Forelesning nr.1 INF 1410

Størrelse: px
Begynne med side:

Download "Forelesning nr.1 INF 1410"

Transkript

1 1 Forelesning nr.1 INF 1410 Kursoversikt Kretsanalyse, basiskomponenter og strøm- og spenningslover

2 Dagens temaer Organisering av kurset INF 1410 Bakgrunn 2 og motivasjon Læringsmål for kurset og oversikt over temaer og innhold Kretsanalyse og electrical engineering (Kapittel 1 og 2)

3 Organisering av kurset Forelesningsplan ligger på kursets hjemmeside Forelesninger 2 dobbelttimer annenhver uke Regneøvelser 2 dobbelttimer annenhver uke Avvik kan forekomme, sjekk forelesningsplan jevnlig labøvelser/obliger Gyldig ett semester (kun bestått/ikke-bestått) Alle labøvelser/obliger må være bestått for å ta eksamen Labøvelsene er blanding av teori og praksis Siden Utføres normalt to og to dette er et nytt kurs, kan det forkomme mer endringer underveis enn normalt

4 Bakgrunn Elektrisitet Dagens og elektronikk danner grunnlaget for det 20. århundrets industrielle revolusjon (ihvertfall svært viktig). samfunn utenkelig uten elektronikk: Vanlig 4 Datamaskiner, husholdningsapparater, biler, båter, medisinsk utstyr, våpen, musikkgjengivelse, foto, film, fly, tog, mobiltelefoner, sparepærer... å skille mellom digital og analog elektronikk Digital elektronikk: Bruker to (diskrete) verdier: 0 og 1 Digital Analog elektronikk: Verdier er kontinuerlige (uendelig mange) elektronikk er derfor en spesiell type analog elektronikk

5 Bakgrunn (forts) Man kan designe digitale elektroniske systemer uten spesiell innsikt i analog elektronikk: 5 Benytter velprøvde og standardisterte moduler og byggeblokker Designer på et høyere abstraksjonsnivå MEN For å bygge de minste digitale byggeblokkene må man arbeide på analognivå Stadig raskere digitale kretser oppfører seg mer og mer som analoge kretser Verden er analog (består av uendelig mange verdier), ikke digital (dvs ikke bare 0 og 1)

6 Hvorfor kurs i kretsanalyse? Kurset Kurset gir en innføring i fagområdet analog elektronikk og kretsanalyse danner grunnlag for Å forstå hvordan elektroniske kretser (både analoge og digitale) fungerer 6 Kunne designe egne kretser, både analige og digitale For Forstå generelle metoder og verktøy som anvendes i bla signalbehandling å gjøre problemene mer håndterlige (dvs løsbare), benyttes i stor grad lineære modeller og metoder Mye er om hva dette innebærer underveis i kurset.

7 Læringsmål og temaer for kurset Innføring Forstå Forstå i fagområdet analog elektronikk og kretsanalyse 7 Kunne Lære sammenhengen mellom fysiske enheter, som ladning, strøm, spenning, motstand etc virkemåten til basiskomponenter som motstander, kondensatorer, spoler, operasjonsforsterkere etc. analysere og bestemme virkemåten til elektriske kretser ulike teknikker for analyse i tids- og frekvensplanet

8 Læringsmål og temaer for kurset (forts) Kjennskap Forstå Skjønne Kretstopologier: til relevante fysiske enheter: Strøm, spenning, ladning, effekt fysiske lover for strøm og spenning: Ohm, Kirchoff 8 Analyseteknikker Operasjonsforsterker: forskjellen mellom linearitet og ikke-linearitet Noder, stier, løkker, grener, serie, parallell og -prinsipper: Node, mesh, superposisjon, Thévenin, Norton Funksjon, virkemåte

9 Læringsmål og temaer for kurset (forts) Kondensatorer Kretser og spoler: Funksjon, virkemåte i tids- og frekvensdomenet 9 Introduksjon med resistans-kondensator (RC) og resistansspole (RL) til Laplace-transform og Fourieranalyse Det vil være vekt på passive komponenter og lineære modeller i kurset INF 1410

10 Noen viktige begreper Electrical engineering Fagfeltet som omhandler realisering av elektriske kretser Analyse: Design: Elektrisk og elektronisk er ikke presise begreper 10 Modell: Finne ut hvordan noe fungerer Lage noe med en en bestem funksjon eller oppførsel Abstraksjon eller forenkling av en fysisk enhet eller - fenomen Mål: Kreves både for å analysere og designe Løse praktisk problem og/eller sjekke at forslag til løsning fungerer

11 Hvorfor begrense til lineære kretser? En modell er en (matematisk) beskrivelse av et fysisk fenomen eller objekt Generelle modeller er som regel svært kompliserte matematisk Lineære modeller er mye enklere å håndtere Gir ofte god nok tilnærming og presisjon Mer om konsekvensene av dette senere i kurset 9,00 7,00 8, ,00 7,00 6,00 5,00 5,00 current current 4,00 4,00 3,00 3,00 2,00 1,00 2,00 1,00 0,00 0,00 1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00 0,00 2,00 4,00 6,00 8,00 10,00 voltage voltage

12 Ulike typer signalanalyse Hensikten med signalanalyse er å forutsi hva utsignalet for en krets er, gitt et bestemt innsignal: Innsignal Utsignal Krets Ofte Analysemetode er man interessert i å vite hvordan kretsen oppfører seg for en bestemt type innsignal eller betingelser bestemmes da ut fra type innsignal 12

13 Ulike typer signalanalyse (forts) Skal ta for oss 4 ulike inngangssignaler: Direct Current (DC): Inngangssignalet er konstant og varierer ikke over tid Impuls: Inngangssignalet endrer brått verdi, og faller så tilbake til den opprinnelige verdien 13 Sinusformet: Inngangssignalet varierer over tid som et sinussignal med fast frekvens og amplitude Ikke Alternating Current (AC): Innsignalet er sammensatt av flere sinussignaler med ulik amplitude og frekvens alle signaltypene vil gjennomgås like grundig

14 Elektriske størrelser og enheter 7 basisenheter: Meter lengde Kilogram masse 14 Sekund tid Ampere elektrisk strøm Kelvin temperatur Mol materie Andre Candela lys grunnleggende fysiske enheter avledes fra disse

15 Ladning Elektrisk Elektrisk 1 Et Konstant ladning kan enten være positiv (proton) eller negativ (elektron) ladning måles i coulomb (C) 15 Tidsvariable ampere tilsvarer 1 coulomb som passerer et vilkårlig tverrsnitt i en elektrisk leder i løpet av 1 sekund elektron har en ladning på x10-19 C, og et proton har en ladning på x10-19 C ladning benevnes med Q ladning benevnes med q(t) eller q

16 Strøm 16 Strøm Strøm Gitt Symbolet Symbolet Sammenhengen er ladning i bevegelse eller overføring av ladning har både en verdi og en retning (vektor) et referansepunkt, måler strøm med hvilken rate ladninger passerer forbi punktet i øyeblikket for en konstant (tidsinvariant) strøm er I for tidsvariabel strøm er i(t) eller i mellom ladning og strøm (øyeblikksverdien) er gitt av i= dq dt

