Implementing Bayesian random-effects meta-analysis

Like dokumenter
Analysis of ordinal data via heteroscedastic threshold models

Generalization of age-structured models in theory and practice

Exploratory Analysis of a Large Collection of Time-Series Using Automatic Smoothing Techniques

Graphs similar to strongly regular graphs

GeWare: A data warehouse for gene expression analysis

Accuracy of Alternative Baseline Methods

Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen

Splitting the differential Riccati equation

Checking Assumptions

Salting of dry-cured ham

OPPA European Social Fund Prague & EU: We invest in your future.

RF Power Capacitors Class kV Discs with Moisture Protection

RF Power Capacitors Class1. 5kV Discs

Checking Assumptions

Stationary Phase Monte Carlo Methods

Satellite Stereo Imagery. Synthetic Aperture Radar. Johnson et al., Geosphere (2014)

ST1101/ST6101 Sannsynlighetsregning og statistikk Vår 2019

NO X -chemistry modeling for coal/biomass CFD

Modeling Longitudinal Dyadic Data in the SEM Framework

OPPA European Social Fund Prague & EU: We invest in your future.

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)

RF Power Capacitors Class , 20 & 30 mm Barrel Transmitting Types

Eksamensoppgave i ST2304 Statistisk modellering for biologer og bioteknologer

Quantitative Spectroscopy Chapter 3 Software

Slope-Intercept Formula

Forelesning 9 STK3100/4100

Quantitative methods in CompSci. Some observations from being a reviewer and an author

Statistisk modellering for biologer og bioteknologer, ST august, 2012 Kl. 913 Sensur: 3 uker etter eksamen

Returns, prices and volatility

Forskningsmetoder i menneske-maskin interaksjon Research Methods in Human-Computer Interaction

Human Factors relevant ved subsea operasjoner?

EKSAMEN I EMNE ST1201/ST6201 STATISTISKE METODER Onsdag 5. desember 2007 Tid: 09:00 13:00

Model Description. Portfolio Performance

Medisinsk statistikk, KLH3004 Dmf, NTNU Styrke- og utvalgsberegning

Forelesning 8 STK3100/4100

Information search for the research protocol in IIC/IID

SOS 301 og SOS31/ SOS311 MULTIVARIAT ANALYSE

Dean Zollman, Kansas State University Mojgan Matloob-Haghanikar, Winona State University Sytil Murphy, Shepherd University

Fordelinger, mer om sentralmål og variasjonsmål. Tron Anders Moger

PrO-ASTM Centrifuges. Centurion. C1015 Micro Prime Centrifuge. A Micro that offers: Oil testing. Petroleum testing, ASTM methods

Minimumskrav bør være å etablere at samtykke ikke bare må være gitt frivillig, men også informert.

A Benchmark of Selected Algorithmic. Machine Learning and Computer Vision

Bioberegninger, ST november 2006 Kl. 913 Hjelpemidler: Alle trykte og skrevne hjelpemidler, lommeregner.

TMA4240 Statistikk 2014

Påvirker regionale forhold bedrifters verdiskapning og innovasjonsevne? Jarle Aarstad Senter for nyskaping Høgskolen i Bergen

Start MATLAB. Start NUnet Applications Statistical and Computational packages MATLAB Release 13 MATLAB 6.5

By Bioforsk RECOCA Team Per Stålnacke Csilla Farkas Johannes Deelstra

Level Set methods. Sandra Allaart-Bruin. Level Set methods p.1/24

OECD GUIDELINE FOR THE TESTING OF CHEMICALS

7. november 2011 Geir Storvik

SOME EMPIRICAL EVIDENCE ON THE DECREASING SCALE ELASTICITY

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN

Reliable RT Spotify

Forelesning 11 STK3100/4100

Eksamensoppgave i ST2304 Statistisk modellering for biologer og bioteknologer

SCE1106 Control Theory

Forelesning 9 STK3100/4100

On Marginal Quasi-Likelihood Inference in Generalized Linear Mixed Models

Hva skal vi dimensjonere rør og flomveier for i fremtiden og hvordan gjør vi det

Anvendt medisinsk statistikk, vår Repeterte målinger, del II

STØTTEMATERIALE TIL FORELESNINGENE OM SKATT

MID-TERM EXAM TDT4258 MICROCONTROLLER SYSTEM DESIGN. Wednesday 3 th Mars Time:

CBMS Lecture 5. Alan E. Gelfand Duke University

Estimating Peer Similarity using. Yuval Shavitt, Ela Weinsberg, Udi Weinsberg Tel-Aviv University

Hvordan føre reiseregninger i Unit4 Business World Forfatter:

Call function of two parameters

(see table on right) 1,500,001 to 3,000, ,001pa to 250,000pa

Smart High-Side Power Switch BTS730

(see table on right) 1,500,001 to 3,000, ,001pa to 250,000pa

Sensorveiledning SPED1200 vår 2018

Moving Objects. We need to move our objects in 3D space.

