FYSMEK1110 Eksamensverksted 29. Mai 2017 (basert på eksamen I 2004, 2012,2013,2015)

Størrelse: px
Begynne med side:

Download "FYSMEK1110 Eksamensverksted 29. Mai 2017 (basert på eksamen I 2004, 2012,2013,2015)"

Transkript

1 FYSMEK1110 Eksamensverksted 29. Mai 2017 (basert på eksamen I 2004, 2012,2013,2015) Oppgave 1 (maks. 30 minutt med diskusjon) a) Kan et legeme som har konstant akselerasjon endre bevegelsesretning? Gi en kort begrunnelse for svaret. Ja, siden hastighet er en vektoriell størrelse kan vi ha både positive og negative verdier av en hastighet. En ball som kastes rett oppover vil ha konstant akselerasjon nedover, hvilket betyr at hastigheten oppover avtar med et konstant mengde pr sekund. Før eller siden blir hastigheten oppover lik null, og siden negativ, hvilket betyr at ballen har nådd sitt høyeste punkt og så vender nedover igjen. b) En kule triller oppover en bakke, passerer toppen og triller så nedover en bakke på motsatt side. Skissér hvilken retning friksjonen virker fra underlaget på kula, på vei opp, på toppen og på vei ned. Begrunn svaret. Vi antar at vi har ren rulling. rotasjon CM v F friksjon F = 0 friksjon F friksjon Retningen til friksjonen fra underlaget på kula er markert med pilene i figuren. På grunn av energibevaring (ingen sluring mot underlaget) må bevegelsesenergi gå over i potensiell energi på veien opp. Kula har ren rulling, hvilket betyr at også rotasjonshastigheten (vinkelhastigheten) må avta på veien oppover. Det betyr at kula har en vinkelakselerasjon om massemiddelpunktet, og at vinkelakselerasjonen fører til at vinkelhastigheten avtar. Da må det være et kraftmoment som gir denne vinkelakselerasjonen om massemiddelpunktet (ifølge spinnsatsen). Det er tre krefter som virker på kula, gravitasjonen, normalkraften fra underlaget, og friksjonen fra underlaget. Virkelinjen til de to første går gjennom massemiddelpunktet, og de kan derfor ikke sette opp noe kraftmoment om dette punktet (eller aksen gjennom massesenteret). Friksjonen er den eneste kraft som har et kraftmoment om aksen gjennom massesenteret. Friksjonen må sette opp et kraftmoment som virker mot rotasjonsbevegelsen på vei oppover, og det gir den retningen på friksjonskraften som er indikert. På toppen har ikke kula noe vinkelakselerasjon (av energimessige årsaker), det vil si at friksjonskraften her er null. På veien nedover blir argumentasjonen som på veien opp, bare med motsatt fortegn, det vil si at friksjonskraften må sette opp et kraftmoment som fører til raskere og raskere rotasjon. Friksjonskraften må da virke som angitt i figuren. c) Dersom man kaster en ball rett oppover og ikke kan se bort fra luftmotstanden, vil ballen da bruke samme tid på en bestemt veistrekning på vei oppover som på vei nedover? I fall den ikke Page 1 of 15

2 bruker samme tid på den bestemte veistrekningen, bruker den da lengst tid på vei opp eller på vei ned? Begrunn svaret. På vei oppover vil gravitasjonskraften og luftmotstanden virke samme retning, mens de virker motstatt retning på veien ned. Akselerasjonen (tallverdien) oppover er større enn (tallverdien av) akselerasjonen nedover. Følgelig må ballen bruke lenger tid på veien ned enn på veien opp. d) En kvinne står på speilblank is (friksjonen tilnærmet lik null). Hun kaster en ball (et vanlig kast litt på skrå oppover). Vil vi ha konservering av bevegelsesmengden for systemet kvinne pluss ball? Begrunn svaret. Friksjonen er tilnærmet lik null betyr at det (nesten) ikke virker horisontale krefter på kvinnen (+ ball), selv når hun kaster ballen. Når det da ikke er noen ytre krefter i horisontal retning for systemet (kvinne + ball), er bevegelsesmengden konservert i denne retningen. I vertikal retning er det imidlertid annerledes. Når kvinnen kaster ballen på skrå oppover, vil massesenteret til systemet (kvinne + ball) bli akselerert litt oppover akkurat idet ballen kastes. Dette er slik fordi ballen akselereres oppover, mens kvinnen ikke får en tilsvarende bevegelse nedover pga at isen er hard (hun må sparke litt ekstra ifra idet ballen kastes). Men siden massesenteret til systemet (kvinne + ball) blir akselerert, må det virke en netto ytre kraft på systemet oppover. Da er ikke bevegelsesmengden for systemet bevart i loddrett retning, og dermed er total bevegelsesmengde ikke bevart. e) En erfaren kokk kan avgjøre om et egg er kokt eller rått ved å trille det nedover et skråplan. Forklar. I et hardkokt egg vil hele innmaten bevege seg med samme rotasjonshastighet (vinkelhastighet) som skallet, mens det i et rått egg er mulig å få eggeskallet til å rotere raskere enn innmaten. I et rått egg vil derfor rotasjonsenergien være noe mindre enn for et hardkokt egg for en gitt rotasjonshastighet - og derved en og samme translatoriske bevegelsesenergi (såfremt vi har ren rulling). Energibevaring tilsier da at det rå egget vil rulle fortere enn det hardkokte. For bløtkokt egg vil ikke effekten være fullt så stor, men likevel i samme retning. Page 2 of 15

3 Oppgave 2 (20 minutt) Et pion oppstår i en kollisjon mellom høyenergetiske protoner i en partikkelakselerator. Etter det er skapt beveger pionet seg med konstant høy hastighet nær lysets hastighet før det henfaller. Et pion i sitt hvilesystem har levetiden. Finn hastigheten til pionet hvis du som observatør i laboratoriet detekterer henfallet i en avstand fra kollisjonspunktet. Finn et uttrykk for hastigheten som funksjon av avstanden og konstantene og. Hendelse 1: pionet oppstår i kollisjonen, hendelse 2: pionet henfaller. Tidsperioden mellom de to hendelser er levetiden til pionet. I sitt hvilesystem S er pionet i ro og levetiden er. I laboratoriesystemet S beveger pionet seg med hastighet og levetiden er lenger på grunn av tidsdilatasjon:. I laboratoriesystemet S beveger pionet seg en strekning mellom hendelse 1 og 2 og bruker en tidsperiode for denne strekningen. Hastigheten er derfor: Page 3 of 15

4 Oppgave 3 (40 minutt) En liten stein med masse synker i havet. Du kan anta at det virker en konstant oppdriftskraft og en motstandskraft av type, hvor er en konstant. a) Tegn et frilegemediagram for steinen og navngi kreftene. (2 poeng) Gravitasjonskraft Motstandskraft Oppdriftskraft Steinen synker i negativ y retning, motstandskraften virker derfor i positiv y retning. b) Finn et uttrykk for akselerasjonen til steinen. (2 poeng) Newtons andre lov: c) Finn terminalhastigheten til steinen. (3 poeng) Steinen rekker terminalhastigheten når Page 4 of 15

