TMA4210 Numerisk løsning av part. diff.lign. med differansemetoder Vår 2005

Størrelse: px
Begynne med side:

Download "TMA4210 Numerisk løsning av part. diff.lign. med differansemetoder Vår 2005"

Transkript

1 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA40 Numerisk løsning av part. diff.lign. med differansemetoder Vår 005 Løsningsforslag Øving 5 a) Vi skal undersøke stabilitet ved Fourier-metoden. Metodens karakteristiske polynom er gitt som ã(z, r) = + εr(z + z) λhr (z z ). Fourier-metoden sier at metoden er stabil dersom kravet ã(e iθ, r) θ [0, π], er oppfylt. Vi setter inn e iθ i ã og får ã(e iθ, r) = εr( (e iθ + e iθ )) λhr (eiθ e iθ ) = 4εr sin θ iαr sin θ, hvor α = λh. Siden a(eiθ, r) er ekvivalent med a(e iθ, r), får vi ved kvadrering a(e iθ, r) = 8εr sin θ + 6ε r sin 4 θ + 4α r sin θ. Vi bruker sin( θ ) = sin θ cos θ og deler så på 8 sin θ. Stabilitetskravet blir dermed at εr + ε r sin θ + α r cos θ 0 eller ekvivalent at α r ε + r(ε α ) sin θ 0. Dette skal holde for θ [0, π]. Vi må skille mellom to tilfeller:. Anta at α < ε. Da har vi stabilitet dersom α r ε + r(ε α ) 0, dvs. dersom r ε. (sett inn ε = α) 4. mars 005 Side av 8

2 . Anta at α ε. Da har vi stabilitet dersom α r ε 0, dvs dersom r ε α. b) Matrisen Q er gitt ved ε (ε α) (ε + α) ε (ε α) Q = (ε + α) ε (ε α) ε ε, mens F er gitt ved F = r[ε + α, 0,..., 0] T. Legg merke til at siste rad i Q er litt forskjellig fra de andre. Dette kommer av formen av randbetingelsene. c) For å kunne løse denne oppgaven må vi kjenne til hvordan determinanten til en matrise utvikles ved en av radene. Anta vi vil utvikle determinanten til en matrise A ved rad i, da gjelder det A = a i A i + a i A i + + a in A in hvor A ij = ( ) i+j det M ij hvor M ij er ko-faktor matrisen til A, dvs matrisen vi får når vi stryker rad i og søyle j. På grunn av formen til Q, er det lurt å utvikle determinanten om siste rad. Da får vi det(q λi) = 0 Q N + 0 Q N Q NN εq NN + (ε λ)q NN = ε( ) N det + (ε λ)( ) N det ε λ (ε α) (ε + α) ε λ (ε α) (ε + α) ε λ 0 (ε + α) (ε α) ε λ (ε α) (ε + α) ε λ (ε α) (ε + α) ε λ (ε α) (ε + α) ε λ Vi ser at det siste leddet er gitt slik som det skal, mens det første ikke er på riktig form. Vi må beregne denne determinanten for seg selv. Hvis vi prøver å utvikle denne nok en gang om siste rad, støter vi raskt på problemer. Det vi bør legge merke til dog, er at siste søyle har bare siste element ulik null. Vi kan derfor benytte regelen om at determinanten av den transponerte matrisen er lik determinanten av matrisen selv, dvs det A = det A T. Dette betyr at vi like 4. mars 005 Side av 8

3 godt kan utvikle determinanten om en av søylene til matrisen. Vi velger derfor å utvikle problemmatrisen over ved siste søyle. Vi får dermed at det(q λi) = (ε λ)t N (λ) + ( ε(ε α))t N (λ) = (ε λ)t N (λ) ε(ε α))t N (λ), som skulle vises. Videre ser vi at matrisene T M (λ) er tridiagonale, så vi kjenner egenverdiene til disse fra notatet om tridiagonale matriser. Rekurrensformelen fås dog på akkurat samme måte som over, og startbetingelsene er trivielle. d) Matrise-metoden sier at metoden er stabil når ρ(a). Vi må finne σ(q), siden σ(a) = rσ(q). Dette gjøres ved å finne nullpunktene til G (λ). Vi har at G (λ) = (ε λ)t (λ) ε(ε α)t 0 (λ) = (ε λ) ε(ε α). Vi har igjen to muligheter:. Anta at α < ε. Da er G (λ) = 0 hvis Stabilitetskravet er λ = ε ± ε(ε α). rλ 0 og rλ. Den første ulikheten er trivielt oppfylt, og den andre gir r ε + ε(ε α). Anta at α ε. Da er røttene gitt ved som gir For å få stabilitet krever vi at som er oppfylt når λ = ε ± i ε(α ε), σ(a) = rε ± ir ε(α ε). σ(a) = 4rε + 4r ε + εαr ε r, r ε + α. e) Vi setter R = ε α, slik at T M (x) = R M U M (x). Rekurrensformelen for T M gir da R M U M (x) = xrr M U M (x) R R M U M (x), som er ekvivalent med Startsbetingelsene gir at og U M (x) = xu M (x) U M (x). RU (x) = xr U (x) = x R U (x) = 4x R R U (x) = 4x. Dermed kjenner vi igjen denne rekurrens-relasjonen som Chebyshev-polynomene av andre sort, som er nettopp U M (x). 4. mars 005 Side 3 av 8