17 Strøm (forts.) Den totale ladningen som overføres mellom t 0 og t: q(t) = q(t ) dq t t 0 0 i dt' mens den den totale ladningen siden tidenes morgen er q(t) = t idt' + hvor q(t) er ladningen som ble overført frem til t 0 17 t 0 q(t 0 )

18 Strøm (forts.) Strøm har alltid en retning som angis ved en pil 18-2 A 2 A Begge figurer angir samme strømstyrke og retning Tidlig mente man at strøm skyldtes positive ladninger i bevegelse, men det er negative ladninger (elektroner) i bevegelse som gir strøm

19 Energi og effekt Energi Energi kan defineres som evnen til å utføre arbeid måles i joule (J) og er uttrykt ved basisenhetene J= = kg s 19 2 m 2 Effekt Effekt måles i watt (W) og defineres som arbeid per tidsenhet kan uttrykkes som W= J s

20 20 Spenning For Potensialforskjell Spenning at ladninger skal bevege seg mellom a og b, må det være en potensialforskjell mellom a og b. eller spenning er et mål på arbeidet som kreves for å flytte ladinger fra a til b måles i volt som er definert ved V= J C

21 Spenning (forts) Spenning har både verdi og polaritet (retning) og måles mellom endepunkter (terminaler) A + A - Terminal A er v=2v v=-2v B B - Terminal A er 2V postitiv mhp terminal B + 21 Terminal A er 2V postitiv mhp terminal B + A v=-2v B - Terminal A er 2V negativ mhp terminal B A B - v=2v + Terminal A er 2V negativ mhp terminal B

22 Effekt, spenning og strøm Når en elektrisk strøm i går gjennom et kretselement med spenning v mellom terminalene, er effekten gitt ved p = i 22 v dvs at effekten er proporsjonal med både i og v Effekten kan både være positiv og negativ: Positiv: Elementet absorberer effekten Negativ: Elementet leverer effekten

23 Effekt, spenning og strøm (forts) Avhengig av polaritet og strømretning vil elementet K enten absorbere eller levere effekt: A B + i=3a + i=3a 23 A B v=2v Elementet K K bruker 6W K i=3a v=2v Elementet K K leverer-6w A B A B v=2v Elementet K leverer 6W - + v=2v Elementet K K bruker-6w - i=3a

24 Spørsmål del 1 Gitt at den totale ladningen akkumulert av en enhet er gitt av 2 4 q = 18t 2t - 1) Hva er den totale ladningen som er akkumulert ved t=2? 24-2) Ved hvilke(t) tidspunkt er den akkumulerte ladningen maksimal, og ved hvilke(t) er den minimal?

25 25 Er Spørsmål del 2 A positiv eller negativ i forhold til B? A v = -5V A -v = 5V + B B - A v = -5V B - + A -v = -5V B + -

26 Absorberer Spørsmål del 3 eller leverer elementet effekt? A v = -2V A -v = 5V 26 + B B - i=-3a i=3a A v = -5V B - + A -v = -5V B i=-3a i=-3a + -

27 Ulike typer kretselementer Et Modellen Alle (krets)element er en matematisk modell for en fysisk enhet 27 Skiller kan være enkel eller komplisert, avhengig av anvendelse og krav til presisjon, starter med de enkle. elementene klassifiseres ut fra strøm-spenning forholdet mellom terminalene mellom aktive og passive elementer Passive elementer kan ikke levere effekt > 0 over tid Aktive elementer kan levere levere effekt >0 over tid

28 Passive kretselementer - resistor Resistor: Spenningen over er lineært proporsjonal i forhold til strømmen gjennom elementet: Kretssymbolet v = R 28 for resistor er i Resistor Proporsjonalitetsfaktoren kalles også for ohmsk motstand eller bare motstand hvis det ikke kan misforstås R kalles resistans

29 Ohms lov Ohms lov gir sammenhengen mellom strøm, spenning og resistans: v = R i 29 Dette Fysiske R Varierende gir lineær sammenheng mellom strøm og spenning, forutsatt konstant R. motstander er kun lineære innenfor begrensede verdier av strøm, spenning og effekt varierer med temperatur, trykk, fuktighet, tid, lys, stråling etc. R utnyttes bla. i måleinstrumenter

30 Ohms lov, effekt og konduktans Det motsatte av resistans er konduktans (ledningsevne), enheten er S (Siemens) i G = = v 1 R Effekten som absorberes av en resistor uttrykkes ved p = v 30 i = i 2 R = R v 2 = v 2 G = 2 i G

31 Passive kretselementer - kondensator Kondensator: Spenningen over er proporsjonal med den intgrerte mhp tid av strømmen gjennom elementet: v 1 = idt C Kretssymbolene for er en kondensator er + - Proporsjonalitetsfaktoren C kalles for kapasitans 31

32 Passive kretselementer - induktor Induktor Kretssymbolet (spole): Spenningen over er proporsjonal med den deriverte mhp tid av strømmen gjennom elementet: v=l di dt er en induktor er Proporsjonalitetsfaktoren L kalles for induktans 32

33 Aktive kretselementer To hovedtyper: Strømkilder Kildene Spenningskilder kan enten være uavhengige eller avhengige: 33 Uavhengige: Leverer strøm eller spenning uavhengig av spenningen over eller strømmen gjennom dem Definisjonene Fysiske Avhengige: Leverer strøm eller spenning som er avhengig av strøm/spenning et annet sted i kretsen over gjelder ideelle kilder. kilder leverer strøm/spenning som påvirkes av spenningen over/strømmen gjennom dem

34 Uavhengige spenningskilder En Symboler uavhengig spenningskilde leverer en spenning som er uavhengig av strømmen gjennom den for spenningskilder er V s V v s + Hvis terminalen er V s (eller v s ) volt positiv i forhold til - terminalen. V s (eller v s ) er < 0, er + terminalen negativ i forhold til - terminalen 34 Likestrømskilde (DC-spenning) Batteri (DC-spenning) Vekselstrømskilde (AC-spenning)

35 Uavhengige strømkilder En uavhengig strømkilde leverer en strøm som er uavhengig av spenningen over den i s Pilen Fysiske angir strømretningen strømkilder vil levere en strøm som kun for små spenningsintervaller er uavhengig av spenningen 35

36 Avhengige kilder Kilder som leverer en strøm eller spenning avhengig av strøm spenning et annet sted i kretsen kalles for avhengige eller kontrollerte kilder: Ki s gv x Kv x ri x K, g og r er proporsjonalitetsfaktorer 36 Strømkontrollert strømkilde Spenningskontrollert strømkilde Spenningskontrollert spenningskilde Strømkontrollert spenningskilde

37 Avhengige kilder (forts.) En Et rekke aktive elementer kan modelleres vha avhengige kilder grunnleggende aktivt element er transistoren. Transistoren har tre terminaler, kalt gate, source og drain gate Modellen over er en ideel modell, kan ikke brukes i praksis 37 v gs drain g m v gs source source

38 Avhengige kilder (forts.) Samme som forrge, men med ikke-ideelle effekter C gd i d gate drain v gs C gs C gb g m v gs g mb v bs source 38 r o C sb C db bulk Gir en mye bedre tilnærming og presisjon

39 Spørsmål del 4 Hva Hva Hvor Hva er forskjellen mellom en avhengig og uavhengig kilde? kjennetegner en ideell kilde? 39 Hva Hva mange typer kilder finnes det? er et aktivt kretselement? er et passivt kretselement? kan man gjøre for å få en mer nøyaktig modell av et fysisk kretselement?