5 Ved tiden er steinen i ro og begynner å synke fra høyden over havbunnen. d) Skriv et program som finner den vertikale posisjonen til steinen som funksjon av tiden. Det er tilstrekkelig å ta med integrasjonsløkken. (5 poeng) På stedet hvor steinen synker er det en havstrøm. Vannet beveger seg med konstant hastighet. e) Hvordan påvirker vannbevegelsen motstandskraften? Modifiser kraftmodellen for å ta hensyn til vannets hastighet. (3 poeng) Motstandskraften er avhengig av relativhastigheten mellom steinen og vannet. f) Tegn et frilegemediagram for steinen i den nye situasjonen i havstrømmen. Angi også hastigheten til steinen og til vannet rundt steinen. (3 poeng) Page 5 of 15

6 Page 6 of 15 g) Modifiser programmet ditt for å beregne posisjonen til steinen når vannet beveger seg med konstant hastighet. Det er igjen tilstrekkelig å ta med integrasjonsløkken. (6 poeng)

7 Oppgave 4 (30 minutt) En kiste med masse settes ned på et skråplan som har en helningsvinkel. Den statiske friksjonskoeffisienten mellom kisten og overflaten til skråplanet er, den dynamiske friksjonskoeffisienten er, hvor. Vi antar først at kisten forblir i ro. a) Tegn et frilegemediagram for kisten og uttrykk alle kreftene som virker på kisten ved hjelp av,, og. (4 poeng) Gravitasjonskraft Normalkraft Friksjonskraft ( Kisten beveger seg ikke i y retning: Kisten beveger seg ikke i x retning: Page 7 of 15

8 b) Finn betingelsen for at kisten begynner å skli ned skråplanet. (4 poeng) Den statiske friksjonskraften har maksimalverdien: Kisten begynner å skli når. Vi antar at betingelsen fra b) er oppfylt og kisten sklir ned skråplanet. Du kan se bort fra luftmotstanden. c) Finn arbeidet som er gjort av friksjonskraften på kisten når den har sklidd ned en strekning (målt langs skråplanet). (3 poeng) Kisten beveger seg i positiv x retning mens kraften virker i negativ x retning. Nå må vi bruke den dynamiske friksjonskoeffisienten: Friksjonskraften gjør negativ arbeid på kisten. d) Finn den kinetiske energien og hastigheten til kisten når den har kommet til bunnen av skråplanet etter den har sklidd ned en strekning. (5 poeng) Arbeidet gjort av friksjonskraften er lik forskjellen i den mekaniske energien: Page 8 of 15

9 Oppgave 5 (60 minutt) En kloss med lengde, høyde og masse ligger på et horisontalt bord som illustrert i figure under. En kule skytes inn i toppen av klossen. Kulen har en horisontal bevegelsesmengde umiddelbart før den treffer klossen. Etter kollisjonen blir kulen hengende fast inne i klossen. Massen til kulen er så liten at den ikke endrer massen, massesenteret eller treghetsmomentet til klossen. Du kan anta at klossen ikke sklir, men roterer om punktet rett etter kollisjonen. Du k se bort fra luftmotstand. Du kan anta at klossen ikke har rotert i løpet av kollisjonen. Treghetsmomentet om en akse gjennom massesenteret i -retningen for en kloss med lengde, høyde og masse er = " ( + ). Du kan bruke vinkelen = "# og = Side + for å forenkle svarene dine hvis du ønsker. a) Finn posisjonen til massesenteret til klossen. Massesenteret befinner seg i det geometriske senteret til klossen, som er i posisjonen: = Page 9 of 15

10 b) Finn treghetsmomentet, ", til klossen om en akse langs -retningen om punktet. Treghetmomentet om massesenteret langs -aksen er ",. Vi finner treghetmomentet om punktet ved hjelp av parallell-akse teoremet. Avstanden fra massesenteret til punktet er. Da er treghetmomentet om punktet langs -aksen:, = ", + c) Finn vinkelhastigheten til klossen om punktet umiddelbart etter kollisjonen. I kollisjonen er ikke de ytre kreftene null, da det virker krefter i punktet i både horisontal og vertikal retning. Men netto kraftmoment om punktet er null, da kraftmomentet til gravitasjonskraften og normalkraften oppveier hverandre. Derfor er spinnet om punktet bevart. Spinnet før kollisjonen er: Spinnet umiddelbart etter kollisjonen er:,, =,, =, hvor er vinkelhastigheten til klossen om punktet umiddelbart etter kollisjonen. Vi finner at =, d) Finn absoluttverdien til hastigheten til massesenteret til klossen umiddelbart etter kollisjonen. Umiddelbart etter kollisjonen roterer hele legemet om punktet med vinkelhastighet. Massesenteret følger derfor en sirkelbane med radius. Hastigheten til massesenteret er = og retningen er normalt på linjen fra til massesenteret. Page 10 of 15

11 Side 9 av 11 e) Hva blir det maksimale vinkelutslaget til klossen? (Det er tilstrekkelig å finne en likning som bestemmer den maksimale, du behøver ikke løse den.). Etter kollisjonen antar vi at klossen roterer om punktet uten luftmotstand eller friksjon som motvirker rotasjonen. Kreftene som virker i punktet gjør ikke noe arbeid fordi dette punktet ikke flytter seg. Den eneste kraften som gjør arbeid på klossen er gravitasjonskraften, og denne kraften er konservativ. Energien til klossen er derfor bevart. Energien umiddelbart etter kollisjonen er 1 = + = "# sin +, 2 Energien når klossen har vinkelutslaget er 1 = + = "# sin( + ) +, 2 Klossen har maksimalt vinkelutslag når vinkelhastigheten er null, dvs når = 0, som gir 1 = "# sin +, = = "# sin( + ) 2 Slik at maksimal vinkel inntreffer når 1 "# sin( + ) = "# sin +, 2 sin( + ) = sin +,, = sin + 2"# 2"#, f) Hvor stor kan være uten at klossen tipper over? Begrunn svaret. Klossen vil tippe idet massesenteret roterer forbi, dvs. når + >. Da vil gravitasjonskraften gi et positivt kraftmoment om, og det vil ikke være noen krefter som gir et negativt kraftmoment, slik at klossen vil ha en positiv vinkelakselerasjon. Dette inntreffer altså når + >, som gir betingelsen: som gir en betingelse for :, sin + = 1 = sin + 2"#, = (1 sin ) 2"#, Page 11 of 15

