = ν Ω o L 2, Ro = Ω i Ω o, Re = Ro Ω o E, Rm = (Ω i Ω o ) L 2 η Sarah Burnett (UMD) LETKF on Dynamo flow 3 / 23

Three-Meter Diameter Spherical Couette Experiment1 liquid sodium filled constant temperature (125 ± 0.5 C) magnetic field and pressure measurement on the boundary. 1 D.S. Zimmerman, S.A. Triana, H.-C. Nataf and D.P. Lathrop. A turbulent, high magnetic Reynolds number experimental model of Earth s core. Journal of Geophysical Research (Solid Earth). 119: 4538-4557 (2014). Sarah Burnett (UMD) LETKF on Dynamo flow 4 / 23

Magnetohydrodynamic flow in spherical shells 2 Governing equations t u + (2Ω o + u) u = 1 ρ p + ν u + 1 ( b) b, µ 0 ρ t b = (u b η b), Boundary conditions No slip condition u = 0, b = 0, b matches a vacuum field at r = r o, r i Initial conditions Differential rotation and Imposed dipole magnetic field. 2 A Tilgner. Magnetohydrodynamic flow in precessing spherical shells. Journal of Fluid Mechanics, 379:303318, 1999. Sarah Burnett (UMD) LETKF on Dynamo flow 5 / 23

Nathanaël Schaeffer s XSHELLS code 3 Radial component of the surface magnetic field Re = 1.75 10 4, E = 10 4, Ro = 1.75, Rm = 118.7 3 Nathanael Schaeffer. Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations. Geochemistry, Geophysics, Geosystems, 14(3):751758, 2013. Sarah Burnett (UMD) LETKF on Dynamo flow 6 / 23

Data assimilation Sarah Burnett (UMD) LETKF on Dynamo flow 7 / 23

Toy problem: The Lorenz model 4 Nonlinear model: Ẋ(t) = σ (Y X), Ẏ (t) = X (r Z ) Y, Ż (t) = XY bz Solve with 4th order Runge-Kutta method. Figure: Lorenz attractor with parameters σ = 10, r = 28, and b = 8/3. 4 Lorenz, Edward N. Deterministic nonperiodic flow. Journal of the atmospheric sciences 20.2 (1963): 130-141. Sarah Burnett (UMD) LETKF on Dynamo flow 8 / 23

Data Assimilation x b (t n+1 ) = M [ x a (t n ) ], y o (t n ) = H n [ x t (t n ) ] + ɛ n Lorenz example: M solves ẋ = d X Y dt Z σ (Y X) = X (r Z ) Y XY bz Sarah Burnett (UMD) LETKF on Dynamo flow 9 / 23

Kalman Filtering Given observations at time t n, ɛ N (0, R), x a N ( x a, P a), x b N ( x b, P b) Goal: Obtain the most likely trajectory of x(t) that fits with the model at times t 1 < t 2 < < t n in the least squares sense. This is done by minimizing a cost function, J o t (x) = n i=1 [y o i H i (M t,ti (x))] T R 1 i [y o i H i (M t,ti (x))] How do we compute this? Sarah Burnett (UMD) LETKF on Dynamo flow 10 / 23

Kalman Filtering Given observations at time t n, ɛ N (0, R), x a N ( x a, P a), x b N ( x b, P b) Goal: Obtain the most likely trajectory of x(t) that fits with the model at times t 1 < t 2 < < t n in the least squares sense. This is done by minimizing a cost function, J o t (x) = n i=1 [y o i H i (M t,ti (x))] T R 1 i [y o i H i (M t,ti (x))] How do we compute this? KALMAN FILTER Sarah Burnett (UMD) LETKF on Dynamo flow 10 / 23

Kalman Filtering ITERATIVE METHOD Forecast step x b n = M tn 1,t n x a n 1, P b n = M tn 1,t n P a n 1 MT t n 1,t n. Analysis step (Jt o (x) min) x a = x b + P a H T R 1 (y o H x b ), P a = (I + P b H T R 1 H) 1 P b. Forecast step x b (t n+1 ) = M tn,t n+1 x a (t n ). Sarah Burnett (UMD) LETKF on Dynamo flow 11 / 23

Local Ensemble Transform Kalman Filtering 5 Cost function, J(x), we want to minimize. J(x) = [x x b ] T (P b ) 1 [x x b ] + [y o H(x)] T R 1 [y o H(x)]. Analysis ensemble (k members) with square-root filters (deterministic approach). 5 Brian R Hunt, Eric J Kostelich, and Istvan Szunyogh. Efficient data assimilation for spatiotemporal chaos: A local ensemble transform kalman filter. Physica D: Nonlinear Phenomena, 230(1):112126, 2007. Sarah Burnett (UMD) LETKF on Dynamo flow 12 / 23