4 f) Vi har at λ = ε xr, så rekurrensrelasjonen for G N (λ) gir, når vi substituerer inn uttrykket for T M, følgende uttrykk H N (x) = G N (ε xr) = xrr N U N (x) ε(ε α)r N U N (x) = R N [x(ε α )U N (x) ε(ε α)u N (x)] = (ε α)r N [x(ε + α)u N (x) εu N (x)]. Vi kan dermed konkludere med at røttene til H N (x) ligger i intervallet (, ). La de korresponderende røttene til G N (λ) være gitt ved λ j. Vi har da at σ j (A) = rλ j = r(ε x j R), så kravet σ j (A) gir den trivielt oppfylte ulikheten og ulikheten som er oppfylt når r(ε x j R) 0 r(ε x j R), r ε + ε α g) Sammenligning av Fouriermetoden og matrisemetoden ( egenverditeknikker ) gir at vi ikke får de samme betingelsene: Fouriermetoden Matrisemetoden α ε r ε (strengest) r ε α α α < ε r ε (strengest) r ε+ ε α Fouriermetoden støtter ikke annet enn periodiske randkrav, mens systemet vårt har Dirichlet i venste endepunkt og Neumann i høyre endepunkt. På den andre side så krever matrisemetoden at iterasjonsmatrisa A er normal, AA T = A T A (symmetriske og skjev-symmetriske matriser har denne egenskapen). A er nesten symmetrisk så for en passende definisjon av nesten, så er den nesten normal. Begge teknikker brukes likevel for å indikere stabilitetskrav for metoder med litt ustandard randbetingelser fordi det er bedre med en viss indikasjon på hva som kreves for stabilitet enn ingen. Matrisene B og C er gitt ved D M... B =... DM, C = I M I M I M I M I M, I M I M 4. mars 005 Side 4 av 8

5 hvor matrisen D M er gitt ved D M =. Vi ønsker nå å løse ligningen hvor B og C inngår. Kall høyresiden f, og sett F = (I rb) og H = (I rc). Vi omskriver ligningen til F HU n+ = f. Først løser vi F y = f, og deretter løser vi HU n+ = y. Begge ligningene er tridiagonale og kan derfor løses med O(M ) operasjoner. NB: Husk at O(M ) operasjoner i denne sammenheng betyr O(n) operasjoner, siden matrisen har M rader og dermed M 4 elementer. I Matlab kan disse matrisene enkelt konstrueres med et Kronecker tensorprodukt. Definer matrisa D i Matlab som D M over. Vi kan da konstruere >> M = 3 >> D = diag ( ones (,M ), ) + diag( ones (,M), 0 ) + diag ( ones (,M ),) D = 0 0 >> B = kron ( eye (M), D) >> C = kron (D, eye (M) ) >> help kron BC er da det samme som kron(d, D). 3 Oppgave 3. i læreboka. We will use Fourier method to analyze the stability of the scheme u n+ l = ( 5µ + 6µ )u n l + 3 µ( 3µ)(un l + un l+ ) µ( 6µ)(un l + un l+ ). The scheme has the following stability function ã(z, µ) ã(z, µ) = ( 5µ + 6µ ) + 3 µ( 3µ)(z + z) µ( 6µ)(z + z ). Substituting z = e iθ, we obtain ã(e iθ, µ) = ( 5µ + 6µ ) µ( 3µ) cos θ µ( 6µ) cos θ. 6 Let us use cos θ = cos θ to express ã(e iθ, µ) in terms of x = cos θ: ã(x, µ) = 3 µ(6µ )x µ( 3µ)x + ( 7 3 µ + µ ). () We must find all values µ such that ã(e iθ, µ), θ [0, π], 4. mars 005 Side 5 av 8

6 or, equivalently, ã(x, µ), x [, ], Let us notice that according to the definition µ 0. We limit ourselves to this interval in the analysis. There are two cases to consider:. If µ(6µ ) = 0, i.e. µ = 0 or µ = 6 the plot of the function ã(x, µ) is a line. The maximum value of ã(x, µ) for x [, ] is either ã(, µ) or ã(, µ). We get ã(, µ) = 6 3 µ + 8µ, ã(, µ). It is easy to see that ã(, µ) for µ = 0 and µ = 6. Thus, the scheme is stable.. If µ(6µ ) 0, the plot of the function ã(x, µ) is a parabola so that there is one extremum point ( 3µ) x 0 = ( 6µ). The maximum value of ã(x, µ) for x [, ] can be in x =, x = or x = x 0. It is important to notice that we must consider the point x = x 0 only if x 0 [, ]. For the stability of the scheme we require and ã(, µ), ã(, µ) ã(x 0, µ), if x 0 [, ]. We obtain ã(, µ), ã(, µ) if µ 3. The point x 0 is located in the interval [, ] if x 5 5. Because for µ [, 3 ] parabola () is has minimum in x 0 (why?) and it is entirely located in the upper half plane the value ã(x 0, µ) can not have maximum at x 0. Finally, the scheme is stable if µ [0, 3 ]. 4 Oppgave 3. i læreboka. Vi skal drøfte stabiliteten til FM-skjemaet u n+ l (µ ζ)(un+ l un+ l + u n+ l+ ) = un l + (µ + ζ)(un l un l + u n l+ ) for forskjellige valg av ζ. Først benytter vi matrisemetoden. La x = som alltid u n = [u n,..., u n d ]T. d+. Vi setter Vi må først bestemme systemmatrisen A x. Vi har at skjemaet kan skrives som A + x un+ = A x un, hvor A + x = + (µ ζ) (µ ζ) (µ ζ) + (µ ζ) (µ ζ) (µ ζ) + (µ ζ) 4. mars 005 Side 6 av 8