Forelesning nr.1 INF 1411 Elektroniske systemer. Kursoversikt Strøm, spenning, ladning og Ohms lov

Forelesning nr.1 INF 1411 Elektroniske systemer. Kursoversikt Strøm, spenning, ladning og Ohms lov Forelesning nr.1 INF 1411 Elektroniske systemer Kursoversikt Strøm, spenning, ladning og Ohms lov Dagens temaer Organisering av kurset Læringsmål Bakgrunn Strøm, og motivasjon for kurs i analog elektronikk

Detaljer

Forelesning nr.1 INF 1411 Elektroniske systemer. Kursoversikt Strøm, spenning, ladning og Ohms lov

Forelesning nr.1 INF 1411 Elektroniske systemer. Kursoversikt Strøm, spenning, ladning og Ohms lov Forelesning nr.1 INF 1411 Elektroniske systemer Kursoversikt Strøm, spenning, ladning og Ohms lov Dagens temaer Organisering av kurset Læringsmål Bakgrunn Strøm, og motivasjon for kurs i analog elektronikk

Detaljer

Forelesning nr.1 INF 1411 Elektroniske systemer

Forelesning nr.1 INF 1411 Elektroniske systemer Forelesning nr.1 INF 1411 Elektroniske systemer Kursoversikt Strøm, spenning, ladning og Ohms lov 16.01. INF 1411 1 Dagens temaer Organisering av kurset Læringsmål Bakgrunn og motivasjon for kurs i analog

Detaljer

Forelesning nr.1 INF 1411 Elektroniske systemer. Kursoversikt Strøm, spenning, ladning og Ohms lov

Forelesning nr.1 INF 1411 Elektroniske systemer. Kursoversikt Strøm, spenning, ladning og Ohms lov Forelesning nr.1 INF 1411 Elektroniske systemer Kursoversikt Strøm, spenning, ladning og Ohms lov Dagens temaer Organisering av kurset Læringsmål Bakgrunn Strøm, og motivasjon for kurs i analog elektronikk

Detaljer

Forelesning nr.1 IN 1080 Mekatronikk. Kursoversikt Ladning, strøm, spenning og resistans

Forelesning nr.1 IN 1080 Mekatronikk. Kursoversikt Ladning, strøm, spenning og resistans Forelesning nr.1 IN 1080 Mekatronikk Kursoversikt Ladning, strøm, spenning og resistans Hva er mekatronikk? Mekatronikk : Tverrfaglig disiplin innen ingeniørfag som kombinerer mekanikk, elektronikk, datateknikk,

Detaljer

Forelesning nr.2 INF 1411 Elektroniske systemer. Effekt, serielle kretser og Kirchhoffs spenningslov

Forelesning nr.2 INF 1411 Elektroniske systemer. Effekt, serielle kretser og Kirchhoffs spenningslov Forelesning nr.2 INF 1411 Elektroniske systemer Effekt, serielle kretser og Kirchhoffs spenningslov Dagens temaer Sammenheng mellom strøm, spenning, energi og effekt Strøm og resistans i serielle kretser

Detaljer

Forelesning nr.2 INF 1411 Elektroniske systemer. Effekt, serielle kretser og Kirchhoffs spenningslov

Forelesning nr.2 INF 1411 Elektroniske systemer. Effekt, serielle kretser og Kirchhoffs spenningslov Forelesning nr.2 INF 1411 Elektroniske systemer Effekt, serielle kretser og Kirchhoffs spenningslov Dagens temaer Sammenheng mellom strøm, spenning, energi og effekt Strøm og resistans i serielle kretser

Detaljer

Forelesning nr.7 INF 1410. Kondensatorer og spoler

Forelesning nr.7 INF 1410. Kondensatorer og spoler Forelesning nr.7 IF 4 Kondensatorer og spoler Oversikt dagens temaer Funksjonell virkemåte til kondensatorer og spoler Konstruksjon Modeller og fysisk virkemåte for kondensatorer og spoler Analyse av kretser

Detaljer

Forelesning nr.4 IN 1080 Mekatronikk. Vekselstrøm Kondensatorer

Forelesning nr.4 IN 1080 Mekatronikk. Vekselstrøm Kondensatorer Forelesning nr.4 IN 1080 Mekatronikk Vekselstrøm Kondensatorer Dagens temaer Mer om Thévenins og Nortons teoremer Sinusformede spenninger og strømmer Firkant-, puls- og sagtannsbølger Effekt i vekselstrømkretser

Detaljer

Forelesning nr.12 INF 1410

Forelesning nr.12 INF 1410 Forelesning nr.12 INF 1410 Komplekse frekvenser analyse i frekvensdomenet 20.04. INF 1410 1 Oversikt dagens temaer Intro Komplekse tall Komplekse signaler Analyse i frekvensdomenet 20.04. INF 1410 2 Intro

Detaljer

Forelesning nr.7 INF 1411 Elektroniske systemer. Tidsrespons til reaktive kretser Integrasjon og derivasjon med RC-krester

Forelesning nr.7 INF 1411 Elektroniske systemer. Tidsrespons til reaktive kretser Integrasjon og derivasjon med RC-krester Forelesning nr.7 INF 1411 Elektroniske systemer Tidsrespons til reaktive kretser Integrasjon og derivasjon med RC-krester Dagens temaer Nøyaktigere modeller for ledere, R, C og L Tidsrespons til reaktive

Detaljer

Forelesning nr.4 INF 1411 Elektroniske systemer

Forelesning nr.4 INF 1411 Elektroniske systemer Forelesning nr.4 INF 1411 Elektroniske systemer Vekselstrøm Kondensatorer 1 Dagens temaer Sinusformede spenninger og strømmer Firkant-, puls- og sagtannsbølger Effekt i vekselstrømkretser Kondesator Oppbygging,

Detaljer

TFE4100 Kretsteknikk Kompendium. Eirik Refsdal <eirikref@pvv.ntnu.no>

TFE4100 Kretsteknikk Kompendium. Eirik Refsdal <eirikref@pvv.ntnu.no> TFE4100 Kretsteknikk Kompendium Eirik Refsdal 16. august 2005 2 INNHOLD Innhold 1 Introduksjon til elektriske kretser 4 1.1 Strøm................................ 4 1.2 Spenning..............................