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

Forecast Methodology September LightCounting Market Research Notes

TMA4245 Statistikk Eksamen 9. desember 2013

On Capacity Planning for Minimum Vulnerability

EM Algorithm for Latent Variable Models

HONSEL process monitoring

STK 4020, autumn 2008 Bayesians Statistics. Course Notes and Exercises by Nils Lid Hjort

Server-Side Eclipse. Martin Lippert akquinet agile GmbH

TFY4170 Fysikk 2 Justin Wells

1 User guide for the uioletter package

TMA4240 Statistikk Høst 2013

EKSAMENSOPPGAVE I SØK3001 ØKONOMETRI I ECONOMETRICS I

Energy Calibration for the Forward Detector at WASA-at-COSY

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Method validation for NO (10 ppm to 1000 ppm) in nitrogen using the Fischer Rosemount chemiluminescence analyser NOMPUMELELO LESHABANE

Parameter-estimering estimering og CosmoMC

TIDE DISTRIBUTIVE EFFECTS OF INDIRECT TAXATION:

TriCOM XL / L. Energy. Endurance. Performance.

SVM and Complementary Slackness

Eksamensoppgave i PSY3100 Forskningsmetode - Kvantitativ

VLSI Design for Yield on Chip Level

Data Sheet for Joysticks

Jeroen Stil Institute for Space Imaging Science. University of Calgary

UNIVERSITETET I OSLO

Bioberegninger, ST1301 Mandag 21. mai, 2007 Kl Hjelpemidler: Alle trykte og skrevne hjelpemidler, lommeregner. Sensur: 12.

Server-Side Eclipse. Bernd Kolb Martin Lippert it-agile GmbH

Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet.

By Bioforsk SEALINK Team

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Transkript:

Implementing Bayesian random-effects meta-analysis Christian Röver 1, Beat Neuenschwander 2, Tim Friede 1 1 Department of Medical Statistics University Medical Center Göttingen 2 Novartis Pharma AG, Basel, Switzerland September 10, 2014 C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 1 / 21

Overview Meta analysis the random-effects model the common approach The Bayesian approach prior, likelihood marginal likelihood posterior distribution Application examples C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 2 / 21

Meta analysis Context # 1 # 2 # 3 # 4 # 5 # 6 # 7 have: estimates y i standard errors σ i want: combined estimate ˆΘ 120 140 160 180 200 220 240 C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 3 / 21

Meta analysis Context # 1 # 2 # 3 # 4 # 5 # 6 # 7 have: estimates y i standard errors σ i want: combined estimate ˆΘ 120 140 160 180 200 220 240 C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 3 / 21

Meta analysis Context # 1 # 2 # 3 # 4 # 5 # 6 # 7 Θ have: estimates y i standard errors σ i want: combined estimate ˆΘ 120 140 160 180 200 220 240 C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 3 / 21

Meta analysis Context # 1 # 2 # 3 # 4 # 5 # 6 # 7 Θ have: estimates y i standard errors σ i want: combined estimate ˆΘ 120 140 160 180 200 220 240 C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 3 / 21

Meta analysis The random effects model assume 1,2 : y i Normal(Θ, σ i 2 +τ 2 ) 1 L. V. Hedges, I. Olkin. Statistical methods for meta-analysis. Academic Press, 1985. 2 J. Hartung, G. Knapp, B. K. Sinha. Statistical meta-analysis with applications. Wiley, 2008. C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 4 / 21

Meta analysis The random effects model assume 1,2 : y i Normal(Θ, σ i 2 +τ 2 ) ingredients: Data: estimates y i standard errors σ i Parameters: true parameter value Θ 1 L. V. Hedges, I. Olkin. Statistical methods for meta-analysis. Academic Press, 1985. 2 J. Hartung, G. Knapp, B. K. Sinha. Statistical meta-analysis with applications. Wiley, 2008. C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 4 / 21