7 og (µ + ζ) (µ + ζ) A x = (µ + ζ) (µ ζ) (µ + ζ). (µ + ζ) (µ + ζ) Begge matrisene er TST (tridiagonal, symmetrisk og Toeplitz) og egenverdiene er gitt ved λ + j λ j = + (µ ζ) = (µ + ζ) + (µ ζ) cos( πj d+ ) = + (µ ζ) sin ( πj x (µ + ζ) cos( πj d+ ) = (µ + ζ) sin ( πj x ) j =,..., d ) j =,..., d. Selve systemmatrisen er gitt ved A x = (A + x ) A x. Siden komponentmatrisene er tridiagonale og derfor normale, er systemmatrisen selv en normal matrise. Fordi matriser A + x og A x er TST kan vi skrive A + x = QD+ Q T og A x = QD Q T, der Q er den ortonormale matrisen med egenvektorene (egenvektorene er like for A + x og A x ) og D+ og D diagonale matriser med de respektive egenverdiene (Lemma 0.5 i boka). Dermed følger det umiddelbart at A x = (QD + Q T ) QD Q T = Q(D + ) Q T QD Q T = Q(D + ) D Q T. Dette viser at egenverdiene til A x er gitt som (λ + j ) λ j, dvs egenverdiene er gitt som λ j = (µ + ζ) sin ( πj x ) + (µ ζ) sin ( πj x j =,..., d. ) Vi vet at 0 sin ( πj x ). Anta at verdien er s for å slippe å skrive så mye. λ j betyr da for våre reelle tall: og vi skiller i to tilfeller: (µ + ζ)s + (µ ζ)s. Nevneren er positiv, + sµ sζ > 0 ζ < µ + /(s). Da ganger vi opp nevneren og venstre ulikhet gir som betyr at vi må kreve for stabilitet. Høyre ulikhet blir sµ + sζ sµ sζ ζ s sµ sζ + sµ sζ som kun krever µ > 0 for stabilitet, og dette er alltid tilfredstilt i denne oppgaven (noe annet ville innebære negativ tid). 4. mars 005 Side 7 av 8

8 . Nevneren er negativ, ζ > µ + /(s). Når nevneren er negativ må vi endre på fortegnet til ulikheten når vi ganger opp. Venstre ulikhet gir sµ + sζ sµ sζ som betyr at ζ /(s). Men høyre ulikhet gir nå µ 0 som ikke er sant i denne oppgaven, dermed er aldri skjemaet stabilt når nevneren er negativ. Siden 0 s har vi at strengeste stabilitetsgrense kommer når s =, dermed har vi at skjemaet kun er stabilt når ζ. Vi skal så benytte Fouriermetoden på samme skjema. Stabilitetsfunksjonen er gitt ved ã(z, µ) = + (µ + ζ)(z + z) (µ ζ)(z + z). Vi setter z = e iθ og får ã(e iθ, µ) = (µ + ζ) + (µ + ζ)(eiθ + e iθ ) + (µ ζ) (µ ζ)(eiθ + e iθ ) = (µ + ζ) sin ( θ ) + (µ ζ) sin ( θ ) θ [0, π]. Vi ser at stabilitetsfunksjonen sammensvarer med uttrykket for egenverdiene fra matrisemetoden, så vi kan konkludere med at Fouriermetoden gir samme stabilitetskrav. Legg merke til at hvis vi setter ζ = 0, så får vi Crank Nicolsons metode, så vi kan forvente at ζ er en slags relaksasjonsparameter, dvs at den skal øke konvergenshastigheten. 4. mars 005 Side 8 av 8

EKSAMEN I NUMERISK LØSNING AV DIFFERENSIALLIGNINGER MED DIFFERANSEMETODER (TMA4212)

EKSAMEN I NUMERISK LØSNING AV DIFFERENSIALLIGNINGER MED DIFFERANSEMETODER (TMA4212) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Faglig kontakt under eksamen: Navn: Bård Skaflestad (946867) EKSAMEN I NUMERISK LØSNING AV DIFFERENSIALLIGNINGER

Detaljer

EKSAMEN I NUMERISK LØSNING AV DIFFERENSIALLIGNINGER MED DIFFERANSEMETODER (TMA4212)

EKSAMEN I NUMERISK LØSNING AV DIFFERENSIALLIGNINGER MED DIFFERANSEMETODER (TMA4212) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 Faglig kontakt under eksamen: Navn: Brynjulf Owren (964) EKSAMEN I NUMERISK LØSNING AV DIFFERENSIALLIGNINGER MED DIFFERANSEMETODER

Detaljer

EKSAMEN I MATEMATIKK 3 (TMA4110)

EKSAMEN I MATEMATIKK 3 (TMA4110) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 EKSAMEN I MATEMATIKK 3 (TMA) Tirsdag 3. november Tid: 9: 3: LØSNINGSFORSLAG MED KOMMENTARER Oppgave I denne oppgaven

Detaljer

EKSAMEN I NUMERISK LINEÆR ALGEBRA (TMA4205)

EKSAMEN I NUMERISK LINEÆR ALGEBRA (TMA4205) Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side av 6 Faglig kontakt under eksamen: Navn: Brynjulf Owren 93064 EKSAMEN I NUMERISK LINEÆR ALGEBRA TMA405 Fredag 5 desember

Detaljer

UNIVERSITET I BERGEN

UNIVERSITET I BERGEN UNIVERSITET I BERGEN Det matematisk-naturvitenskapelige fakultet BOKMÅL Løsningsforslag eksamen MAT - Lineær algebra H Med forbehold om skrivefeil. Oppgave. Betrakt A = 6 5, b = 6 b (a) (b) Finn den reduserte

Detaljer

Løsningsforslag til eksamen i MA1202/MA6202 Lineær algebra med anvendelser høsten 2009.

Løsningsforslag til eksamen i MA1202/MA6202 Lineær algebra med anvendelser høsten 2009. Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 9 Løsningsforslag til eksamen i MA/MA6 Lineær algebra med anvendelser høsten 9 Oppgave a) Rangen til A er lik antallet

Detaljer

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter!

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Oppgave.. a x y = x + y = r r r +r r x y = y fri x y = y fri Vi får én fri variabel, og løsningens har følgelig dimensjon.