Detaljer

Forelesning nr.7 IN 1080 Elektroniske systemer. Spoler og induksjon Praktiske anvendelser Nøyaktigere modeller for R, C og L

Forelesning nr.7 IN 1080 Elektroniske systemer. Spoler og induksjon Praktiske anvendelser Nøyaktigere modeller for R, C og L Forelesning nr.7 IN 1080 Elektroniske systemer Spoler og induksjon Praktiske anvendelser Nøyaktigere modeller for R, C og L Dagens temaer Induksjon og spoler RL-kretser og anvendelser Fysiske versus ideelle

Detaljer

Forelesning nr.4 INF 1411 Elektroniske systemer. Vekselstrøm Kondensatorer

Forelesning nr.4 INF 1411 Elektroniske systemer. Vekselstrøm Kondensatorer Forelesning nr.4 INF 1411 Elektroniske systemer Vekselstrøm Kondensatorer Dagens temaer Sinusformede spenninger og strømmer Firkant-, puls- og sagtannsbølger Effekt i vekselstrømkretser Kondensator Presentasjon

Detaljer

Forelesning nr.4 INF 1411 Elektroniske systemer. Vekselstrøm Kondensatorer

Forelesning nr.4 INF 1411 Elektroniske systemer. Vekselstrøm Kondensatorer Forelesning nr.4 INF 1411 Elektroniske systemer Vekselstrøm Kondensatorer Dagens temaer Sinusformede spenninger og strømmer Firkant-, puls- og sagtannsbølger Effekt i vekselstrømkretser Kondensator Presentasjon

Detaljer

Forelesning nr.2 INF 1411 Elektroniske systemer

Forelesning nr.2 INF 1411 Elektroniske systemer Forelesning nr. INF 1411 Elektroniske systemer Effekt, serielle kretser og Kirchhoffs spenningslo 1 Dagens temaer Sammenheng, strøm, spenning, energi og effekt Strøm og motstand i serielle kretser Bruk

Detaljer

Forelesning nr.4 INF 1411 Elektroniske systemer. Vekselstrøm Kondensatorer

Forelesning nr.4 INF 1411 Elektroniske systemer. Vekselstrøm Kondensatorer Forelesning nr.4 INF 1411 Elektroniske systemer Vekselstrøm Kondensatorer Dagens temaer Sinusformede spenninger og strømmer Firkant-, puls- og sagtannsbølger Effekt i vekselstrømkretser Kondensator Presentasjon

Detaljer

Forelesning nr.5 INF 1411 Elektroniske systemer

Forelesning nr.5 INF 1411 Elektroniske systemer Forelesning nr.5 INF 4 Elektroniske systemer R-kretser Dagens temaer Ulike Kondensatorer typer impedans og konduktans i serie og parallell Bruk R-kretser av kondensator Temaene Impedans og fasevinkler

Detaljer

Forelesning nr.5 INF 1411 Elektroniske systemer. RC-kretser

Forelesning nr.5 INF 1411 Elektroniske systemer. RC-kretser Forelesning nr.5 INF 1411 Elektroniske systemer R-kretser Dagens temaer Ulike typer impedans og konduktans Kondensatorer i serie og parallell Bruk av kondensator R-kretser Impedans og fasevinkler Serielle

Detaljer

Forelesning nr.4 INF 1410

Forelesning nr.4 INF 1410 Forelesning nr.4 INF 1410 Flere teknikker for kretsanalyse og -transformasjon 1 Oversikt dagens temaer inearitet Praktiske Ekvivalente Nortons Thévenins Norton- og superposisjonsprinsippet (virkelige)

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i INF 1411 Introduksjon til elektroniske systemer Eksamensdag: 30. mai 2010 Tid for eksamen: 3 timer Oppgavesettet er på

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1411 Elektroniske systemer Eksamensdag: 4. juni 2012 Tid for eksamen: 14:30 18:30 Oppgavesettet er på 5 sider Vedlegg: Ingen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1411 Eksamensdag: mandag 3.juni 2013 Tid for eksamen: 14.30-18.30 Oppgavesettet er på 6 sider Vedlegg: Ingen Tillatte

Detaljer

Forelesning nr.5 INF 1411 Elektroniske systemer. RC-kretser

Forelesning nr.5 INF 1411 Elektroniske systemer. RC-kretser Forelesning nr.5 INF 4 Elektroniske systemer R-kretser Dagens temaer Ulike typer respons Ulike typer impedans og konduktans Kondensatorer i serie og parallell Bruk av kondensator R-kretser Impedans og

Detaljer

Fasit og sensorveiledning eksamen INF1411 våren Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) A) B) Figur 1

Fasit og sensorveiledning eksamen INF1411 våren Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) A) B) Figur 1 Fasit og sensorveiledning eksamen INF1411 våren 2012 Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) Oppgave 1a) (vekt 5 %) Hva er strømmen i og spenningen V out i krets A) i Figur 1? Svar

Detaljer

Fasit og sensorveiledning eksamen INF1411 våren Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) A) B) Figur 1

Fasit og sensorveiledning eksamen INF1411 våren Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) A) B) Figur 1 Fasit og sensorveiledning eksamen INF1411 våren 2012 Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) Oppgave 1a) (vekt 5 %) Hva er strømmen i og spenningen V out i krets A) i Figur 1? Svar

Detaljer

WORKSHOP BRUK AV SENSORTEKNOLOGI

WORKSHOP BRUK AV SENSORTEKNOLOGI WORKSHOP BRUK AV SENSORTEKNOLOGI SENSOROPPSETT 2. Mikrokontroller leser spenning i krets. 1. Sensor forandrer strøm/spenning I krets 3. Spenningsverdi oversettes til tallverdi 4. Forming av tallverdi for

Detaljer

Forelesning nr.6 INF 1411 Elektroniske systemer. Anvendelser av RC-krester Spoler og RL-kretser

Forelesning nr.6 INF 1411 Elektroniske systemer. Anvendelser av RC-krester Spoler og RL-kretser Forelesning nr.6 INF 1411 Elektroniske systemer Anvendelser av RC-krester Spoler og RL-kretser Dagens temaer Mer om ac-signaler og sinussignaler Filtre Bruk av RC-kretser Induktorer (spoler) Sinusrespons

Detaljer

Forelesning nr.5 IN 1080 Mekatronikk. RC-kretser

Forelesning nr.5 IN 1080 Mekatronikk. RC-kretser Forelesning nr.5 IN 080 Mekatronikk R-kretser Dagens temaer Ulike typer impedans og konduktans Kondensatorer i serie og parallell Ulike typer respons R-kretser Impedans og fasevinkler Serielle R-kretser

Detaljer

BINGO - Kapittel 11. Enheten for elektrisk strøm (ampere) Kretssymbolet for en lyspære (bilde side 211) Enheten for elektrisk ladning (coulomb)