Meta analysis The random effects model assume 1,2 : y i Normal(Θ, σ i 2 +τ 2 ) ingredients: Data: estimates y i standard errors σ i Parameters: true parameter value Θ 1 L. V. Hedges, I. Olkin. Statistical methods for meta-analysis. Academic Press, 1985. 2 J. Hartung, G. Knapp, B. K. Sinha. Statistical meta-analysis with applications. Wiley, 2008. C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 4 / 21

Meta analysis The random effects model assume 1,2 : y i Normal(Θ, σ i 2 +τ 2 ) ingredients: Data: estimates y i standard errors σ i Parameters: true parameter value Θ 1 L. V. Hedges, I. Olkin. Statistical methods for meta-analysis. Academic Press, 1985. 2 J. Hartung, G. Knapp, B. K. Sinha. Statistical meta-analysis with applications. Wiley, 2008. C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 4 / 21

Meta analysis The random effects model assume 1,2 : y i Normal(Θ, σ i 2 +τ 2 ) ingredients: Data: estimates y i standard errors σ i Parameters: true parameter value Θ 1 L. V. Hedges, I. Olkin. Statistical methods for meta-analysis. Academic Press, 1985. 2 J. Hartung, G. Knapp, B. K. Sinha. Statistical meta-analysis with applications. Wiley, 2008. C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 4 / 21

Meta analysis The random effects model assume 1,2 : y i Normal(Θ, σ i 2 +τ 2 ) ingredients: Data: estimates y i standard errors σ i Parameters: true parameter value Θ Θ Rof primary interest τ R + nuisance parameter: account for (potential) incompatibility 1 L. V. Hedges, I. Olkin. Statistical methods for meta-analysis. Academic Press, 1985. 2 J. Hartung, G. Knapp, B. K. Sinha. Statistical meta-analysis with applications. Wiley, 2008. C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 4 / 21

Meta analysis Common approach to inference test for τ = 0 vs. τ > 0 (fixed vs. random effects) derive estimate ˆτ derive estimate for Θ conditional on ˆτ being actual heterogeneity (plug-in estimate) C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 5 / 21

Meta analysis Common approach to inference test for τ = 0 vs. τ > 0 (fixed vs. random effects) derive estimate ˆτ derive estimate for Θ conditional on ˆτ being actual heterogeneity (plug-in estimate) Problems: significance tests have low power τ = 0 hypothesis questionable how to estimate τ? numerous approaches available, questionable properties, especially for (near-) zero τ conditioning on fixed τ value only makes sense in case of great accuracy uncertainty in τ usually not accounted for C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 5 / 21

Meta analysis The Bayesian approach Bayesian approach 3 consideration of prior information consideration of uncertainty straightforward interpretation computationally more expensive, usually done via stochastic integration (MCMC, BUGS) 4 3 A. J. Sutton, K. R. Abrams. Bayesian methods in meta-analysis and evidence synthesis. Statistical Methods in Medical Research, 10(4):277, 2001. 4 T. C. Smith, D. J. Spiegelhalter, A. Thomas. Bayesian approaches to random-effects meta-analysis: A comparative study. Statistics in Medicine, 14(24):2685, 1995. C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 6 / 21

The Bayesian approach Prior, likelihood likelihood follows from assumptions: p ( y, σ Θ,τ ) 1 2 (log(τ 2 +σ 2i )+ (y i Θ) 2 ) i τ 2 +σ 2 i C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 7 / 21

The Bayesian approach Prior, likelihood likelihood follows from assumptions: p ( y, σ Θ,τ ) 1 2 assume a priori independence: p(θ) uniform or normal (log(τ 2 +σ 2i )+ (y i Θ) 2 ) i p(θ,τ) = p(θ) p(τ) p(τ) arbitrary (uniform or informative) 5 τ 2 +σ 2 i 5 A. Gelman. Prior distributions for variance parameters in hierarchical models. Bayesian Analysis, 1(3):515, 2006. C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 7 / 21

Example Cochran (1954) data 6 # 1 # 2 # 3 # 4 # 5 # 6 # 7 120 140 160 180 200 220 240 data: 7 estimates and standard errors assume: uniform priors p(θ), p(τ) 6 W. G. Cochran. The combination of estimates from different experiments. Biometrics, 10(1):101, 1954. C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 8 / 21