12 La oss nå anta at klossen ikke tipper over. Vi ser på bevegelsen etter kollisjonen. Side 10 av 11 g) Vis at vinkelakselerasjonen til klossen om punktet er når er positiv. "# + " = " Vi finner vinkelakselerasjonen fra N2Lr om punktet. Netto kraftmoment om punktet er, = cos( + ) " siden det kun er gravitasjonskraften som bidrar kreftene som virker i har ikke noe kraftmoment om siden avstanden fra til punktet kraften virker i vil være null for disse kreftene. Fra N2Lr finner vi vinkelakselerasjonen:, = "#, == cos( + ) " slik at cos + " = " som var det vi skulle vise. Merk at dette uttrykket også viser at vinkelakselerasjonen blir null når + = og at den blir positiv når + >. h) Tenk nøye gjennom den fysiske situasjonen, beskriv hva som skjer når blir negativ, og finn et uttrykk for vinkelakselerasjonen til klossen når er negativ. Klossen vipper først opp til en maksimal, deretter vipper den ned igjen, til den ligger helt flatt på underlaget. Den kolliderer med gulvet og spretter opp igjen, men nå vil den rotere om det andre hjørnet. Hvis vi antar at den bevarer energien i kollisjonen med gulvet, vil den ha samme vinkelhastighet om punktet umiddelbart etter kollisjonen med gulvet. (Hvis du her har antatt en annen kollisjonsprosess, for eksempel en prosess som gir en reduksjon i vinkelhastighet etter kollisjonen er det greit). Den vil deretter rotere om helt til den stopper opp, og vipper tilbake, og slik vel klossen fortsette å vippe. Vi finner vinkelakselerasjonen på samme måte som ovenfor når klossen roterer om punktet, men den er nå avhengig av cos( ): og dermed er vinkelakselerasjonen, = cos( ) " = cos " " Page 12 of 15

13 hvor treghetmomentet om er det samme som om, da klossen er symmetrisk. Dersom du har valgt en annen fysisk tolkning av hva som skjer for negative, og du har innført en god modell basert på denne tolkningen, vil det også gi full uttelling. (For eksempel kan du ha antatt at klossen fortsetter å rotere om punktet, men at den deformeres når den presses ned mot underlaget slik vi så i oblig 10. Dette vil også gi full uttelling både i denne og neste deloppgave). i) Skriv et program som finner bevegelsen til klossen som funksjon av tiden. Det er tilstrekkelig å ta med integrasjonsløkken. M = 1.0; H = 1.0; L = 0.5; g = 9.8; R = sqrt((h/2)^2+(l/2)^2); phi = atan(h/l); I = (1/12)*M*(H^2+L^2) + M*R^2; time = 10.0; dt = ; n = ceil(time/dt); theta = zeros(n,1); omega = zeros(n,1); t = zeros(n,1); theta(1) = 0.0; omega(1) = 1.0; for i = 1:n-1 if (theta(i)>0.0) tau = -R*cos(phi+theta(i))*M*g; else tau = R*cos(phi-theta(i))*M*g; end alpha = tau/i; omega(i+1) = omega(i) + alpha*dt; theta(i+1) = theta(i) + omega(i+1)*dt; t(i+1) = t(i) + dt; end plot(t(1:i),(theta(1:i)+phi)*2/pi); xlabel('t') ylabel('(\theta+\phi)/(\pi/2)'); Page 13 of 15

14 Oppgave 6 (20 min). A small block is resting on the top of a large sphere. There is no friction between the block and the surface of the sphere. The block starts sliding with an infinitesimally small velocity from the top of the sphere to one side. a. Draw a free-body diagram of the block and name the forces while it is at a finite angle θ from the top. (3 points) b. Determine the speed of the block as a function of the angle θ. (4 points) The normal force is orthogonal to the direction of motion and does not do any work. Gravitation is a conservative force. We can therefore use energy conservation. If we define U = 0 in the center of the sphere: mgr = 1 2 mv2 + mgr cos θ v = 2gR(1 cos θ) c. Find the angle at which the block loses contact with the surface of the sphere. (5 points) The net force in radial direction must provide the centripetal acceleration: N mg cos θ = m v2 2gR(1 cos θ) = m R R N = mg cos θ 2mg(1 cos θ) = 3mg cos θ 2mg The block loses contact when the normal force becomes zero: θ = cos 1 ( 2 3 ) Page 14 of 15

15 Oppgave 7 (30 min). The force acting on a particle with mass m is characterized by the potential U(x) = U 0 ( b x + x b ), where U 0 and b are positive constants and the position x can only take positive values. a. Determine the force acting on the particle in the position x. (3 points) F = du dx = U 0 ( b x b ) = U 0 ( b x 2 1 b ) b. Describe the motion of the particle. How can you characterize the position x = b? (3 points) Since the force has a potential it is conservative and the mechanical energy is conserved. The particle will oscillate around the stable equilibrium point x = b. If the particle is located in the position x = b without kinetic energy it will remain there. The position x = b is therefore a stable equilibrium point. If it starts from a position x 0 < b it is accelerated in positive x direction. It will reach its maximum energy in x = b, then slow down and finally turn around at the position x = 1 x 0. The motion is then reversed and the particle moves back and forth between the same positions. c. The particle is located at the position x 0 = 1 b and released without initial velocity. Find the 2 velocity of the particle at the position x = b. (3 points) Since the force is conservative we can use energy conservation: U(x 0 ) + K(x 0 ) = U(x) + K(x) 5 2 U = 2U mv2 v = U 0 m d. How far does the particle move? (3 points) We use again energy conservation to find the position where all energy is in the form of potential energy with the same value as in x 0. U 0 ( b x + x b ) = 5 2 U 0 x bx + b2 = 0 x = 5 4 b ± b2 b 2 = 5 4 b ± 3 4 b The particle moves back and forth between the points x = 1 b and x = 2b. 2 e. In three dimensions the potential can be written as U(r ) = U 0 ( b + r ), where r = r. r b Determine the force acting on the particle in the position r. (3 points) In spherical coordinates: F = U F = U r u r = U 0 ( b r 2 1 b ) u r Page 15 of 15

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt)

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt) FYSMEK1110 Eksamensverksted 23. Mai 2018 14:15-18:00 Oppgave 1 (maks. 45 minutt) Page 1 of 9 Svar, eksempler, diskusjon og gode råd fra studenter (30 min) Hva får dere poeng for? Gode råd fra forelesere

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: Onsdag, 5. juni 2013 Tid for eksamen: kl. 9:00 13:00 Oppgavesettet er på 3 sider Vedlegg: formelark

Detaljer

Løsningsforslag Fys-mek1110 V2012

Løsningsforslag Fys-mek1110 V2012 Løsningsforslag Fys-mek1110 V01 Side 1 av 11 Oppgave 1 a) Et hjul ruller uten å skli bortover en flat, horisontal vei. Hjulet holder konstant hastighet. Tegn et frilegemediagram for hjulet. b) En lastebil

Detaljer

FYSMEK1110 Eksamensverksted 31. Mai 2017 (basert på eksamen 2004, 2013, 2014, 2015,)