BINGO - Kapittel 11. Enheten for elektrisk strøm (ampere) Kretssymbolet for en lyspære (bilde side 211) Enheten for elektrisk ladning (coulomb) BINGO - Kapittel 11 Bingo-oppgaven anbefales som repetisjon etter at kapittel 11 er gjennomgått. Klipp opp tabellen (nedenfor) i 24 lapper. Gjør det klart for elevene om det er en sammenhengende rekke

Detaljer

Forelesning nr.6 INF 1411 Elektroniske systemer. Anvendelser av RC-krester Spoler og RL-kretser

Forelesning nr.6 INF 1411 Elektroniske systemer. Anvendelser av RC-krester Spoler og RL-kretser Forelesning nr.6 INF 1411 Elektroniske systemer Anvendelser av RC-krester Spoler og RL-kretser Dagens temaer Generelle ac-signaler og sinussignaler Filtre Bruk av RC-kretser Induktorer (spoler) Sinusrespons

Detaljer

Onsdag isolator => I=0

Onsdag isolator => I=0 Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2008, uke 13 Onsdag 26.03.08 RC-kretser [FGT 27.5; YF 26.4; TM 25.6; AF Note 25.1; LHL 22.4; DJG Problem 7.2] Rommet mellom de

Detaljer

Løsningsforslag eksamen inf 1410 våren 2009

Løsningsforslag eksamen inf 1410 våren 2009 Løsningsforslag eksamen inf 1410 våren 2009 Oppgave 1- Strøm og spenningslover. (Vekt: 15%) a) Finn den ukjente strømmen I 5 i Figur 1 og vis hvordan du kom frem til svaret Figur 1 Løsning: Ved enten å

Detaljer

Forelesning nr.6 INF 1411 Elektroniske systemer. Anvendelser av RC-krester Spoler og RL-kretser

Forelesning nr.6 INF 1411 Elektroniske systemer. Anvendelser av RC-krester Spoler og RL-kretser Forelesning nr.6 INF 1411 Elektroniske systemer Anvendelser av RC-krester Spoler og RL-kretser Dagens temaer Regneeksempel på RC-krets Bruk av RC-kretser Sinusrespons til RL-kretser Impedans og fasevinkel

Detaljer

Forelesning nr.8 INF 1410

Forelesning nr.8 INF 1410 Forelesning nr.8 INF 4 C og kretser 2.3. INF 4 Oversikt dagens temaer inearitet Opampkretser i C- og -kretser med kondensatorer Naturlig respons for - og C-kretser Eksponensiell respons 2.3. INF 4 2 Node

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1411 Eksamensdag: mandag 3.juni 2013 Tid for eksamen: 14.30-18.30 Oppgavesettet er på 6 sider Vedlegg: Ingen Tillatte

Detaljer

Forelesning nr.6 INF 1411 Elektroniske systemer

Forelesning nr.6 INF 1411 Elektroniske systemer Forelesning nr.6 INF 1411 Elektroniske systemer Anvendelser av RC-krester Spoler og RL-kretser 1 Dagens temaer Bruk av RC-kretser Sinusrespons til RL-kretser Impedans og fasevinkel til serielle RL-kretser

Detaljer

Forelesning nr.7 INF 1411 Elektroniske systemer. Tidsrespons til reaktive kretser Integrasjon og derivasjon med RC-krester

Forelesning nr.7 INF 1411 Elektroniske systemer. Tidsrespons til reaktive kretser Integrasjon og derivasjon med RC-krester Forelesning nr.7 INF 1411 Elektroniske systemer Tidsrespons til reaktive kretser Integrasjon og derivasjon med RC-krester Dagens temaer Tidsrespons til reaktive kretser RC-integrator/differensiator-respons

Detaljer

INF L4: Utfordringer ved RF kretsdesign

INF L4: Utfordringer ved RF kretsdesign INF 5490 L4: Utfordringer ved RF kretsdesign 1 Kjøreplan INF5490 L1: Introduksjon. MEMS i RF L2: Fremstilling og virkemåte L3: Modellering, design og analyse Dagens forelesning: Noen typiske trekk og utfordringer

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1411 Introduksjon til elektroniske systemer Eksamensdag: 6. juni 2016 Tid for eksamen: 4 timer Oppgavesettet er på 6 sider

Detaljer

Elektriske kretser. Innledning

Elektriske kretser. Innledning Laboratorieøvelse 3 Fys1000 Elektriske kretser Innledning I denne oppgaven skal du måle elektriske størrelser som strøm, spenning og resistans. Du vil få trening i å bruke de sentrale begrepene, samtidig

Detaljer

Forelesning nr.11 INF 1411 Elektroniske systemer

Forelesning nr.11 INF 1411 Elektroniske systemer Forelesning nr.11 INF 1411 Elektroniske systemer Operasjonsforsterkere 1 Dagens temaer Ideel operasjonsforsterker Operasjonsforsterker-karakteristikker Differensiell forsterker Opamp-kretser Dagens temaer

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1411 Introduksjon til elektroniske systemer Eksamensdag: 28. mai 2014 Tid for eksamen: 4 timer Oppgavesettet er på 6 sider

Detaljer

og P (P) 60 = V 2 R 60

og P (P) 60 = V 2 R 60 Flervalgsoppgaver 1 Forholdet mellom elektrisk effekt i to lyspærer på henholdsvis 25 W og 60 W er, selvsagt, P 25 /P 60 = 25/60 ved normal bruk, dvs kobla i parallell Hva blir det tilsvarende forholdet

Detaljer

Forelesning nr.6 INF Operasjonsforsterker Fysiske karakteristikker og praktiske anvendelser

Forelesning nr.6 INF Operasjonsforsterker Fysiske karakteristikker og praktiske anvendelser Forelesning nr.6 INF 1410 Operasjonsforsterker Fysiske karakteristikker og praktiske anendelser Oersikt dagens temaer Kretsekialent for opamp Fysiske begrensinger Common-mode rejection Komparatorer Metning

Detaljer

Kondensator. Symbol. Lindem 22. jan. 2012

Kondensator. Symbol. Lindem 22. jan. 2012 UKE 5 Kondensatorer, kap. 12, s. 364-382 RC kretser, kap. 13, s. 389-413 Frekvensfilter, kap. 15, s. 462-500 og kap. 16, s. 510-528 Spoler, kap. 10, s. 289-304 1 Kondensator Lindem 22. jan. 2012 Kondensator

Detaljer

Mandag Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke12

Mandag Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke12 nstitutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke12 Mandag 19.03.07 Likestrømkretser [FGT 27; YF 26; TM 25; AF 24.7; LHL 22] Eksempel: lommelykt + a d b c + m Likespenningskilde

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1411 Introduksjon til elektroniske systemer Eksamensdag: 1. juni 2015 Tid for eksamen: 4 timer Oppgavesettet er på 5 sider

Detaljer

Forelesning nr.10 INF 1411 Elektroniske systemer. Felteffekt-transistorer

Forelesning nr.10 INF 1411 Elektroniske systemer. Felteffekt-transistorer Forelesning nr.10 INF 1411 Elektroniske systemer Felteffekt-transistorer Dagens temaer Bipolare transistorer som brytere Felteffekttransistorer (FET) FET-baserte forsterkere Dagens temaer er hentet fra