Example Cochran (1954) data 6 # 1 # 2 # 3 # 4 # 5 # 6 # 7 120 140 160 180 200 220 240 data: 7 estimates and standard errors assume: uniform priors p(θ), p(τ) 140 150 160 170 180 90% 50% joint posterior 95% 99% (uniform prior posterior = likelihood) 6 W. G. Cochran. The combination of estimates from different experiments. Biometrics, 10(1):101, 1954. C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 8 / 21

The Bayesian approach Marginal likelihood interested in τ, marginalize likelihood over Θ: p ( y, σ ) τ = p ( y, σ ) Θ,τ p(θ) dθ C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 9 / 21

The Bayesian approach Marginal likelihood interested in τ, marginalize likelihood over Θ (for uniform p(θ)): p ( y, σ ) τ = p ( y, σ ) Θ,τ p(θ) dθ 1 2 (log(τ 2 +σ 2i )+ (y i µ Θ τ ) 2 ) i τ 2 +σ 2 i ( 1 2 log τ 2 +σ 2 i i where µ Θ τ is the conditional posterior mean of Θ for given τ: y i i τ µ Θ τ = 2 +σi 2 = E [ Θ ] τ, y, σ i 1 τ 2 +σ 2 i 1 ) C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 9 / 21

The Bayesian approach Marginal likelihood interested in τ, marginalize likelihood over Θ (for uniform p(θ)): p ( y, σ ) τ = p ( y, σ ) Θ,τ p(θ) dθ 1 2 (log(τ 2 +σ 2i )+ (y i µ Θ τ ) 2 ) i τ 2 +σ 2 i ( 1 2 log τ 2 +σ 2 i i where µ Θ τ is the conditional posterior mean of Θ for given τ: y i i τ µ Θ τ = 2 +σi 2 = E [ Θ ] τ, y, σ i 1 τ 2 +σ 2 i 1 ) C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 9 / 21

The Bayesian approach Marginal likelihood interested in τ, marginalize likelihood over Θ (for uniform p(θ)): p ( y, σ ) τ = p ( y, σ ) Θ,τ p(θ) dθ 1 2 (log(τ 2 +σ 2i )+ (y i µ Θ τ ) 2 ) i τ 2 +σ 2 i ( 1 2 log τ 2 +σ 2 i i where µ Θ τ is the conditional posterior mean of Θ for given τ: y i i τ µ Θ τ = 2 +σi 2 = E [ Θ ] τ, y, σ i similar for normal prior p(θ) 1 τ 2 +σ 2 i C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 9 / 21 1 )

The Bayesian approach Inferring τ posterior distribution of τ simply p ( τ y, σ ) p ( y, σ ) τ p(τ) specify arbitrary prior p(τ) use numerical integration for 1D posterior compute quantiles, moments,... C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 10 / 21

Example Cochran (1954) data 7 # 1 # 2 # 3 # 4 # 5 # 6 # 7 data: 7 estimates and standard errors assume: random-effects model, uniform priors p(θ), p(τ) 120 140 160 180 200 220 240 7 W. G. Cochran. The combination of estimates from different experiments. Biometrics, 10(1):101, 1954. C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 11 / 21

Example Cochran (1954) data joint posterior 140 150 160 170 180 90% 50% 95% 99% C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 12 / 21

Example Cochran (1954) data joint posterior marginal posterior 140 150 160 170 180 90% 50% 95% 99% C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 12 / 21

Example Cochran (1954) data joint posterior marginal posterior mode 140 150 160 170 180 90% 50% 95% 99% C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 12 / 21

Example Cochran (1954) data joint posterior marginal posterior 140 150 160 170 180 90% 50% 95% 99% median C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 12 / 21

Example Cochran (1954) data joint posterior marginal posterior 140 150 160 170 180 90% 50% 95% 99% mean C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 12 / 21

Example Cochran (1954) data joint posterior marginal posterior 140 150 160 170 180 90% 50% 95% 99% 95% C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 12 / 21

Example Cochran (1954) data joint posterior marginal posterior 140 150 160 170 180 90% 50% 95% 99% C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 12 / 21

Inferring Θ Note: fixing τ yields a normal conditional posterior p ( Θ τ, y, σ ) marginal posterior p(τ y, σ) 140 150 160 170 180 190 90% 50% joint posterior p(θ, τ y, σ) 95% conditional posterior p(θ τ, y, σ) 99% 130 140 150 160 170 180 190 C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 13 / 21

