Fasiter til diverse regneoppgaver:

Størrelse: px
Begynne med side:

Download "Fasiter til diverse regneoppgaver:"

Transkript

1 Fasiter til diverse regneoppgaver: Ukeoppgavesett 5 Forelesning 9 Ukeoppgavesett 8

2 Co-59+n Co-60 Halveringstida til Co-60 er 5,3 år Det bestråles med nøytroner til Co-60 aktiviteten er 1 Ci. Hvor mange atomer Co-60 er det da i prøven?

3 Isotopen Co-60 dannes i en reaktor ved å bestråle Co-59 med nøytroner: 59 Co + n 60 Co + Halveringstida for Co-60, T 1/2 = 5,3 år Anta at vi bestråler med nøytroner inntil aktiviteten av Co-60 er 1 Ci. Hvor mange Co-60 atomer har vi da i prøven? Vi veit at aktiviteten til en radioaktiv kilde er gitt ved A = N Vi skal finne antall atomer i prøven, dvs N; og setter N = A / Vi har fått oppgitt aktiviteten: A =3, Bq og trenger kun å finne før vi kan beregne N. Ettersom vi har oppgitt halveringstida (t 1/2 = 5,3 år) beregner vi desintegrasjonskonstanten på standard måte: ln2 = t 1/2 = ln2 / t 1/2 MERK: må gjøre om tida til sekunder etter som aktiviteten i Bq inngår i uttrykket! = ln2 / 5,3 ( ) = ln2 / (5,3 år 3, sek/år ) = ln2 / 1, sek = 0,693 / 1, sek = 4, s -1 Har nå både og A og kan følgelig finne N fra formelen N = A /. Antall atomer Co-60 i prøven: N = A / = 3, Bq / 4, s -1 =

4 I løpet av et år mottar en arbeider følgende stråling: 5 mgy fra α-partikler til lungene 100 mgy fra β-partikler til skjoldbruskkjertelen 16 mgy i uniform helkropsdose fra ekstern gamma kilde. Hva er den totale effektive dosen?

5 I løpet av et år mottar en arbeider følgende stråling: - 5 mgy fra -partikler til lungene mgy fra -partikler til skjoldbrukskjertelen - 16 mgy i uniform helkropsdose fra ekstern -kilde Hva er den totale effektive dosen til denne arbeideren? Effektiv dose = D w R w o organvektfaktor w o lunge = 0,12 w o skjoldbruskkjertel = 0,05 w o hele kroppen = 1,00 strålingsvektfaktor w R = 1 for og w R = 20 for Effektiv dose = D w R w o = 5 mgy 20 0, mgy 1 0, mgy 1 1,00 = 33 msv

6 Anta at du måler aktiviteten til en kilde med radioaktivt brom (Br-82) ved to forskjellige tidspunkt. 11. februar 2004 kl A = 5, Bq 13. februar 2004 kl A = 2, Bq Finn desintegrasjonskonstanten, og den fysiske halveringstiden t 1/2.

7

8 Aktiviteten til C-14 i levende materiale tilsvarer ca 15,4 desintergrasjoner pr. minutt pr. gram reint karbon. Halveringstiden for C-14 er 5730 år. Noen arkeologer finner en trebit de lurer på om kan stamme fra et vikingskip. De benytter vanlig C-14 analyse. Trebiten som veide 2 g hadde en aktivitet på 11,8 desintegrasjoner pr. minutt. Karboninnholdet i trebiten var 44 %. Hvor gammel var trebiten?