Detaljer

TMA4110 Matematikk 3 Eksamen høsten 2018 Løsning Side 1 av 9. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer:

TMA4110 Matematikk 3 Eksamen høsten 2018 Løsning Side 1 av 9. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: TMA4 Matematikk 3 Eksamen høsten 8 Løsning Side av 9 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 8 5 4 8 3 36 8 4 8 8 8 Den siste matrisen her er på redusert trappeform, og

Detaljer

TMA4240 Statistikk 2014

TMA4240 Statistikk 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 6, blokk I Løsningsskisse Oppgave 1 Fremgangsmetode: P X 1 < 6.8 Denne kan finnes ved å sette opp integralet over

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG SIF5045 NUMERISK LØSNING AV DIFFERENSIALLIGNINGER

LØSNINGSFORSLAG TIL EKSAMEN I FAG SIF5045 NUMERISK LØSNING AV DIFFERENSIALLIGNINGER Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 8 Faglig kontakt under eksamen: Syvert P. Nørsett 7 59 5 45 LØSNINGSFORSLAG TIL EKSAMEN I FAG SIF545 NUMERISK LØSNING

Detaljer

Løsningsforslag for eksamen i Matematikk 3 - TMA4115

Løsningsforslag for eksamen i Matematikk 3 - TMA4115 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag for eksamen i Matematikk 3 - TMA4115 Vår 1 1 a) La z = x iy. Da er Re z = x og z = x y. Siden y er et reelt

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4 Matematikk Høst 24 Løsningsforslag Øving 9 4.3.4 Vi bruker Taylor-polynom til å løse denne oppgaven. Taylor-polynomet (Maclaurinpolynomet)

Detaljer

TMA4123/TMA4125 Matematikk 4M/4N Vår 2013

TMA4123/TMA4125 Matematikk 4M/4N Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4123/TMA4125 Matematikk 4M/4N Vår 2013 Løsningsforslag Øving 4 1 a) Bølgeligningen er definert ved u tt c 2 u xx = 0. Sjekk

Detaljer

Egenverdier for 2 2 matriser

Egenverdier for 2 2 matriser Egenverdier for matriser (Bearbeidet versjon av tidligere notat på nett-sidene til MA101 - Lineær algebra og geometri Versjon oppdatert med referanser til 10utg av læreboken) Egenvektorer og egenverdier

Detaljer

EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Mandag 6. juni 2011 løsningsforslag

EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Mandag 6. juni 2011 løsningsforslag Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 EKSAMEN I TMA4 MATEMATIKK 3 Bokmål Mandag 6. juni løsningsforslag Hjelpemidler (kode C): Enkel kalkulator (HP3S eller

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2014

MA0002 Brukerkurs i matematikk B Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA Brukerkurs i matematikk B Vår Løsningsforslag Øving Oppgaver fra boken: :, 9,,, 5, 9, 5, 67 Det er oppgavene i boldface som

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2016

MA0002 Brukerkurs i matematikk B Vår 2016 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA000 Brukerkurs i matematikk B Vår 016 Separable og førsteordens lineære differensialligninger En differensialligning er separabel

Detaljer

MA2501 Numerical methods

MA2501 Numerical methods MA250 Numerical methods Solutions to problem set Problem a) The function f (x) = x 3 3x + satisfies the following relations f (0) = > 0, f () = < 0 and there must consequently be at least one zero for

Detaljer

Eksamen i TMA4123/TMA4125 Matematikk 4M/N

Eksamen i TMA4123/TMA4125 Matematikk 4M/N Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Faglig kontakt under eksamen: Anne Kværnø: mobil 92663824 Eksamen i TMA423/TMA425 Matematikk 4M/N Bokmål Mandag 2.

Detaljer

Eksamensoppgave i MA2501 Numeriske metoder

Eksamensoppgave i MA2501 Numeriske metoder Institutt for matematiske fag Eksamensoppgave i MA50 Numeriske metoder Faglig kontakt under eksamen: Trond Kvamsdal Tlf: 9305870 Eksamensdato: 3. mai 08 Eksamenstid (fra til): 09:00 3:00 Hjelpemiddelkode/Tillatte

Detaljer

Løsningsforslag MAT 120B, høsten 2001

Løsningsforslag MAT 120B, høsten 2001 Løsningsforslag MAT B, høsten Sett A = ( ) (a) Finn egenverdiene og egenvektorene til A ( ) λ =, e = ( λ =, e = ) (b) Finn matrisen e ta og den generelle løsningen på initialverdiproblemet Ẋ = AX, X()

Detaljer

TMA4215 Numerisk matematikk

TMA4215 Numerisk matematikk TMA45 Numerisk matematikk Høst 0 Løsningsforslag øving 7 Oppgave a Vi har Eksakt løsning: yt n+ = yt n + hφ t n, yt n ; h + d n+, Numerisk løsning: y n+ = y n + hφt n, y n ; h. Ta differensen mellom disse,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MoD200 Eksamensdag: 15. desember 2003 Tid for eksamen: 14.30 17.30 Oppgavesettet er på 5 sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2013

MA0002 Brukerkurs i matematikk B Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA Brukerkurs i matematikk B Vår Løsningsforslag Øving 6 9..7 Anta at en populasjon er delt inn i tre aldersklasser, og at %

Detaljer

Oppgave 1 (25 %) - Flervalgsoppgaver

Oppgave 1 (25 %) - Flervalgsoppgaver Oppgaver og løsningsforslag for 4t eksamen 10.mai 006 i LO510D Lineær algebra med grafiske anvendelser. Fra og med oppgave skal alle svar begrunnes. Oppgave 1 (5 %) - Flervalgsoppgaver Denne oppgaven består

Detaljer

a) Matrisen I uv T har egenverdier 1, med multiplisitet n 1 og 1 v T u, med multiplisitet 1. Derfor er matrisen inverterbar når v T u 1.

a) Matrisen I uv T har egenverdier 1, med multiplisitet n 1 og 1 v T u, med multiplisitet 1. Derfor er matrisen inverterbar når v T u 1. Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Oppgave 1 a) Matrisen I uv T har egenverdier 1, med multiplisitet n 1 og 1 v T u, med multiplisitet 1. Derfor er

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN LØSNINGSFORSLAG UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. H.007. Eksamen i emnet MAT131 - Differensialligninger I 8. september 007 kl. 0900-100 Tillatte hjelpemidler: Ingen (heller

Detaljer

EKSAMEN I NUMERISK LINEÆR ALGEBRA (TMA4205)

EKSAMEN I NUMERISK LINEÆR ALGEBRA (TMA4205) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 Kontakt under eksamen Navn: Bawfeh Kingsley Kometa kontor: 7359975, mobil: 936 24 483) Sensur: 06.0.20 EKSAMEN I NUMERISK

Detaljer

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl.