FYSMEK1110 Eksamensverksted 31. Mai 2017 (basert på eksamen 2004, 2013, 2014, 2015,) YSMEK1110 Eksamensverksted 31. Mai 2017 (basert på eksamen 2004, 2013, 2014, 2015,) Oppgave 1 (2014), 10 poeng To koordinatsystemer og er orientert slik at tilsvarende akser peker i samme retning. System

Detaljer

FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014

FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014 FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014 Oppgave 1 (4 poeng) Forklar hvorfor Charles Blondin tok med seg en lang og fleksibel stang når han balanserte på stram line over Niagara fossen i 1859. Han

Detaljer

Repetisjon

Repetisjon Repetisjon 18.05.017 Eksamensverksted: Mandag, 9.5., kl. 1 16, Origo Onsdag, 31.5., kl. 1 16, Origo FYS-MEK 1110 18.05.017 1 Lorentz transformasjon ( ut) y z y z u t c t 1 u 1 c transformasjon tilbake:

Detaljer

Løsningsforslag Eksamen i Fys-mek1110/Fys-mef1110 høsten 2007

Løsningsforslag Eksamen i Fys-mek1110/Fys-mef1110 høsten 2007 Løsningsforslag Eksamen i Fys-mek0/Fys-mef0 høsten 007 Side av 9 Oppgave a) En kule ruller med konstant hastighet bortover et horisontalt bord Gjør rede for og tegn inn kreftene som virker på kulen Det

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 av 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK1110 Eksamensdag: Onsdag 6. juni 2012 Tid for eksamen: Kl. 0900-1300 Oppgavesettet er på 4 sider + formelark

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: Tirsdag, 3. juni 2014 Tid for eksamen: kl. 9:00 13:00 Oppgavesettet omfatter 6 oppgaver på 4 sider

Detaljer

Løsningsforslag. Eksamen i Fys-mek1110 våren 2011

Løsningsforslag. Eksamen i Fys-mek1110 våren 2011 Side av 5 Løsningsforslag Eksamen i Fys-mek0 våren 0 Oppgave Tarzan hopper fra en klippe og griper en liane. Han hopper horisontalt ut fra klippen med hastighet ved tiden. Lianen har massen og lengden,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 6 juni 2017 Tid for eksamen: 14:30 18:30 (4 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark Tillatte

Detaljer

Løsningsforslag Eksamen i Fys-mek1110 våren 2010

Løsningsforslag Eksamen i Fys-mek1110 våren 2010 Side av Løsningsforslag Eksamen i Fys-mek våren Oppgave (Denne oppgaven teller dobbelt) Ole og Mari vil prøve om lengdekontraksjon virkelig finner sted. Mari setter seg i sitt romskip og kjører forbi Ole,

Detaljer

Stivt legemers dynamikk

Stivt legemers dynamikk Stivt legemers dynamikk.4.4 FYS-MEK.4.4 Forelesning Tempoet i forelesningene er: Presentasjonene er klare og bra strukturert. Jeg ønsker mer bruk av tavlen og mindre bruk av powerpoint. 6 35 5 5 3 4 3

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: mars 017 Tid for eksamen: 14:30 17:30 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side av 5 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK Eksamensdag: Onsdag. juni 2 Tid for eksamen: Kl. 9-3 Oppgavesettet er på 5 sider + formelark Tillatte hjelpemidler:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 0 Eksamensdag: juni 208 Tid for eksamen: 09:00 3:00 (4 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark Tillatte

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 16 mars 2016 Tid for eksamen: 15:00 18:00 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark

Detaljer

Repetisjon

Repetisjon Repetisjon 1.5.13 FYS-MEK 111 1.5.13 1 Lorentz transformasjon x ( x t) y z y z t t 1 1 x transformasjon tilbake: omven fortegn for og bytte S og S x ( x t) y z y z t t x små hastighet : 1 og x t t x t

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO vx [m/s] vy [m/s] Side UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK Eksamensdag: 3 mars 8 Tid for eksamen: 9: : (3 timer) Oppgavesettet er på 3 sider Vedlegg: Formelark

Detaljer

Løsningsforslag Eksamen i Fys-mek1110 våren 2008

Løsningsforslag Eksamen i Fys-mek1110 våren 2008 Løsningsforslag Eksamen i Fys-mek0 våren 008 Side av 0 Oppgave a) Atwoods fallmaskin består av en talje med masse M som henger i en snor fra taket. I en masseløs snor om taljen henger to masser m > m >

Detaljer

Løsningsforslag Eksamen i Fys-mek1110 våren 2009

Løsningsforslag Eksamen i Fys-mek1110 våren 2009 Løsningsforslag Eksamen i Fys-mek våren 9 Side av 8 Oppgave a) Du skyver en kloss med konstant hastighet bortover et horisontalt bord. Identifiser kreftene på klossen og tegn et frilegemediagram for klossen.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 22 mars 2017 Tid for eksamen: 14:30 17:30 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 0 Eksamensdag: 3 juni 205 Tid for eksamen: 4:30 8:30 (4 timer) Oppgavesettet er på 5 sider Vedlegg: Formelark Tillatte

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 16 mars 2016 Tid for eksamen: 15:00 18:00 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark

Detaljer

UNIVERSITETET I OSLO. Introduksjon. Det matematisk-naturvitenskapelige fakultet 1.1

UNIVERSITETET I OSLO. Introduksjon. Det matematisk-naturvitenskapelige fakultet 1.1 Introduksjon UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Tid for eksamen: 3 timer Vedlegg: Formelark Tillatte hjelpemidler: Øgrim og Lian: Størrelser og enheter

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 0 Eksamensdag: 6 juni 0 Tid for eksamen: 4:30 8:30 (4 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark Tillatte

Detaljer

Korrigert løsningsforslag til eksamen i

Korrigert løsningsforslag til eksamen i 1 Korrigert løsningsforslag til eksamen i YS-MEK 1110 - Mekanikk / YS-ME 1110 - Mekanikk for ME / Y-ME100, torsdag 3. juni 2004 1. orståelsesspørsmål a) Kan et legeme som har konstant akselerasjon endre

Detaljer

Løsningsforslag. Eksamen i Fys-mek1110 våren !"!!!. Du kan se bort fra luftmotstand.