Detaljer

Forelesning nr.6 IN 1080 Elektroniske systemer. Strøm, spenning og impedans i RC-kretser Anvendelser av RC-krester

Forelesning nr.6 IN 1080 Elektroniske systemer. Strøm, spenning og impedans i RC-kretser Anvendelser av RC-krester Forelesning nr.6 IN 1080 Elektroniske systemer Strøm, spenning og impedans i RC-kretser Anvendelser av RC-krester Dagens temaer Strøm, spenning og impedans i serielle RC-kretser Mer om ac-signaler og sinussignaler

Detaljer

Forelesning nr.14 INF 1410

Forelesning nr.14 INF 1410 Forelesning nr.14 INF 1410 Frekvensrespons 1 Oversikt dagens temaer Generell frekvensrespons Resonans Kvalitetsfaktor Dempning Frekvensrespons Oppførselen For I Like til elektriske kretser i frekvensdomenet

Detaljer

Prototyping med Arduino del 2

Prototyping med Arduino del 2 Prototyping med Arduino del 2 Magnus Li magl@ifi.uio.no INF1510 30.01.2017 Arduinoundervisningen Forelesninger Mandag 30.01 & 06.02 Gjennomgang av grunnleggende temaer Teknisk verksted Mandag 30.01, 06.02,

Detaljer

Forelesning nr.9 INF 1411 Elektroniske systemer. Transistorer MOSFET Strømforsyning

Forelesning nr.9 INF 1411 Elektroniske systemer. Transistorer MOSFET Strømforsyning Forelesning nr.9 INF 1411 Elektroniske systemer Transistorer MOSFET Strømforsyning Dagens temaer Radiorør Transistorer Moores lov Bipolare transistorer Felteffekttransistorer Digitale kretser: AND, OR

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1411 Eksamensdag: mandag 3.juni 2013 Tid for eksamen: 14.30-18.30 Oppgavesettet er på 6 sider Vedlegg: Ingen Tillatte

Detaljer

Forelesning nr.10 INF 1411 Elektroniske systemer

Forelesning nr.10 INF 1411 Elektroniske systemer Forelesning nr.10 INF 1411 Elektroniske systemer Felteffekt-transistorer 1 Dagens temaer Bipolare transistorer som brytere Felteffekttransistorer (FET) FET-baserte forsterkere Feedback-oscillatorer Dagens

Detaljer

BYGGING AV LIKESTRØMSKILDE OG TRANSISTORFORSTERKER

BYGGING AV LIKESTRØMSKILDE OG TRANSISTORFORSTERKER BYGGING AV LIKESTRØMSKILDE OG TRANSISTORFORSTERKER OPPGAVE 1. Lag en oppkobling av likespenningskilden skissert i Figur 1. 2. Mål utgangsspenningen som funksjon av ulike verdier på belastningsmotstanden.

Detaljer

Løsningsforslag til EKSAMEN

Løsningsforslag til EKSAMEN Løsningsforslag til EKSAMEN Emnekode: ITD0 Emne: Fysikk og kjemi Dato: 9. April 04 Eksamenstid: kl.: 9:00 til kl.: 3:00 Hjelpemidler: 4 sider (A4) ( ark) med egne notater. Ikke-kummuniserende kalkulator.

Detaljer

TFE4101 Vår 2016. Løsningsforslag Øving 3. 1 Teorispørsmål. (20 poeng)

TFE4101 Vår 2016. Løsningsforslag Øving 3. 1 Teorispørsmål. (20 poeng) TFE411 Vår 216 Norges teknisk naturvitenskapelige universitet Institutt for elektronikk og telekommunikasjon Løsningsforslag Øving 3 1 Teorispørsmål. (2 poeng) a) Beskriv følgende med egne ord: Nodespenningsmetoden.

Detaljer

«OPERASJONSFORSTERKERE»

«OPERASJONSFORSTERKERE» Kurs: FYS 1210 Gruppe: Gruppe-dag: Oppgave: LABORATORIEØVELSE NR 7 Revidert utgave 18. mars 2013 (Lindem) Omhandler: «OPERASJONSFORSTERKERE» FORSTERKER MED TILBAKEKOBLING AVVIKSPENNING OG HVILESTRØM STRØM-TIL-SPENNING

Detaljer

a) Bruk en passende Gaussflate og bestem feltstyrken E i rommet mellom de 2 kuleskallene.

a) Bruk en passende Gaussflate og bestem feltstyrken E i rommet mellom de 2 kuleskallene. Oppgave 1 Bestem løsningen av differensialligningen Oppgave 2 dy dx + y = e x, y(1) = 1 e Du skal beregne en kulekondensator som består av 2 kuleskall av metall med samme sentrum. Det indre skallet har

Detaljer

Eksamensoppgave i TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK

Eksamensoppgave i TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK Institutt for elektronikk og telekommunikasjon LØSNINGSFORSLAG KRETSDEL Eksamensoppgave i TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK Faglig kontakt under eksamen: Ragnar Hergum - tlf. 73 59 20 23 / 920 87

Detaljer

Forelesning nr.11 INF 1411 Elektroniske systemer. Måleteknikk Operasjonsforsterkere

Forelesning nr.11 INF 1411 Elektroniske systemer. Måleteknikk Operasjonsforsterkere Forelesning nr.11 INF 1411 Elektroniske systemer Måleteknikk Operasjonsforsterkere Dagens temaer Måleteknikk Wheatstone-bro Ideell operasjonsforsterker Differensiell forsterker Opamp-kretser Dagens temaer

Detaljer

ELEKTRISITET. - Sammenhengen mellom spenning, strøm og resistans. Lene Dypvik NN Øyvind Nilsen. Naturfag 1 Høgskolen i Bodø 18.01.02.

ELEKTRISITET. - Sammenhengen mellom spenning, strøm og resistans. Lene Dypvik NN Øyvind Nilsen. Naturfag 1 Høgskolen i Bodø 18.01.02. ELEKTRISITET - Sammenhengen mellom spenning, strøm og resistans Lene Dypvik NN Øyvind Nilsen Naturfag 1 Høgskolen i Bodø 18.01.02.2008 Revidert av Lene, Øyvind og NN Innledning Dette forsøket handler om

Detaljer

Forelesning nr.13 INF 1410

Forelesning nr.13 INF 1410 Forelesning nr.3 INF 4 Komplekse frekvenser og Laplace-transform Oversikt dagens temaer Me Mer om sinusformede signaler om komplekse frekvenser Introduksjon til Laplace-transform Løsning av kretsligninger

Detaljer

Analog til digital omformer

Analog til digital omformer A/D-omformer Julian Tobias Venstad ED-0 Analog til digital omformer (Engelsk: Analog to Digital Converter, ADC) Forside En rask innføring. Innholdsfortegnelse Forside 1 Innholdsfortegnelse 2 1. Introduksjon