9 Aktiviteten til C-14 i levende materiale tilsvarer ca 15,4 desintergrasjoner pr. minutt pr. gram reint karbon. Halveringstiden for C-14 er 5730 år. Noen arkeologer finner en trebit de lurer på om kan stamme fra et vikingskip. De benytter vanlig C-14 analyse. Trebiten som veide 2 g hadde en aktivitet på 11,8 desintegrasjoner pr. minutt. Karboninnholdet i trebiten var 44 %. Hvor gammel var trebiten? Vi skal finne tida t som er gått fra en aktivitet er redusert til en annen aktivitet. Det er rimelig å anta at vi her skal benytte A = A 0 e - t Vi kan beregne utfra oppgitt halveringstid; Og vi kjenner nesten de to aktivitetene som inngår. A 0 er den spesifikke aktiviteten ved tiden t=0 (15,4 desint. pr. min. pr. gram reint karbon) mens A er den totale aktiviteten ved tiden t. (11,8 desint pr. minutt for hele trebiten) Vi må passe på at vi jobber med samme aktivitetsbegrep! Vi må følgelig finne hvor mye karbon trebiten inneholdt for å kunne angi den spesifikke sluttaktiviteten A. Det er oppgitt at karboninnholdet i trebiten var på 44 %. MERK at dette er all karbon, dvs både C-12 og C-14!: m (C) = 2 g 44/100 = 0,88 gram karbon. Finner antall desintegrasjoner pr g reint karbon - finner pr minutt isf pr. sekund for enkelthetsskyld: 11,8 min -1 / 0,88 g = A min -1 / 1 g A = 13,409 desintegrasjoner pr minutt pr gram carbon (eventuelt 804,54 desintergrasjoner pr sekund) Aktiviteten ved tiden t=0: A 0 = 15,4 min -1 pr gram reint karbon Aktiviteten ved tiden t=x: A x = 13,409 min -1 pr gram reint karbon Antall atomer er proporsjonal med aktiviteten, A = N dvs N = A/ og N 0 = A 0 / N / N 0 = e - t = (A/ ) / (A 0 / ) = A / A 0 A / A 0 = e - t ln (A / A 0 ) = - t ln (13,409 / 15,4) = - t t = - ln (0,8707) / Desintergrasjonskonstanten = ln2 / 5730 år = 1, år -1 t = 1144,45 år 1144 år

10 I en avstand på 1,0 m fra en Cs-137-kilde med aktivitet 1,5 MBq vil doseraten være 0,117 microgy pr. time. Halveringstiden for Cs-137 er 30 år. a) Beregn hvor lang tid det tar før aktiviteten til en kilde på 1,5 MBq er redusert til 0,5 MBq. b) Hvorfor kan en for Cs-137 skrive 1 Gy = 1 Sv c) Hvor lenge må en oppholde seg i en avstand på 0,75 m fra en Cs-137-kilde med en konstant aktivitet på 1,0 MBq for å motta en dose på 1,0 msv.

11 I en avstand på 1,0 m fra en Cs-137-kilde med aktivitet 1,5 MBq vil doseraten være 0,117 microgy pr. time. Halveringstiden for Cs-137 er 30 år. a) Beregn hvor lang tid det tar før aktiviteten til en kilde på 1,5 MBq er redusert til 0,5 MBq. b) Hvorfor kan en for Cs-137 skrive 1 Gy = 1 Sv c) Hvor lenge må en oppholde seg i en avstand på 0,75 m fra en Cs-137-kilde med en konstant aktivitet på 1,0 MBq for å motta en dose på 1,0 msv. a: Tid for reduksjon av aktivitet fra 1,5 til 0,5 MBq: A = A 0 e - t ln(a/a 0 ) = - t t = - ln(a/a 0 ) / Startaktiviteten A 0 = 1, Bq Aktivitet ved tiden t A = 0, Bq -ln (A/A 0 ) = ln(0,5/1,5) = 1,0986 = ln2 / 30 = 23, år -1 ( = 732, s -1 ) t = - ln(a/a 0 ) / = 1,0986 / 23, år -1 = 47,55 år (=1, s) b: Cs-137 emitterer - og - stråling. Strålevektfaktoren, w R, for både - og -stråling er lik 1. En kan følgelig skrive 1 Gy = 1 Sv for strålingsdoser fra Cs-137. c: Når en må gå vegen via flere informasjoner kan det lønne seg å begynne å nøste bakfra. Vi skal finne tiden (t) som det tar å få en viss dose (D). Sammenheng mellom tid og Dose er gjerne doserate. Vi må følgelig finne doseraten under de gitt forhold (dvs 0,75 m fra en kilde på 1,0 MBq) Oppgitt doserate (0,117 Gy pr. time) gjelder annen aktivitet (1,5 MBq) og en annen avstand (1,0 m). Vi må bruke denne informasjonen til å finne doseraten under våre forhold (0,75 m og 1,0 MBq). Vi finner først doseraten for en 1,0 MBq kilde i avstanden 1,0 m fra kilden. Doseraten 1,0 m fra kilden = 0,117 Gy/t 1,0Bq/1,5Bq = 0,078 Gy/t = 0,078 Sv/t = Sv/t Vi finner doseraten for en 1,0 MBq kilde i avstanden 0,75 m fra kilden. Intensiteten avtar med kvadratet av avstanden fra kilden! Dvs doseraten avtar som 1/r 2. I a r 2 a = I b r 2 b ( I b /I a =(r a /r b ) 2 ) I b /I a =(r a /r b ) 2 I a = Sv/t r a = 1,0 m I b =? r b = 0,75 m Doseraten 0,75 m fra kilden I b = I a (r a /r b ) 2 = Sv/t (1,0 m/0,75m) 2 = Sv/t / (0.75) 2 = Sv/t Nå kjenner vi doseraten under de spesifikke forholdene; og vi kjenner dosen (oppgitt) og kan følgelig finne tiden det tar å oppnå denne dosen ved å sette inn verdiene for doserate ( Sv/t) og dose (1,0 msv) i uttrykket Doserate tid = dose tid = dose / doserate = 1, Sv / Sv/t t = 7, timer = 301,9 dager