Løsningsforslag. Eksamen i Fys-mek1110 våren !!!!. Du kan se bort fra luftmotstand. Side av 6 Løsningsforslag Eksamen i Fys-mek0 våren 0 Oppgave Tarzan hopper fra en klippe og griper en liane. Han hopper horisontalt ut fra klippen med hastighet ved tiden. Lianen har massen og lengden,

Detaljer

Løsningsforslag til ukeoppgave 4

Løsningsforslag til ukeoppgave 4 Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 4 Oppgave 4.03 W = F s cos(α) gir W = 1, 2 kj b) Det er ingen bevegelse i retning nedover, derfor gjør ikke tyngdekraften noe arbeid. Oppgave

Detaljer

Stivt legemers dynamikk

Stivt legemers dynamikk Stivt legemers dynamikk 5.04.05 FYS-MEK 0 5.04.05 Forelesning Tempoet i forelesningene er: Presentasjonene er klare og bra strukturert. Det er bra å vise utregninger på smart-board / tavle Diskusjonsspørsmålene

Detaljer

Stivt legemers dynamikk

Stivt legemers dynamikk Stivt legemers dnamikk 3.04.03 FYS-MEK 0 3.04.03 kraftmoment: O r F O rf sin F F R r F T F sin r sin O kraftarm NL for rotasjoner: O, I for et stivt legeme med treghetsmoment I translasjon og rotasjon:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 14 juni 2019 Tid for eksamen: 14:30 18:30 (4 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark

Detaljer

A) 1 B) 2 C) 3 D) 4 E) 5

A) 1 B) 2 C) 3 D) 4 E) 5 Side 2 av 5 Oppgave 1 Hvilket av de følgende fritt-legeme diagrammene representerer bilen som kjører nedover uten å akselerere? Oppgave 2 A) 1 B) 2 C) 3 D) 4 E) 5 En lampe med masse m er hengt opp fra

Detaljer

Fagnr: FIOIA I - Dato: Antall oppgaver: 2 : Antall vedlegg: 3 - - -

Fagnr: FIOIA I - Dato: Antall oppgaver: 2 : Antall vedlegg: 3 - - - ;ag: Fysikk i-gruppe: Maskin! EkSarnensoppgav-en I består av ~- - Tillatte hjelpemidler: Fagnr: FIOIA A Faglig veileder: FO lo' Johan - Hansteen I - - - - Dato: Eksamenstidt 19. August 00 Fra - til: 09.00-1.00

Detaljer

Stivt legemers dynamikk

Stivt legemers dynamikk Stivt legemers dnamikk 3.04.04 FYS-MEK 0 3.04.04 kraftmoment: O r F O rf sin F F R r F T F sin r sin O kraftarm N for rotasjoner: O, for et stivt legeme med treghetsmoment translasjon og rotasjon: F et

Detaljer

Keplers lover. Statikk og likevekt

Keplers lover. Statikk og likevekt Keplers lover Statikk og likevekt 30.04.018 FYS-MEK 1110 30.04.018 1 Ekvivalensprinsippet gravitasjonskraft: gravitasjonell masse m m F G G r m G 1 F g G FG R Gm J J Newtons andre lov: inertialmasse m

Detaljer

Øving 2: Krefter. Newtons lover. Dreiemoment.

Øving 2: Krefter. Newtons lover. Dreiemoment. Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 2007. Veiledning: 15. september kl 12:15 15:00. Øving 2: Krefter. Newtons lover. Dreiemoment. Oppgave 1 a) Du trekker en kloss bortover et friksjonsløst

Detaljer

Obligatorisk oppgave i fysikk våren 2002

Obligatorisk oppgave i fysikk våren 2002 Obligatorisk oppgave i fysikk våren 2002 Krav til godkjenning av oppgaven: Hovedoppgave 1 kinematikk Hovedoppgave 2 dynamikk Hovedoppgave 3 konserveringslovene Hovedoppgave 4 rotasjonsbevegelse og svigninger

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 av 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK111 Eksamensdag: Mandag 22. mars 21 Tid for eksamen: Kl. 15-18 Oppgavesettet er på 4 sider + formelark Tillatte

Detaljer

EKSAMENSOPPGAVE. Dato: Fredag 01. mars 2013. Tid: Kl 09:00 13:00. Administrasjonsbygget B154

EKSAMENSOPPGAVE. Dato: Fredag 01. mars 2013. Tid: Kl 09:00 13:00. Administrasjonsbygget B154 side 1 av 6 sider FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE Eksamen i: FYS-1001 Mekanikk Dato: Fredag 01. mars 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget B154 Tillatte hjelpemidler:

Detaljer

LØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017

LØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017 LØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017 Oppgave 1 a) Bruker bevaring av bevegelsesmengde i - og y-retning og velger positiv -akse mot høyre og positiv y-akse oppover, og lar vinkelen være = 24. Dekomponerer

Detaljer

Løsningsforslag til øving 3: Impuls, bevegelsesmengde, energi. Bevaringslover.

Løsningsforslag til øving 3: Impuls, bevegelsesmengde, energi. Bevaringslover. Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 2007. Veiledning: 22. september kl 12:15 15:00. Løsningsforslag til øving 3: Impuls, bevegelsesmengde, energi. Bevaringslover. Oppgave 1 a)

Detaljer

Krefter, Newtons lover, dreiemoment

Krefter, Newtons lover, dreiemoment Krefter, Newtons lover, dreiemoment Tor Nordam 13. september 2007 Krefter er vektorer En ting som beveger seg har en hastighet. Hastighet er en vektor, som vi vanligvis skriver v. Hastighetsvektoren har

Detaljer

EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK

EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Norges teknisk-naturvitenskapelige universitet Institutt for fysikk BOKMÅL Oppgaver og formler på 5 vedleggsider EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato: Tirsdag 11 desember

Detaljer

EKSAMENSOPPGAVE I FYS-1001

EKSAMENSOPPGAVE I FYS-1001 side 1 av 6 sider FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE I FYS-1001 Eksamen i : Fys-1001 Mekanikk Eksamensdato : 06.12.2012 Tid : 09.00-13.00 Sted : Åsgårdvegen 9 Tillatte hjelpemidler

Detaljer

TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 2.

TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 2. TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 2. Oppgave 1 Nettokraften pa en sokk som sentrifugeres ved konstant vinkelhastighet pa vasketrommelen er A null B rettet radielt utover C rettet radielt

Detaljer

SG: Spinn og fiktive krefter. Oppgaver

SG: Spinn og fiktive krefter. Oppgaver FYS-MEK1110 SG: Spinn og fiktive krefter 04.05.017 Oppgaver 1 GYROSKOP Du studerer bevegelsen til et gyroskop i auditoriet på Blindern og du måler at presesjonsbevegelsen har en vinkelhastighet på ω =

Detaljer

Impuls, bevegelsesmengde, energi. Bevaringslover.