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 1 MAT131 Bokmål Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 09-14 Oppgavesettet er 4 oppgaver fordelt på

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN BOKMÅL UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. V.008. Løsningsforslag til eksamen i emnet MAT131 - Differensialligninger I 8. mai 008 kl. 0900-1400 Vi har ligningen der α er

Detaljer

MA1201/MA6201 Høsten 2016

MA1201/MA6201 Høsten 2016 MA/MA6 Høsten 6 Norges teknisk naturvitenskapelige universitet Institutt for matematikk Løsningsforslag Øving Med forebehold om feil. Hvis du finner en, ta kontakt med Karin. Kapittel 6. a) Stemmer. Anta

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA400 Matematikk Høst 04 Løsningsforslag Øving 04 30 For å vise at f er en injektiv one-to-one funksjon, ser vi på den deriverte,

Detaljer

Slope-Intercept Formula

Slope-Intercept Formula LESSON 7 Slope Intercept Formula LESSON 7 Slope-Intercept Formula Here are two new words that describe lines slope and intercept. The slope is given by m (a mountain has slope and starts with m), and intercept

Detaljer

R: 0, , = 6000 D : 0, , = 4000 La v n = angi fordelingen etter n år (dvs. a b n stemmer for R og

R: 0, , = 6000 D : 0, , = 4000 La v n = angi fordelingen etter n år (dvs. a b n stemmer for R og EGENVERDIER FOR MATRISER a Motiverende eksempel En by i USA har 0000 innbyggere som stemmer ved valget hvert år. I dag stemmer 8000 for R og 000 for D. Hvert år går 30% fra R til D og 0% fra D til R. Hva

Detaljer

TMA4135 Matematikk 4D Høst 2014

TMA4135 Matematikk 4D Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA435 Matematikk 4D Høst 04 Eksamen. desember 04 Integralet er en konvolusjon, så vi har Laplace-transformasjon gir yt) y cos)t)

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2016

MA0002 Brukerkurs i matematikk B Vår 2016 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA000 Brukerkurs i matematikk B Vår 06 Anbefalte øvingsoppgaver fra boken: 9.3 : 53, 6, 64, 7, 75. Det er bare oppgaven under

Detaljer

12 Diagonalisering av matriser og operatorer (Ch. 5.1, 5.2 og 8.5)

12 Diagonalisering av matriser og operatorer (Ch. 5.1, 5.2 og 8.5) Diagonalisering av matriser og operatorer (Ch 5, 5 og 85) Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A I kalkulus (teori av differensiallikninger) er

Detaljer

TMA4210 Numerisk løsning av part. diff.lign. med differansemetoder Vår 2005

TMA4210 Numerisk løsning av part. diff.lign. med differansemetoder Vår 2005 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4210 Numerisk løsning av part. diff.lign. med differansemetoder Vår 2005 Løsningsforslag Øving 2 1 Denne oppgaven er ganske

Detaljer

MA1202/MA S løsningsskisse

MA1202/MA S løsningsskisse Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0/MA0 0S løsningsskisse Rettet. august 0 Oppgave a) Vi finner det karakteristiske polynomet, λ 0 λ λ λ λ detλi A) λ 0 λ λ

Detaljer

Abelprisvinner L-funksjoner Kjempers skuldre Galois Frobenius Artin Wiles. Årets Abel-pris Robert Langlands

Abelprisvinner L-funksjoner Kjempers skuldre Galois Frobenius Artin Wiles. Årets Abel-pris Robert Langlands Årets Abel-pris Robert Langlands L for Langlands L-funksjoner L for Langlands L-funksjoner L for L-funksjoner L for Langlands L-funksjoner L for L-funksjoner L-funksjoner er spesielle funksjoner av typen

Detaljer

Løsningsforslag Eksamen M001 Våren 2002

Løsningsforslag Eksamen M001 Våren 2002 Løsningsforslag Eksamen M Våren Oppgave f(x) = (x )e x Bruker produktregelen i derivasjonen f (x) = e x + (x ) (e x ) For å derivere e x velges kjernen u = x, og vi får (e x ) = e u. f (x) = e x + (x )

Detaljer

Det matematisk-naturvitenskapelige fakultet

Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 227 Numerisk lineær algebra Eksamensdag: 5. desember 2001 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 5 sider. Vedlegg:

Detaljer

Notasjon i rettingen:

Notasjon i rettingen: UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Løsningsforslag med kommentarer) til Innlevering /4 i emnet MAT, høsten 207 Notasjon i rettingen: R Rett R Rett, men med liten tulle)feil

Detaljer

TMA4210 Numerisk løsning av part. diff.lign. med differansemetoder Vår 2005

TMA4210 Numerisk løsning av part. diff.lign. med differansemetoder Vår 2005 Norges teknisk naturvitenskapeige universitet Institutt for matematiske fag TMA420 Numerisk øsning av part diffign med differansemetoder Vår 2005 3 Crank Nicoson er en famiie metoder som fremkommer ved

Detaljer

Eksamensoppgave i TMA4135 Matematikk 4D

Eksamensoppgave i TMA4135 Matematikk 4D Institutt for matematiske fag Eksamensoppgave i TMA435 Matematikk 4D Faglig kontakt under eksamen: Helge Holden a, Gard Spreemann b Tlf: a 92038625, b 93838503 Eksamensdato: 0. desember 205 Eksamenstid