Inferring Θ Note: fixing τ yields a normal conditional posterior p ( Θ τ, y, σ ) marginal posterior p(τ y, σ) τ* 140 150 160 170 180 190 joint posterior p(θ, τ y, σ) τ* conditional posterior p(θ τ, y, σ) τ = τ* 130 140 150 160 170 180 190 C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 13 / 21

Inferring Θ Note: fixing τ yields a normal conditional posterior p ( Θ τ, y, σ ) marginal posterior p(τ y, σ) τ 1 τ 2 τ 3 τ 4 140 150 160 170 180 190 joint posterior p(θ, τ y, σ) τ 1 τ 2 τ 3 τ 4 conditional posterior p(θ τ, y, σ) τ = τ 1 τ = τ 2 τ = τ 3 τ = τ 4 130 140 150 160 170 180 190 C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 13 / 21

Inferring Θ Note: fixing τ yields a normal conditional posterior p ( Θ τ, y, σ ) marginal posterior p(τ y, σ) τ 1 τ 2 τ 3 τ 4 140 150 160 170 180 190 joint posterior p(θ, τ y, σ) τ 1 τ 2 τ 3 τ 4 conditional posterior p(θ τ, y, σ) τ = τ 1 τ = τ 2 τ = τ 3 τ = τ 4 130 140 150 160 170 180 190 marginal posterior of Θ is a normal mixture: p ( Θ y, σ ) = p ( Θ τ, y, σ ) p ( τ y, σ ) dτ weights given by marginal posterior of τ... easy approximation C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 13 / 21

Inferring Θ marginal posterior of Θ is a normal mixture: p ( Θ y, σ ) = p ( Θ τ, y, σ ) p ( τ y, σ ) dτ j p ( Θ τ j, y, σ ) w j (weights w j via integration over marginal p ( τ y, σ ) ) marginal posterior p(τ y, σ) τ 1 τ 2 τ 3 τ 4 conditional posterior p(θ τ, y, σ) τ = τ 1 marginal posterior p(θ y, σ) τ = τ 2 τ = τ 3 τ = τ 4 130 140 150 160 170 180 190 130 140 150 160 170 180 190 C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 14 / 21

Inferring Θ marginal posterior of Θ is a normal mixture: p ( Θ y, σ ) = p ( Θ τ, y, σ ) p ( τ y, σ ) dτ j p ( Θ τ j, y, σ ) w j (weights w j via integration over marginal p ( τ y, σ ) ) marginal posterior p(τ y, σ) τ 1 τ 2 τ 3 τ 4 conditional posterior p(θ τ, y, σ) τ = τ 1 marginal posterior p(θ y, σ) τ = τ 2 τ = τ 3 τ = τ 4 130 140 150 160 170 180 190 130 140 150 160 170 180 190 C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 14 / 21

Inferring Θ marginal posterior of Θ is a normal mixture: p ( Θ y, σ ) = p ( Θ τ, y, σ ) p ( τ y, σ ) dτ j p ( Θ τ j, y, σ ) w j (weights w j via integration over marginal p ( τ y, σ ) ) marginal posterior p(τ y, σ) τ 1 τ 2 τ 3 τ 4 conditional posterior p(θ τ, y, σ) τ = τ 1 marginal posterior p(θ y, σ) τ = τ 2 τ = τ 3 τ = τ 4 130 140 150 160 170 180 190 130 140 150 160 170 180 190 C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 14 / 21

Example Cochran (1954) data # 1 # 2 # 3 # 4 # 5 # 6 # 7 Θ 120 140 160 180 200 220 240 C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 15 / 21

Example Cochran (1954) data marginal posterior p(τ y, σ) # 1 # 2 # 3 # 4 # 5 # 6 # 7 Θ 120 140 160 180 200 220 240 C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 15 / 21

Example Cochran (1954) data marginal posterior p(τ y, σ) # 1 # 2 # 3 # 4 # 5 # 6 # 7 marginal posterior p(θ y, σ) Θ 120 140 160 180 200 220 240 130 140 150 160 170 180 190 C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 15 / 21