Impuls, bevegelsesmengde, energi. Bevaringslover. Impuls, bevegelsesmengde, energi. Bevaringslover. Kathrin Flisnes 19. september 2007 Bevegelsesmengde ( massefart ) Når et legeme har masse og hastighet, viser det seg fornuftig å definere legemets bevegelsesmengde

Detaljer

EKSAMENSOPPGA VE. Fagnr: FO 44JA Dato: Antall oppgaver:

EKSAMENSOPPGA VE. Fagnr: FO 44JA Dato: Antall oppgaver: Høgsko/l'n imm m Avdeling for ingeniørutdanning EKSAMENSOPPGA VE Fag: FYSIKK / TERMODYNAMIKK Gruppe(r) KA,3K Eksamensoppgaven består av Tillatte hjelpemidler: Antall sider inkl forside: 7 Fagnr: FO 44JA

Detaljer

6. Rotasjon. Løsning på blandede oppgaver.

6. Rotasjon. Løsning på blandede oppgaver. 6 otasjon Løsninger på blandede oppgaver ide 6-6 otasjon Løsning på blandede oppgaver Oppgave 6: O tanga har lengde L m Når stanga dreies fra horisontal til vertikal stilling, synker massesenteret en høyde

Detaljer

F B L/2. d A. mg Mg F A. TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 6. Oppgave 1

F B L/2. d A. mg Mg F A. TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 6. Oppgave 1 TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2016. Løsningsforslag til øving 6. Oppgave 1 L/2 d A F A B F B L mg Stupebrettet er i ro, dvs vi har statisk likevekt. Det betyr at summen av alle krefter

Detaljer

LØSNINGSFORSLAG EKSAMEN FYS120 VÅR 2017

LØSNINGSFORSLAG EKSAMEN FYS120 VÅR 2017 LØSNINGSFORSLAG EKSAMEN FYS120 VÅR 2017 Oppgave 1 a) Bruker bevaring av bevegelsesmengde i - og y-retning og velger positiv -akse mot høyre og positiv y-akse oppover, og lar vinkelen være = 24. Dekomponerer

Detaljer

Fysikkolympiaden Norsk finale 2018 Løsningsforslag

Fysikkolympiaden Norsk finale 2018 Løsningsforslag Fysikkolympiaden Norsk finale 018 øsningsforslag Oppgave 1 Det virker tre krefter: Tyngden G = mg, normalkrafta fra veggen, som må være sentripetalkrafta N = mv /R og friksjonskrafta F oppover parallelt

Detaljer

Newtons lover i én dimensjon (2)

Newtons lover i én dimensjon (2) Newtons lover i én dimensjon () 1..16 YS-MEK 111 1..16 1 Identifikasjon av kreftene: 1. Del problemet inn i system og omgivelser.. Tegn figur av objektet og alt som berører det. 3. Tegn en lukket kurve

Detaljer

Arbeid mot gravitasjon mekanisk energi (lærerveiledning)

Arbeid mot gravitasjon mekanisk energi (lærerveiledning) Arbeid mot gravitasjon mekanisk energi (lærerveiledning) Vanskelighetsgrad: Middels, noe vanskelig Short English summary In this exercise we shall measure the work (W) done when a small cart is lifted

Detaljer

EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato: Torsdag 11. desember 2008 Eksamenstid: 09:00-13:00

EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato: Torsdag 11. desember 2008 Eksamenstid: 09:00-13:00 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk BOKMÅL Eksamensteksten består av 6 sider inklusiv denne frontsida EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato:

Detaljer

Friksjonskraft - hvilefriksjon og glidefriksjon (lærerveiledning)

Friksjonskraft - hvilefriksjon og glidefriksjon (lærerveiledning) Friksjonskraft - hvilefriksjon og glidefriksjon (lærerveiledning) Vanskelighetsgrad: liten Short English summary This exercise shows a study of the friction between a small wooden block and a horizontal

Detaljer

Newtons lover i én dimensjon (2)

Newtons lover i én dimensjon (2) Newtons lover i én dimensjon () 3.1.17 Innlevering av oblig 1: neste mandag, kl.14 Devilry åpner snart. Diskusjoner på Piazza: https://piazza.com/uio.no/spring17/fysmek111/home Gruble-gruppe i dag etter

Detaljer

Kap Rotasjon av stive legemer

Kap Rotasjon av stive legemer Kap. 9+10 Rotasjon av stive legemer Vi skal se på: Vinkelhastighet, vinkelakselerasjon (rep) Sentripetalakselerasjon, baneakselerasjon (rep) Rotasjonsenergi E k Treghetsmoment I Kraftmoment τ Rulling Spinn

Detaljer

Newtons 3.lov. Kraft og motkraft. Kap. 4+5: Newtons lover. kap Hvor er luftmotstanden F f størst? F f lik i begge!!

Newtons 3.lov. Kraft og motkraft. Kap. 4+5: Newtons lover. kap Hvor er luftmotstanden F f størst? F f lik i begge!! TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. 2+3). (Rekapitulasjon) Newtons lover (kap. 4+5) Energi, bevegelsesmengde, kollisjoner (kap. 6+7+8) Rotasjon, spinn

Detaljer

Kap. 6+7 Arbeid og energi. Energibevaring.

Kap. 6+7 Arbeid og energi. Energibevaring. TFY4145/FY11 Mekanisk fysikk Størrelser og enheter (Kap 1) Kinematikk i en, to og tre dimensjoner (Kap. +3) Posisjon, hastighet, akselerasjon. Sirkelbevegelse. Dynamikk (krefter): Newtons lover (Kap. 4)

Detaljer

Rotasjon: Translasjon: F = m dv/dt = m a. τ = I dω/dt = I α. τ = 0 => L = konstant (N1-rot) stivt legeme om sym.akse: ω = konst

Rotasjon: Translasjon: F = m dv/dt = m a. τ = I dω/dt = I α. τ = 0 => L = konstant (N1-rot) stivt legeme om sym.akse: ω = konst Translasjon: Rotasjon: Bevegelsesmengde (linear momentum): p = m v Spinn (angular momentum): L = r m v L = I ω Stivt legeme om sym.akse N2-trans: F = dp/dt Stivt legeme (konst. m): F = m dv/dt = m a N2-rot

Detaljer

Oppsummert: Kap 1: Størrelser og enheter

Oppsummert: Kap 1: Størrelser og enheter Oppsummert: Kap 1: Størrelser og enheter s = 3,0 m s = fysisk størrelse 3,0 = måltall = {s} m = enhet = dimensjon = [s] OBS: Fysisk størrelse i kursiv (italic), enhet opprettet (roman) (I skikkelig teknisk

Detaljer

Kap Rotasjon av stive legemer

Kap Rotasjon av stive legemer Kap. 9+10 Rotasjon av stive legemer Vi skal se på: Vinkelhastighet, vinkelakselerasjon (rask rekap) Sentripetalakselerasjon, baneakselerasjon (rask rekap) Rotasjonsenergi E k Treghetsmoment I Kraftmoment

Detaljer

Løsningsforslag Eksamen i Fys-mek1110 våren 2008

Løsningsforslag Eksamen i Fys-mek1110 våren 2008 Side 1 av 11 Løsningsforslag Eksamen i ys-mek111 våren 8 Oppgave 1 Vi skal i denne oppgaven studere bevegelsen til en (fugle-)fjær i en tornado. Vi begynner med å finne ut hvordan vi kan modellere fjæras

Detaljer

Aristoteles (300 f.kr): Kraft påkrevd for å opprettholde bevegelse. Dvs. selv UTEN friksjon må oksen må trekke med kraft S k