Detaljer

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Fredag 25. mai Tid. Kl LØSNINGSFORSLAG

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Fredag 25. mai Tid. Kl LØSNINGSFORSLAG Side 1 av 17 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 20 23 / 920 87 172 Bjørn B. Larsen 73 59 44

Detaljer

Oppgave 1 (30%) a) De to nettverkene gitt nedenfor skal forenkles. Betrakt hvert av nettverkene inn på klemmene:

Oppgave 1 (30%) a) De to nettverkene gitt nedenfor skal forenkles. Betrakt hvert av nettverkene inn på klemmene: 3. juni 2010 Side 2 av 16 Oppgave 1 (30%) a) De to nettverkene gitt nedenfor skal forenkles. Betrakt hvert av nettverkene inn på klemmene: Reduser motstandsnettverket til én enkelt resistans og angi størrelsen

Detaljer

Forelesning nr.11 INF 1411 Elektroniske systemer. Måleteknikk Operasjonsforsterkere

Forelesning nr.11 INF 1411 Elektroniske systemer. Måleteknikk Operasjonsforsterkere Forelesning nr.11 INF 1411 Elektroniske systemer Måleteknikk Operasjonsforsterkere Dagens temaer Måleteknikk Wheatstone-bro Ideell operasjonsforsterker Differensiell forsterker Opamp-kretser Dagens temaer

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2015. Øving 11. Veiledning: 9. - 13. november.

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2015. Øving 11. Veiledning: 9. - 13. november. TFY0 Fysikk. Institutt for fysikk, NTNU. Høsten 05. Øving. Veiledning: 9. -. november. Opplysninger: Noe av dette kan du få bruk for: /πε 0 = 9 0 9 Nm /, e =.6 0 9, m e = 9. 0 kg, m p =.67 0 7 kg, g =

Detaljer

Sammendrag, uke 13 (30. mars)

Sammendrag, uke 13 (30. mars) nstitutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2005 Sammendrag, uke 13 (30. mars) Likestrømkretser [FGT 27; YF 26; TM 25; AF 24.7; LHL 22] Eksempel: lommelykt + a d b c + m Spenningskilde

Detaljer

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Fredag 25. mai Tid. Kl LØSNINGSFORSLAG

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Fredag 25. mai Tid. Kl LØSNINGSFORSLAG Side av 7 NORGES TEKNISKNATURITENSKAPLIGE UNIERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 7 59 2 2 / 92 87 72 Bjørn B. Larsen 7 59 44 9 Eksamen i emne

Detaljer

Nå er det på tide å se hvordan dette fungerer i praksis. Vi skal beregne et par Laplacetransformer som vi får mye bruk for senere.

Nå er det på tide å se hvordan dette fungerer i praksis. Vi skal beregne et par Laplacetransformer som vi får mye bruk for senere. Laplace-transform: Et nyttig hjelpemiddel Side - Laplace-transformen et nyttig hjelpemiddel Hva er Laplace-transformen? Vi starter med å definere Laplace-transformen: Definisjon : La f t være en funksjon

Detaljer

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I Mandag 5. desember 2005 kl

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I Mandag 5. desember 2005 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME

Detaljer

UKE 5. Kondensatorer, kap. 12, s RC kretser, kap. 13, s Frekvensfilter, kap. 15, s kap. 16, s

UKE 5. Kondensatorer, kap. 12, s RC kretser, kap. 13, s Frekvensfilter, kap. 15, s kap. 16, s UKE 5 Kondensatorer, kap. 2, s. 364-382 R kretser, kap. 3, s. 389-43 Frekvensfilter, kap. 5, s. 462-500 kap. 6, s. 50-528 Kondensator Lindem 22. jan. 202 Kondensator (apacitor) er en komponent som kan

Detaljer

Mandag dq dt. I = Q t + + x (tverrsnitt av leder) Med n = N/ V ladningsbærere pr volumenhet, med midlere driftshastighet v og ladning q:

Mandag dq dt. I = Q t + + x (tverrsnitt av leder) Med n = N/ V ladningsbærere pr volumenhet, med midlere driftshastighet v og ladning q: Institutt for fysikk, NTNU TFY455/FY003: Elektrisitet og magnetisme Vår 2007, uke Mandag 2.03.07 Elektrisk strøm. [FGT 26.; YF 25.; TM 25.; AF 24., 24.2; LHL 2.; DJG 5..3] Elektrisk strømstyrke = (positiv)

Detaljer

Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen Q ligger i punktet ( 3, 0) [mm].

Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen Q ligger i punktet ( 3, 0) [mm]. Oppgave 1 Finn løsningen til følgende 1.ordens differensialligninger: a) y = x e y, y(0) = 0 b) dy dt + a y = b, a og b er konstanter. Oppgave 2 Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen

Detaljer

KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl

KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME

Detaljer

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Lørdag 5. juni Tid. Kl LØSNINGSFORSLAG

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Lørdag 5. juni Tid. Kl LØSNINGSFORSLAG Side 1 av 15 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Bjørn B. Larsen 73 59 44 93 / 902 08 317 (Digitaldel) Ingulf Helland

Detaljer

LF - anbefalte oppgaver fra kapittel 2

LF - anbefalte oppgaver fra kapittel 2 1 LF - anbefalte oppgaver fra kapittel 2 N2.1 Denne oppkoblingen er lovlig: Alle spenningkildene kan få en strøm på 5 A fra strømkilden. Spenningsfallet over strømkilden er også lovlig. Ved å summere alle

Detaljer

EKSAMENSOPPGAVE. Adm.bygget, Aud.max. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute

EKSAMENSOPPGAVE. Adm.bygget, Aud.max. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: Fys-1002 Dato: 30. september 2016 Klokkeslett: 09.00-13.00 Sted: Tillatte hjelpemidler: Adm.bygget, Aud.max ü Kalkulator med tomt dataminne

Detaljer

Forelesning nr.11 INF 1411 Elektroniske systemer. Måleteknikk Operasjonsforsterkere

Forelesning nr.11 INF 1411 Elektroniske systemer. Måleteknikk Operasjonsforsterkere Forelesning nr.11 INF 1411 Elektroniske systemer Måleteknikk Operasjonsforsterkere Dagens temaer Måleteknikk Wheatstone-bro Ideell operasjonsforsterker Differensiell forsterker Opamp-kretser Dagens temaer

Detaljer

LABORATORIERAPPORT. Halvlederdioden AC-beregninger. Christian Egebakken

LABORATORIERAPPORT. Halvlederdioden AC-beregninger. Christian Egebakken LABORATORIERAPPORT Halvlederdioden AC-beregninger AV Christian Egebakken Sammendrag I dette prosjektet har vi forklart den grunnleggende teorien bak dioden. Vi har undersøkt noen av bruksområdene til vanlige

Detaljer

Kondensator - Capacitor. Kondensator - en komponent som kan lagre elektrisk ladning. Symbol. Kapasitet, C. 1volt