Local Ensemble Transform Kalman Filtering Background state estimate and error covariance matrix with k ensemble members. x b = 1 k k i=1 x b(i), P b = 1 k 1 Xb ( X b) T Sarah Burnett (UMD) LETKF on Dynamo flow 13 / 23

Local Ensemble Transform Kalman Filtering Transform x such that X b w S for some w S. True state is now ( ) x = x b + X b w, where w N 0, (k 1) 1 I Note: H ( x b + X b w ) ȳ b + Y b w Cost function J(w) = (k 1)w T w + [y 0 ȳ b Y b w] T R 1 [y o ȳ b Y b w] Analysis equations where w a = P a (Y b ) T R 1 (y o ȳ b ) W a = [(k 1) P a ] 1/2 P a = [(k 1/ρ)I + (Y b ) T R 1 Y b ] 1 Sarah Burnett (UMD) LETKF on Dynamo flow 14 / 23

Local Ensemble Transform Kalman Filtering Transform back to S (original model space) Calculate the ensembles, Apply the forecast step, x a = x b + X b w a, X a = X b W a. w a(i) = W a (i) + w a, x a(i) = x b + X b w a(i). x b(i) (t n+1 ) = M ( ) x a(i) (t n ). Sarah Burnett (UMD) LETKF on Dynamo flow 15 / 23

Validation: Perfect model test Sarah Burnett (UMD) LETKF on Dynamo flow 16 / 23

Lorenz model What if we use complete versus partial observations? 3 members ρ = 1.0672 l = 3 X y = Y Z RMS error: X = 0.2246 Y = 0.3353 Z = 0.3285 Sarah Burnett (UMD) LETKF on Dynamo flow 17 / 23

Lorenz model 3 members ρ = 1.0672 l = 2 [ ] Y y = Z RMS error: X = 0.2830 Y = 0.4108 Z = 0.3924 Sarah Burnett (UMD) LETKF on Dynamo flow 18 / 23

Lorenz model 3 members ρ = 1.0672 l = 1 y = [ X ] RMS error: X = 0.6592 Y = 1.0264 Z = 1.0235 Sarah Burnett (UMD) LETKF on Dynamo flow 19 / 23

Lorenz model: LETKF, EnKF 6, and EKF 7 RMS error for every 8 time steps LETKF (no localization) 3 members 6 members 0.2442 (ρ = 1.0672) 0.2311 (ρ = 1.0272) EnKF 3 members 6 members 0.30 (δ = 0.04) 0.28 (δ = 0.02) EKF 0.32 (µ = 0.02, δ = 0) RMS error for every 25 time steps LETKF (no localization) 3 members 6 members 0.9215 (ρ = 1.7722) 0.7994 (ρ = 1.2015) EnKF 3 members 6 members 0.71 (δ = 0.39) 0.59 (δ = 0.13) EKF 0.63 (µ = 0.1, δ = 0.05) 6 Kalnay, Eugenia, et al. 4DVar or ensemble Kalman filter?. Tellus A 59.5 (2007): 758-773. 7 Yang, Shu-Chih, et al. Data assimilation as synchronization of truth and model: Experiments with the three-variable Lorenz system. Journal of the atmospheric sciences 63.9 (2006): 2340-2354. Sarah Burnett (UMD) LETKF on Dynamo flow 20 / 23

Current work: Quasi-2D unsteady fast dynamo flow 8 Governing Equations: Velocity field u(x, y, t) = 2 cos 2 t (0, sin x, cos x) + 2 sin 2 t (sin y, 0, cos y) Induction equation t b x + ( ) u x x + u y y + iku z bx = ( ) b x x + b y y ux + η 2 b x, t b y + ( ) u x x + u y y + iku z by = ( ) b x x + b y y uy + η 2 b y Initial condition B 0 = (i, 1, 0)e ikz where B(x, y, z, t) = b(x, y, t)e ikz 2π periodic boundary conditions for x and y. 8 Childress, Stephen, and Andrew D. Gilbert. Stretch, twist, fold: the fast dynamo. Vol. 37. Springer Science & Business Media, 2008. Sarah Burnett (UMD) LETKF on Dynamo flow 21 / 23

Future Work: Phase 3 & 4 Apply the LETKF to xshells. Run data assimilation trial and compare this with the purely numerical run. Trials assimilating b data with various numbers of observations, assimilation windows, and number of ensemble members Study the effect on the velocity field. Is it reliable? Sarah Burnett (UMD) LETKF on Dynamo flow 22 / 23

Thank you! Sarah Burnett (UMD) LETKF on Dynamo flow 23 / 23