Aristoteles (300 f.kr): Kraft påkrevd for å opprettholde bevegelse. Dvs. selv UTEN friksjon må oksen må trekke med kraft S k TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. 2+3). (Rekapitulasjon) Newtons lover (kap. 4+5) Energi, bevegelsesmengde, kollisjoner (kap. 6+7+8) Rotasjon, spinn

Detaljer

Sykloide (et punkt på felgen ved rulling)

Sykloide (et punkt på felgen ved rulling) Kap. 9+10 Rotasjon av stive legemer Vi skal se på: Vinkelhastighet, vinkelakselerasjon (rep) Sentripetalakselerasjon, baneakselerasjon (rep) Rotasjonsenergi E k Treghetsmoment I Kraftmoment τ Spinn (dreieimpuls):

Detaljer

Arbeid mot friksjon 1 (lærerveiledning)

Arbeid mot friksjon 1 (lærerveiledning) Arbeid mot friksjon 1 (lærerveiledning) Vanskelighetsgrad: Liten, middels Short English summary In this exercise we shall measure the work (W) done when a constant force (F) pulls a block some distance

Detaljer

Norges Informasjonstekonlogiske Høgskole

Norges Informasjonstekonlogiske Høgskole Oppgavesettet består av 10 (ti) sider. Norges Informasjonstekonlogiske Høgskole RF3100 Matematikk og fysikk Side 1 av 10 Tillatte hjelpemidler: Kalkulator, vedlagt formelark Varighet: 3 timer Dato: 11.desember

Detaljer

Newtons lover i én dimensjon (2)

Newtons lover i én dimensjon (2) Newtons lover i én dimensjon () 7.1.14 oblig #1: prosjekt 5. i boken innlevering: mandag, 3.feb. kl.14 papir: boks på ekspedisjonskontoret elektronisk: Fronter data verksted: onsdag 1 14 fredag 1 16 FYS-MEK

Detaljer

Universitetet i Agder Fakultet for helse- og idrettsvitenskap EKSAMEN. Time Is)

Universitetet i Agder Fakultet for helse- og idrettsvitenskap EKSAMEN. Time Is) Universitetet i Agder Fakultet for helse- og idrettsvitenskap EKSAMEN Emnekode: IDR104 Emnenavn: BioII,del B Dato: 22 mai 2011 Varighet: 3 timer Antallsider inkl.forside 6 Tillatte hjelpemidler: Kalkulator.Formelsamlingi

Detaljer

Kap Rotasjon av stive legemer

Kap Rotasjon av stive legemer Kap. 9+10 Rotasjon av stive legemer Vi skal se på: Vinkelhastighet, vinkelakselerasjon (rask rekap) Sentripetalakselerasjon, baneakselerasjon (rask rekap) Rotasjonsenergi E k Treghetsmoment I Kraftmoment

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Obligatorisk numerikkøving. Innleveringsfrist: Søndag 13. november kl

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Obligatorisk numerikkøving. Innleveringsfrist: Søndag 13. november kl TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2016. Obligatorisk numerikkøving. Innleveringsfrist: Søndag 13. november kl 23.9. Volleyball på kvartsirkel Kvalitativ beskrivelse φ f r+r N Mg R Vi er

Detaljer

Bachelor i idrettsvitenskap med spesialisering i idrettsbiologi 2014/2016. Utsatt individuell skriftlig eksamen. IBI 240- Basal biomekanikk

Bachelor i idrettsvitenskap med spesialisering i idrettsbiologi 2014/2016. Utsatt individuell skriftlig eksamen. IBI 240- Basal biomekanikk Bachelor i idrettsvitenskap med spesialisering i idrettsbiologi 14/16 Utsatt individuell skriftlig eksamen i IBI 4- Basal biomekanikk Torsdag 6. februar 15 kl. 1.-13. Hjelpemidler: kalkulator formelsamling

Detaljer

TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 6.

TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 6. TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 6. Oppgave 1 Figuren viser re like staver som utsettes for samme ytre kraft F, men med ulike angrepspunkt. Hva kan du da si om absoluttverdien A i til akselerasjonen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 0 Eksamensdag: 3 juni 205 Tid for eksamen: 4:30 8:30 (4 timer) Oppgavesettet er på 5 sider Vedlegg: Formelark Tillatte

Detaljer

EKSAMENSOPPGAVE Njål Gulbrandsen / Ole Meyer /

EKSAMENSOPPGAVE Njål Gulbrandsen / Ole Meyer / Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: FYS-1001 Mekanikk Dato: 21.2.2017 Klokkeslett: 09:00 13:00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Fire A4-sider (to dobbeltsidige

Detaljer

Newtons lover i én dimensjon

Newtons lover i én dimensjon Newtons lover i én dimensjon 3.01.018 snuble-gruppe i dag, kl.16:15-18:00, Origo FYS-MEK 1110 3.01.018 1 Hva er kraft? Vi har en intuitivt idé om hva kraft er. Vi kan kvantifisere en kraft med elongasjon

Detaljer

Newtons lover i én dimensjon (2)

Newtons lover i én dimensjon (2) Newtons lover i én dimensjon () 0.0.015 oblig #1: innlevering: mandag, 9.feb. kl.1 papir: boks på ekspedisjonskontoret elektronisk: Devilry (ikke ennå åpen) YS-MEK 1110 0.0.015 1 Identifikasjon av kreftene:

Detaljer

Høgskolen i Agder Avdeling for EKSAMEN

Høgskolen i Agder Avdeling for EKSAMEN Høgskolen i Agder Avdeling for EKSAMEN Emnekode: FYS101 Emnenavn: Mekanikk Dato: 08.1.011 Varighet: 0900-1300 Antall sider inkl. forside 6 sider illatte hjelpemidler: Lommekalkulator uten kommunikasjon,

Detaljer

EKSAMENSOPPGAVE. To dobbeltsidige ark med notater. Stian Normann Anfinsen

EKSAMENSOPPGAVE. To dobbeltsidige ark med notater. Stian Normann Anfinsen Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: FYS-1001 Mekanikk Dato: Onsdag 28. februar 2018 Klokkeslett: 09:00 13:00 Sted: Administrasjonsbygget, 1. etg., rom B.154 Tillatte hjelpemidler:

Detaljer

2,0atm. Deretter blir gassen utsatt for prosess B, der. V 1,0L, under konstant trykk P P. P 6,0atm. 1 atm = 1,013*10 5 Pa.