Detaljer

Løsningsforslag til eksamen i SIF4072 KLASSISK FELTTEORI Onsdag 28. mai 2003

Løsningsforslag til eksamen i SIF4072 KLASSISK FELTTEORI Onsdag 28. mai 2003 Norges teknisk naturvitenskapelige universitet NTNU Side 1 av 9 Institutt for fysikk Fakultet for naturvitenskap og teknologi Løsningsforslag til eksamen i SIF4072 KLASSISK FELTTEORI Onsdag 28. mai 2003

Detaljer

Øving 5 - Fouriertransform - LF

Øving 5 - Fouriertransform - LF Øving 5 - Fouriertransform - LF Obligatoriske oppgaver See the notes Matlab: %x og t aksen x=:.:pi; t=:pi/:*pi; %sette opp funksjon og plotte hver frame for j=:length(t) %funksjonsverdier p innev rende

Detaljer

Løsningsforslag til eksamen i MA0002, Brukerkurs i matematikk B

Løsningsforslag til eksamen i MA0002, Brukerkurs i matematikk B Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Løsningsforslag til eksamen i MA000, Brukerkurs i matematikk B 9. mai 01 Oppgave 1 a) Et plan i rommet har ligning

Detaljer

EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Fredag 4. desember 2009 løsningsforslag

EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Fredag 4. desember 2009 løsningsforslag Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Fredag 4. desember 2009 løsningsforslag Hjelpemidler (kode C): Enkel kalkulator

Detaljer

LO510D Lin.Alg. m/graf. anv. Våren 2005

LO510D Lin.Alg. m/graf. anv. Våren 2005 TF Høgskolen i Sør Trøndelag Avdeling for informatikk og e læring LO5D Lin.Alg. m/graf. anv. Våren 5 Løsningsforslag Eksamen a) Setter α = og β = i ligningssystemet og gausseliminerer totalmatrisen til

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2014

MA0002 Brukerkurs i matematikk B Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2014 Løsningsforslag Øving 10 Oppgaver fra boken: 10.6 : 1, 8, 9, 12, 19, 26, 29,, 4 Det

Detaljer

TMA4110 Eksamen høsten 2018 EKSEMPEL 1 Løsning Side 1 av 8. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: x 1 7x 4 = 0

TMA4110 Eksamen høsten 2018 EKSEMPEL 1 Løsning Side 1 av 8. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: x 1 7x 4 = 0 TMA4 Eksamen høsten 28 EKSEMPEL Løsning Side av 8 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 2 2 2 4 2 6 2 4 2 6 2 2 Dette gir likningene og 2 2 4 2 6 7 2. x 7x 4 = x 2 + 2x

Detaljer

7.4 Singulærverdi dekomposisjonen

7.4 Singulærverdi dekomposisjonen 7.4 Singulærverdi dekomposisjonen Singulærverdi dekomposisjon til en matrise A er en av de viktigste faktoriseringene av A (dvs. A skrives som et produkt av matriser). Den inneholder nyttig informasjon

Detaljer

MAT1120 Notat 2 Tillegg til avsnitt 5.4

MAT1120 Notat 2 Tillegg til avsnitt 5.4 MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjonen (også kalt koordinatmatrisen) til en lineær avbildning mellom to endeligdimensjonale vektorrom

Detaljer

Ma Flerdimensjonal Analyse Øving 1

Ma Flerdimensjonal Analyse Øving 1 Ma1203 - Flerdimensjonal Analyse Øving 1 Øistein Søvik Brukernavn: Oistes 23.01.2012 Oppgaver 10.1 6. Show that the triangle with verticies (1, 2, 3), (4, 0, 5) and (3, 6, 4) has a right angle. z y x Utifra

Detaljer

FYS2140 Kvantefysikk. Løsningsforslag for Oblig 7

FYS2140 Kvantefysikk. Løsningsforslag for Oblig 7 FYS2140 Kvantefysikk Løsningsforslag for Oblig 7 Oppgave 2.23 Regn ut følgende intgral a) +1 3 (x 3 3x 2 + 2x 1)δ(x + 2) dx (1) Svar: For å løse dette integralet bruker vi Dirac deltafunksjonen (se seksjon

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2016

MA0002 Brukerkurs i matematikk B Vår 2016 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2016 Løsningsforslag Øving 11 Oppgaver fra boken: 10.6 : 1, 8, 9, 12, 19, 26, 29,, 4 Det

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2017

MA0002 Brukerkurs i matematikk B Vår 2017 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2017 Løsningsforslag Øving 3 apittel 8.2: Likevektspunkter og deres stabilitet La oss si

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT2400 Analyse 1. Eksamensdag: Onsdag 15. juni 2011. Tid for eksamen: 09.00 13.00 Oppgavesettet er på 6 sider. Vedlegg: Tillatte

Detaljer

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt)

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt) FYSMEK1110 Eksamensverksted 23. Mai 2018 14:15-18:00 Oppgave 1 (maks. 45 minutt) Page 1 of 9 Svar, eksempler, diskusjon og gode råd fra studenter (30 min) Hva får dere poeng for? Gode råd fra forelesere

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2014

MA0002 Brukerkurs i matematikk B Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA000 Brukerkurs i matematikk B Vår 04 Løsningsforslag. Eksamen 6. mai Løsning: Oppgave a) dy dx y y y )y ) : gy), så likevektsløsningene

Detaljer

Eksamensoppgave i TMA4110/TMA4115 Calculus 3

Eksamensoppgave i TMA4110/TMA4115 Calculus 3 Institutt for matematiske fag Eksamensoppgave i TMA4110/TMA4115 Calculus 3 Faglig kontakt under eksamen: Markus Szymik Tlf: 411 16 793 Eksamensdato: August 2018 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte

Detaljer

Matematikk 4 TMA4123M og TMA 4125N 20. Mai 2011 Løsningsforslag med utfyllende kommentarer

Matematikk 4 TMA4123M og TMA 4125N 20. Mai 2011 Løsningsforslag med utfyllende kommentarer h og f g og f Matematikk TMA3M og TMA 5N 0. Mai 0 Løsningsforslag med utfyllende kommentarer Oppgave Funksjonen f () = sin, de nert på intervallet [0; ], skal utvides til en odde funksjon, g, og en like

Detaljer

=cos. =cos 6 + i sin 5π 6 = =cos 2 + i sin 3π 2 = i.