Kondensator - Capacitor. Kondensator - en komponent som kan lagre elektrisk ladning. Symbol. Kapasitet, C. 1volt Kondensator - apacitor Lindem. mai 00 Kondensator - en komponent som kan lagre elektrisk ladning. Symbol Kapasiteten ( - capacity ) til en kondensator måles i Farad. Som en teknisk definisjon kan vi si

Detaljer

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK Side 1 av 12 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 20 23 / 920 87 172 Bjørn B. Larsen 73 59 44

Detaljer

Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT

Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT Elektrisitetslære TELE002-3H HiST-FT-EDT Øving 4; løysing Oppgave R R 3 R 6 E R 2 R 5 E 2 R 4 Figuren over viser et likestrømsnettverk med ideelle spenningskilder og resistanser. Verdiene er: E = 40,0

Detaljer

Forelesning nr.5 INF 1410

Forelesning nr.5 INF 1410 Forelesning nr.5 INF 40 Operasjonsforsterker Oersikt dagens temaer Kort historikk til operasjonsforsterkeren (OpAmp) Enkel Karakteristikker modell for OpAmp til ideell OpAmp Konfigurasjoner Mer med OpAmp

Detaljer

«OPERASJONSFORSTERKERE»

«OPERASJONSFORSTERKERE» Kurs: FYS 1210 Gruppe: Gruppe-dag: Oppgave: LABORATORIEØVELSE NR 7 Revidert utgave, desember 2014 (T. Lindem, K.Ø. Spildrejorde, M. Elvegård) Omhandler: «OPERASJONSFORSTERKERE» FORSTERKER MED TILBAKEKOBLING

Detaljer

Ohms lov: Resistansen i en leder er 1 ohm når strømmen er 1 amper og spenningen er 1 V.

Ohms lov: Resistansen i en leder er 1 ohm når strømmen er 1 amper og spenningen er 1 V. .3 RESISTANS OG RESISTIVITET - OHMS LOV RESISTANS Forholdet mellom strøm og spenning er konstant. Det konstante forhold kalles resistansen i en leder. Det var Georg Simon Ohm (787-854) som oppdaget at

Detaljer

Kap. 4 Trigger 9 SPENNING I LUFTA

Kap. 4 Trigger 9 SPENNING I LUFTA Kap. 4 Trigger 9 SPENNING I LUFTA KJERNEBEGREPER Ladning Statisk elektrisitet Strøm Spenning Motstand Volt Ampere Ohm Åpen og lukket krets Seriekobling Parallellkobling Isolator Elektromagnet Induksjon

Detaljer

Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT

Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT Elektrisitetslære TELE2-A 3H HiST-AFT-EDT Øving ; løysing Oppgave En ladning på 65 C passerer gjennom en leder i løpet av 5, s. Hvor stor blir strømmen? Strømmen er gitt ved dermed blir Q t dq. Om vi forutsetter

Detaljer

Oppsummering om kretser med R, L og C FYS1120

Oppsummering om kretser med R, L og C FYS1120 Oppsummering om kretser med R, L og C FYS1120 Likestrømskretser med motstander Strøm og spenning er alltid i fase. Ohms lov: V = RI Effekt er gitt ved: P = VI = RI 2 = V 2 /R Kirchoffs lover: Summen av

Detaljer

Ny og utsatt eksamen i Elektronikk 28. Juli 2015. Løsningsforslag Knut Harald Nygaard

Ny og utsatt eksamen i Elektronikk 28. Juli 2015. Løsningsforslag Knut Harald Nygaard Ny og utsatt eksamen i Elektronikk 28. Juli 205 Løsningsforslag Knut Harald Nygaard Oppgave (30 % En operasjonsforsterker, som antas ideell, er benyttet i figuren nedenfor. V a Transferfunksjonen: V (s=

Detaljer

ELE1042 Elektriske kretser

ELE1042 Elektriske kretser ELE1042 Elektriske kretser - 2013-2014 Emnekode: ELE1042 Emnenavn: Elektriske kretser Faglig nivå: Bachelor (syklus 1) Studiepoeng: 20 Varighet: Vår Språk: Norsk Anbefalt forkunnskap: Emnet bygger på følgende

Detaljer

Forelesning nr.12 INF 1411 Elektroniske systemer. Opamp-kretser Oscillatorer og aktive filtre

Forelesning nr.12 INF 1411 Elektroniske systemer. Opamp-kretser Oscillatorer og aktive filtre Forelesning nr.12 INF 1411 Elektroniske systemer Opamp-kretser Oscillatorer og aktive filtre Dagens temaer Komparatorer, addisjon- og subtraksjonskretser Integrasjon og derivasjon med opamp-kretser Oscillator

Detaljer

Sammenhengen mellom strøm og spenning

Sammenhengen mellom strøm og spenning Sammenhengen mellom strøm og spenning Naturfag 1 30. oktober 2009 Camilla Holsmo Karianne Kvernvik Allmennlærerutdanningen Innhold 1.0 Innledning... 2 2.0 Teori... 3 2.1 Faglige begreper... 3 2.2 Teoriforståelse...

Detaljer

SUPER DISCLAIMER. Vi endrer opplegget litt fra år til år, og vi hører på dere!

SUPER DISCLAIMER. Vi endrer opplegget litt fra år til år, og vi hører på dere! ARDUINO BASISKUNNSKAP ELEKTRISITET SIKKERHET PRAKSIS INSTALLASJON PROGRAMMERING GRUNNLEGGENDE TEORI ÅPEN SONE FOR EKSPERIMENTELL INFORMATIKK STUDIELABEN Roger Antonsen INF1510 23. januar 2012 SUPER DISCLAIMER

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. ving 11.

TFY4104 Fysikk. Institutt for fysikk, NTNU. ving 11. TFY0 Fysikk. Institutt for fysikk, NTNU. ving. Opplysninger: Noe av dette kan du fa bruk for: =" 0 = 9 0 9 Nm /, e = :6 0 9, m e = 9: 0 kg, m p = :67 0 7 kg, g = 9:8 m/s Symboler angis i kursiv (f.eks

Detaljer

Manual til laboratorieøvelse. Solceller. Foto: Túrelio, Wikimedia Commons. Versjon 10.02.14

Manual til laboratorieøvelse. Solceller. Foto: Túrelio, Wikimedia Commons. Versjon 10.02.14 Manual til laboratorieøvelse Solceller Foto: Túrelio, Wikimedia Commons Versjon 10.02.14 Teori Energi og arbeid Arbeid er et mål på bruk av krefter og har symbolet W. Energi er et mål på lagret arbeid

Detaljer

FYS1210. Repetisjon 2 11/05/2015. Bipolar Junction Transistor (BJT)

FYS1210. Repetisjon 2 11/05/2015. Bipolar Junction Transistor (BJT) FYS1210 Repetisjon 2 11/05/2015 Bipolar Junction Transistor (BJT) Sentralt: Forsterkning Forsterkning er et forhold mellom inngang og utgang. 1. Spenningsforsterkning: 2. Strømforsterkning: 3. Effektforsterkning

Detaljer