2,0atm. Deretter blir gassen utsatt for prosess B, der. V 1,0L, under konstant trykk P P. P 6,0atm. 1 atm = 1,013*10 5 Pa. Oppgave 1 Vi har et legeme som kun beveger seg langs x-aksen. Finn den gjennomsnittlige akselerasjonen når farten endres fra v 1 =4,0 m/s til v = 0,10 m/s i løpet av et tidsintervall Δ t = 1,7s. a) = -0,90

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 6. MgL + F B d. M + m

TFY4104 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 6. MgL + F B d. M + m TFY4104 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 6. Ogave 1 L/ d A F A B F B L mg Stuebrettet er i ro, dvs vi har statisk likevekt. Det betyr at summen av alle krefter i vertikal retning

Detaljer

Løsningsforslag til ukeoppgave 2

Løsningsforslag til ukeoppgave 2 Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 2 Oppgave 2.15 a) F = ma a = F/m = 2m/s 2 b) Vi bruker v = v 0 + at og får v = 16 m/s c) s = v 0 t + 1/2at 2 gir s = 64 m Oppgave 2.19 a) a =

Detaljer

Repetisjonsoppgaver kapittel 0 og 1 løsningsforslag

Repetisjonsoppgaver kapittel 0 og 1 løsningsforslag Repetisjonsoppgaver kapittel 0 og løsningsforslag Kapittel 0 Oppgave a) Gjennomsnittet er summen av måleverdiene delt på antallet målinger. Summen av målingene er,79 s. t sum av måleverdiene antallet målinger,79

Detaljer

Newtons lover i én dimensjon

Newtons lover i én dimensjon Newtons lover i én dimensjon.01.014 Interessert å være studentrepresentant for YS-MEK kurset? ta kontakt med meg. YS-MEK 1110.01.014 1 Bok på bordet Gravitasjon virker på boken om den ligger på bordet

Detaljer

Fiktive krefter. Gravitasjon og ekvivalensprinsippet

Fiktive krefter. Gravitasjon og ekvivalensprinsippet iktive krefter Gravitasjon og ekvivalensprinsippet 09.05.016 YS-MEK 1110 09.05.016 1 Sentrifugalkraft inertialsystem S f G N friksjon mellom passasjer og sete sentripetalkraft passasjer beveger seg i en

Detaljer

Kinematikk i to og tre dimensjoner

Kinematikk i to og tre dimensjoner Kinematikk i to og tre dimensjoner 2.2.217 Innleveringsfrist oblig 1: Mandag, 6.eb. kl.14 Innlevering kun via: https://devilry.ifi.uio.no/ Mulig å levere som gruppe (i Devilry, N 3) Bruk gjerne Piazza

Detaljer

BACHELOR I IDRETTSVITENSKAP MED SPESIALISERING I IDRETTSBIOLOGI 2011/2013. Individuell skriftlig eksamen i IBI 225- Fysikk og målinger

BACHELOR I IDRETTSVITENSKAP MED SPESIALISERING I IDRETTSBIOLOGI 2011/2013. Individuell skriftlig eksamen i IBI 225- Fysikk og målinger BACHELOR I IDRETTSVITENSKAP MED SPESIALISERING I IDRETTSBIOLOGI 2011/2013 Individuell skriftlig eksamen i IBI 225- Fysikk og målinger Onsdag 30. november 2011 kl. 10.00-12.00 Hjelpemidler: kalkulator Formelsamling

Detaljer

Aristoteles (300 f.kr): Kraft påkrevd for å opprettholde bevegelse. Dvs. selv UTEN friksjon må oksen trekke med kraft R O =S k

Aristoteles (300 f.kr): Kraft påkrevd for å opprettholde bevegelse. Dvs. selv UTEN friksjon må oksen trekke med kraft R O =S k TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. 2+3). (Rekapitulasjon) Newtons lover (kap. 4+5) Energi, bevegelsesmengde, kollisjoner (kap. 6+7+8) Rotasjon, spinn

Detaljer

r+r TFY4104 Fysikk Eksamenstrening: Løsningsforslag

r+r TFY4104 Fysikk Eksamenstrening: Løsningsforslag TFY4104 Fysikk Eksamenstrening: Løsningsforslag 1) I oljebransjen tilsvarer 1 fat ca 0.159 m 3. I går var prisen for WTI Crude Oil 97.44 US dollar pr fat. Hva er dette i norske kroner pr liter, når 1 NOK

Detaljer

Kinematikk i to og tre dimensjoner

Kinematikk i to og tre dimensjoner Kinematikk i to og tre dimensjoner 4.2.216 Innleveringsfrist oblig 1: Tirsdag, 9.eb. kl.18 Innlevering kun via: https://devilry.ifi.uio.no/ Devilry åpnes snart. YS-MEK 111 4.2.216 1 v [m/s] [m] Eksempel:

Detaljer

TFY4106_M2_V2019 1/6

TFY4106_M2_V2019 1/6 1/6 rstatt denne teksten med ditt innhold... 1 n bil kjører på en rett vei. ilens posisjon ved tidspunktet er gitt ved funksjonen med m/s og s. Hvor langt kjører bilen før den snur? 12.4 m 14.4 m 16.4

Detaljer

Newtons lover i én dimensjon

Newtons lover i én dimensjon Newtons lover i én dimensjon 6.01.017 YS-MEK 1110 6.01.017 1 Hva er kraft? Vi har en intuitivt idé om hva kraft er. Vi kan kvantifisere en kraft med elongasjon av en fjær. YS-MEK 1110 6.01.017 Bok på bordet

Detaljer

TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 5.

TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 5. TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 5. Oppgave 1 CO 2 -molekylet er linert, O = C = O, med CO bindingslengde (ca) 1.16 A. (1 A = 10 10 m.) Praktisk talt hele massen til hvert atom er samlet

Detaljer

Kap. 9+10 Rotasjon av stive legemer

Kap. 9+10 Rotasjon av stive legemer Kap. 9+10 Rotasjon a stie legemer Vi skal se på: Vinkelhastighet, inkelakselerasjon (rask rekap) Sentripetalakselerasjon, baneakselerasjon (rask rekap) Rotasjonsenergi E k Treghetsmoment I Kraftmoment

Detaljer

Løsningsforslag for øvningsoppgaver: Kapittel 4

Løsningsforslag for øvningsoppgaver: Kapittel 4 Løsningsforslag for øvningsoppgaver: Kapittel 4 Jon Walter Lundberg.0.05 4.04 Kari og Per trekker i hver sin ende av et tau. Per får en stund godt tak og trekker tauet og Kari etter seg med konstant fart.

Detaljer

Arbeid og energi. Energibevaring.

Arbeid og energi. Energibevaring. Arbeid og energi. Energibevaring. Arbeid = dw = F ds Kinetisk energi E k = ½ m v 2 Effekt = arbeid/tid = P = dw /dt Arbeid på legeme øker E k : Potensiell energi E p (x,y,z) dw = de k (Tyngdefelt: E p

Detaljer

Løsningsforslag. Midtveiseksamen i Fys-Mek1110 våren 2008

Løsningsforslag. Midtveiseksamen i Fys-Mek1110 våren 2008 Side av Løsningsforslag idtveiseksaen i Fys-ek våren 8 Oppgave a) En roer sitter i en båt på vannet og ror ed konstant fart. Tegn et frilegeediagra for roeren, og navngi alle kreftene. Suen av kreftene

Detaljer