Implementation R package under development > cochran01 <- bmeta(cochran1954[,"mean"], sqrt(cochran1954[,"se2"])) > cochran02 <- bmeta(cochran1954[,"mean"], sqrt(cochran1954[,"se2"]), + mu.prior.mean=150, mu.prior.sd=100, + tau.prior=function(x){return(dexp(x, rate=0.05))}) > > cochran01$summary tau mu mu.pred mode 10.303255 156.504954 154.16345 median 12.888735 157.896520 157.33321 mean 14.844457 158.547999 158.54800 sd 9.950631 8.358115 19.70028 95% lower 0.000000 143.180913 119.77459 95% upper 32.665117 176.106158 200.12309 > > # compute posterior quantiles: > cochran01$qposterior(mu.p=c(0.005, 0.995)) [1] 135.0429 187.3122 > > # plot posterior density: > x <- seq(from=130, to=190, length=100) > plot(x, cochran02$dposterior(mu=x), type="l") > lines(x, cochran01$dposterior(mu=x)) C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 16 / 21

Conclusions coherent inference, exact also for small number of estimates k applicable for wide range of effect measures flexible consideration of prior information ( default options?) consideration of uncertainty straightforward interpretation simple implementation, fast computation grid approximation: accuracy under control no MCMCing necessary (implementation, tuning, diagnostics, post-processing,... ) R package bmeta under construction (examples included) working on performance comparison (MSE, bias, prior choice,... ) ACKNOWLEDGMENTS: partially funded by the EU through InSPiRe (FP HEALTH 2013-602144); thanks to Simon Wandel C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 17 / 21

+++ additional slides +++ C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 18 / 21

Example Sidik / Jonkman data 8 Sidik / Jonkman investigated a range of heterogeneity estimators: method of moments (MM) variance component (VC) maximum likelihood (ML) restricted ML (REML) empirical Bayes (EB) model error variance (MV) variation of MV (MVvc) used example for illustration: 29 log odds ratios 8 K. Sidik and J. N. Jonkman. A comparison of heterogeneity variance estimators in combining results of studies. Statistics in Medicine, 26(9):1964, 2007. C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 19 / 21

Example Sidik / Jonkman data # 53 # 55 # 57 # 58 # 56 # 54 # 40 # 34 # 41 # 42 # 38 # 43 # 48 # 49 # 39 # 35 # 52 # 31 # 50 # 44 # 32 # 51 # 36 # 33 # 45 # 37 # 46 # 47 # 59,60 VC MV MVvc EB REML ML MM 4 2 0 2 4 log odds ratio Θ 0.0 0.5 1.0 1.5 C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 20 / 21

Example Sidik / Jonkman data # 53 # 55 # 57 # 58 # 56 # 54 # 40 # 34 # 41 # 42 # 38 # 43 # 48 # 49 # 39 # 35 # 52 # 31 # 50 # 44 # 32 # 51 # 36 # 33 # 45 # 37 # 46 # 47 # 59,60 marginal posterior density VC MV MVvc EB REML ML MM based on uniform prior 4 2 0 2 4 log odds ratio Θ 0.0 0.5 1.0 1.5 C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 20 / 21

Example Sidik / Jonkman data # 53 # 55 # 57 # 58 # 56 # 54 # 40 # 34 # 41 # 42 # 38 # 43 # 48 # 49 # 39 # 35 # 52 # 31 # 50 # 44 # 32 # 51 # 36 # 33 # 45 # 37 # 46 # 47 # 59,60 marginal posterior density VC MV MVvc EB REML ML MM based on uniform prior based on informative prior 4 2 0 2 4 log odds ratio Θ 0.0 0.5 1.0 1.5 C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 20 / 21

Example Calibration: simulations posterior calibration: do upper limits on τ cover true values? simulate: generate parameter values, analyze data using matching prior or uniform prior k = 3 studies k = 10 studies frequency p 0.0 0.2 0.4 0.6 0.8 1.0 exact prior frequency p 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 level ω 0.0 0.2 0.4 0.6 0.8 1.0 level ω calibration exact C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 21 / 21

Example Calibration: simulations posterior calibration: do upper limits on τ cover true values? simulate: generate parameter values, analyze data using matching prior or uniform prior k = 3 studies k = 10 studies frequency p 0.0 0.2 0.4 0.6 0.8 1.0 uniform prior exact prior frequency p 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 level ω 0.0 0.2 0.4 0.6 0.8 1.0 level ω calibration exact, conservative for (improper) uniform prior C. Röver, B. Neuenschwander, T. Friede Bayesian random-effects meta-analysis September 10, 2014 21 / 21