=cos. =cos 6 + i sin 5π 6 = =cos 2 + i sin 3π 2 = i. Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 9 L SNINGSFORSLAG TIL EKSAMEN I SIF59 MATEMATIKK Bokmål Fredag. desember Oppgave a) Vi har z = i r e iθ = e i π r =,

Detaljer

TMA4100 Matematikk1 Høst 2008

TMA4100 Matematikk1 Høst 2008 TMA400 Matematikk Høst 008 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 4 4..3 Vi skal finne absolutt maksimum og absolutt minimum verdiene for funksjonen

Detaljer

5.8 Iterative estimater på egenverdier

5.8 Iterative estimater på egenverdier 5.8 Iterative estimater på egenverdier Det finnes ingen eksplisitt formel for beregning av egenverdiene til en kvadratisk matrise. Iterative metoder som finner (ofte) en (meget god) approksimasjon til

Detaljer

MAT UiO. 10. mai Våren 2010 MAT 1012

MAT UiO. 10. mai Våren 2010 MAT 1012 MAT Våren UiO. / 7 Betrakt et system x = A x der A M n (R) er diagonaliserbar. Vi har sett at systemet kan løses ved frakoblingsmetoden: Vi finner da P = [v v n ] (inverterbar) og D (diagonal) som diagonaliserer

Detaljer

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5)

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5) Gradient Masahiro Yamamoto last update on February 9, 0 definition of grad The gradient of the scalar function φr) is defined by gradφ = φr) = i φ x + j φ y + k φ ) φ= φ=0 ) ) 3) 4) 5) uphill contour downhill

Detaljer

Løsningsforslag MAT102 Vår 2018

Løsningsforslag MAT102 Vår 2018 Løsningsforslag MAT102 Vår 2018 Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT102 Tirsdag 12 juni 2018, kl 0900-1400 Oppgavesettet har fem oppgaver Hver deloppgave

Detaljer

Løsningsforslag til eksamen i MA1202/MA6202 Lineær algebra med anvendelser våren 2009.

Løsningsforslag til eksamen i MA1202/MA6202 Lineær algebra med anvendelser våren 2009. Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av Løsningsforslag til eksamen i MA22/MA622 Lineær algebra med anvendelser våren 29 Oppgave a) Rangen til A er lik antallet

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Date of exam: Friday, May

Detaljer

Numerisk løsning av PDL

Numerisk løsning av PDL Numerisk løsning av PDL Arne Morten Kvarving Department of Mathematical Sciences Norwegian University of Science and Technology 6. November 2007 Problem og framgangsmåte Fram til nå har vi sett på ordinære

Detaljer

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postponed exam: ECON420 Mathematics 2: Calculus and linear algebra Date of exam: Tuesday, June 8, 203 Time for exam: 09:00 a.m. 2:00 noon The problem set covers

Detaljer

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT2 - Lineær algebra Onsdag 29 mai, 20, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets

Detaljer

7 Egenverdier og egenvektorer TMA4110 høsten 2018

7 Egenverdier og egenvektorer TMA4110 høsten 2018 7 Egenverdier og egenvektorer TMA4 høsten 8 Det er ofte hensiktsmessig å tenke på en matrise ikke bare som en tabell med tall, men som en transformasjon av vektorer. Hvis A er en m n-matrise, så gir A

Detaljer

TMA4123/TMA4125 Matematikk 4M/4N Vår 2013

TMA4123/TMA4125 Matematikk 4M/4N Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA41/TMA415 Matematikk 4M/4N Vår 1 Løsningsforslag Øving 1 Skriv om følgende trigonometriske funksjoner til fourierrekker ved

Detaljer

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3 Relational Algebra 1 Unit 3.3 Unit 3.3 - Relational Algebra 1 1 Relational Algebra Relational Algebra is : the formal description of how a relational database operates the mathematics which underpin SQL

Detaljer

Diagonalisering. Kapittel 10

Diagonalisering. Kapittel 10 Kapittel Diagonalisering I te kapitlet skal vi anvende vår kunnskap om egenverdier og egenvektorer til å analysere matriser og deres tilsvarende lineærtransformasjoner Eksempel Vi begynner med et eksempel

Detaljer

A 2 = PDP 1 PDP 1 = PD 2 P 1. og ved induksjon får vi. A k = PD k P 1. Kommentarer:

A 2 = PDP 1 PDP 1 = PD 2 P 1. og ved induksjon får vi. A k = PD k P 1. Kommentarer: 5.3 Diagonalisering Det ville være fint om en matrise A var similær med en diagonalmatrise D: da har vi funnet egenverdiene, og kan f.eks. lett beregne A k. Når er dette tilfelle? Det er tema i denne seksjonen.

Detaljer

MA1201 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3. desember 2007

MA1201 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3. desember 2007 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag MA101 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3 desember 007 Oppgave 1 a) Vi ser på ligningssystemet x +

Detaljer

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences. Matlab-utskrift (1 side).

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences. Matlab-utskrift (1 side). UNIVERSITY OF OSLO Faculty of Mathematics and Natural Sciences Examination in: MAT 2 Lineær algebra Day of examination: 9. desember 2. Examination hours: 4.3 8.3. This problem set consists of 6 pages.

Detaljer

Graphs similar to strongly regular graphs

Graphs similar to strongly regular graphs Joint work with Martin Ma aj 5th June 2014 Degree/diameter problem Denition The degree/diameter problem is the problem of nding the largest possible graph with given diameter d and given maximum degree

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Ny/utsatt eksamen i Eksamensdag: 9. august 2. Tid for eksamen: 9 2. Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler: MAT Kalkulus

Detaljer

MA2501, Vårsemestre 2019, Numeriske metoder for lineære systemer

MA2501, Vårsemestre 2019, Numeriske metoder for lineære systemer MA5 Vårsemestre 9 Numeriske metoder for lineære systemer Introduksjon Vi vil approksimere løsningen av lineære systemet av n ligningene og n ukjente: a x + a x + + a n x n b a x + a x + + a n x n b ()

Detaljer

MAT1120 Notat 2 Tillegg til avsnitt 5.4

MAT1120 Notat 2 Tillegg til avsnitt 5.4 MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjoner (også kalt koordinatmatriser) av lineære avbildninger mellom endeligdimensjonale vektorrom En slik

Detaljer

LØSNINGSSKISSE TIL EKSAMEN I FAG SIF august 2001

LØSNINGSSKISSE TIL EKSAMEN I FAG SIF august 2001 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSSKISSE TIL EKSAMEN I FAG SIF500 0. august 00 Oppgave 5 +6 ( 4 +6)0 dvs. at vi har en rot 0 og 4 røtter av

Detaljer

Løsningsførslag i Matematikk 4D, 4N, 4M

Løsningsførslag i Matematikk 4D, 4N, 4M Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 Løsningsførslag i Matematikk 4D, 4N, 4M Oppgave (Kun før 4D Vi har f(x, y x + y x y, for x y. Dette gir For (x, y

Detaljer

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2 Mathematics 4Q Name: SOLUTIONS. (x + 5)(x +5x) 7 8 (x +5x) 8 + C [u x +5x]. (3 x) (3 x) + C [u 3 x] 3. 7x +9 (7x + 9)3/ [u 7x + 9] 4. x 3 ( + x 4 ) /3 3 8 ( + x4 ) /3 + C [u + x 4 ] 5. e 5x+ 5 e5x+ + C

Detaljer

Egenverdier og egenvektorer

Egenverdier og egenvektorer Kapittel 9 Egenverdier og egenvektorer Det er ofte hensiktsmessig å tenke på en matrise ikke bare som en tabell med tall, men som en transformasjon av vektorer Hvis A er en m n-matrise, så gir A en transformasjon

Detaljer

ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems

ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems Department of Economics May 004 Arne Strøm ECON0/40 Mathematics, spring 004 Problem solutions for the seminar on 5 May 004 (For practical reasons (read laziness, most of the solutions this time are in

Detaljer

MAT UiO mai Våren 2010 MAT 1012

MAT UiO mai Våren 2010 MAT 1012 200 MAT 02 Våren 200 UiO 0-2. 200 / 48 200 Betrakt et system x = A x der A M n (R) er diagonaliserbar. Vi har sett at systemet kan løses ved frakoblingsmetoden: Vi finner da P = [v v n ] (inverterbar)

Detaljer

TFY4170 Fysikk 2 Justin Wells

TFY4170 Fysikk 2 Justin Wells TFY4170 Fysikk 2 Justin Wells Forelesning 5: Wave Physics Interference, Diffraction, Young s double slit, many slits. Mansfield & O Sullivan: 12.6, 12.7, 19.4,19.5 Waves! Wave phenomena! Wave equation

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON20/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON20/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Fredag 2. mai

Detaljer

Dynamic Programming Longest Common Subsequence. Class 27

Dynamic Programming Longest Common Subsequence. Class 27 Dynamic Programming Longest Common Subsequence Class 27 Protein a protein is a complex molecule composed of long single-strand chains of amino acid molecules there are 20 amino acids that make up proteins

Detaljer

TMA Kræsjkurs i Matlab. Oppgavesett 1/3

TMA Kræsjkurs i Matlab. Oppgavesett 1/3 TMA4123 - Kræsjkurs i Matlab. Oppgavesett 1/3 22.02.2013 Dette oppgavesettet omhandler grunnleggende Matlab-funksjonalitet, slik som variabler, matriser, matematiske funksjoner og plotting. Den aller viktigste

Detaljer

Trigonometric Substitution

Trigonometric Substitution Trigonometric Substitution Alvin Lin Calculus II: August 06 - December 06 Trigonometric Substitution sin 4 (x) cos (x) dx When you have a product of sin and cos of different powers, you have three different

Detaljer

LØSNINGSFORSLAG EKSAMEN MA0002, VÅR 09

LØSNINGSFORSLAG EKSAMEN MA0002, VÅR 09 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSFORSLAG EKSAMEN MA000, VÅR 09 Oppgave a) (0%) Løs initialverdiproblemet gitt ved differensialligningen med

Detaljer

Løsninger for eksamen i MAT Lineær algebra og M102 - Lineær algebra, fredag 28. mai 2004, Oppgave 1. M s = = 1 2 (cofm 2) T.

Løsninger for eksamen i MAT Lineær algebra og M102 - Lineær algebra, fredag 28. mai 2004, Oppgave 1. M s = = 1 2 (cofm 2) T. Løsninger for eksamen i MAT - Lineær algebra og M - Lineær algebra, fredag 8. mai 4, (a) Finn determinanten til matrisen M s = Oppgave s uttrykt ved s, og bruk dette til å avgjøre for hvilke s matrisen

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Tirsdag 7. juni

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 0 Lineær algebra Eksamensdag: Mandag 0. desember 0 Tid for eksamen: 4.30 8.30. Oppgavesettet er på 7 sider. Vedlegg: Tillatte

Detaljer