12 En av de viktigste isotopen som ble sluppet ut ved Tsjernobylulykken var Cs-137. Den har en halveringstid på 30 år. Målinger gjort rett etter ulykken viste at det totale nedfallet i Norge av Cs-137 var 2, Bq. Hvor mange kilo Cs-137 falt ned over Norge?

13 En av de viktigste isotopen som ble sluppet ut ved Tsjernobylulykken var Cs-137. Den har en halveringstid på 30 år. Målinger gjort rett etter ulykken viste at det totale nedfallet i Norge av Cs-137 var 2, Bq. Hvor mange kilo Cs-137 falt ned over Norge? For å finne mengde i gram eller kilo, må vi finne antall atomer -for så å finne totalmassen utfra vekten til ett atom (som er oppgitt til å være 137 amu) Finner antall atomer ut fra aktiviteten og halveringstiden: A = λ N Har oppgitt at aktiviteten A = 2, Bq Finner λ ut fra at ln 2 = λ t 1/2 λ = ln2 / (30 år ) = 7, N = A/λ = 2, / 7, = 3, Utfra antall atomer og kunnskap om vekten av ett atom kan vi beregne den totale massen. Vi benytter oss av molbegrepet; dvs at 1 mol Cs-137 veier 137 gram (ettersom atommassen er 137 amu) og i ett mol av Cs-137 er det N A = 6, atomer. Antall mol = 3, atomer / 6, atomer/mol = 5,21 mol Totalmasse Cs-137 = 5,21 mol 137 g/mol = 713,77 gram

14 Alle mennesker har noe radioaktivitet i kroppen. I denne oppgaven skal du (igjen) konsentrere deg om den naturlige isotopen C-14. Så lenge vi lever er mengden av C-14 konstant, Bq pr. kg. Når vi dør avtar dette med en halveringstid på 5730 år. C-14 sender ut en beta-partikkel med maksimal energi på 156 kev. 1 ev = 1, J. a) Hvordan kommer C-14 inn i kroppen? b) Hvilken årlig effektiv stråledose gir C-14, hvis du antar er aktivitet på 30 Bq/kg? c) Hvor mange C-14 atomer er det pr. kg kroppsmasse? d) For omlag 10 år sia ble det funnet en mann i Alpene som en mente hadde ligget der i ca 5000 år. Hvilken aktivitet av C-14 burde en vente å finne hos denne mannen? e) Hvordan kan det ha seg at konsentrasjon av C-14 i naturen er omtrent den samme i dag som for mange millioner av år siden når halveringstiden er så kort som 5730 år?

15 Alle mennesker har noe radioaktivitet i kroppen. I denne oppgaven skal du (igjen) konsentrere deg om den naturlige isotopen C-14. Så lenge vi lever er mengden av C-14 konstant, Bq pr. kg. Når vi dør avtar dette med en halveringstid på 5730 år. C-14 sender ut en betapartikkel med maksimal energi på 156 kev. 1 ev = 1, J. a) Hvordan kommer C-14 inn i kroppen? b) Hvilken årlig effektiv stråledose gir C-14, hvis du antar er aktivitet på 30 Bq/kg? c) Hvor mange C-14 atomer er det pr. kg kroppsmasse? d) For omlag 10 år sia ble det funnet en mann i Alpene som en mente hadde ligget der i ca 5000 år. Hvilken aktivitet av C-14 burde en vente å finne hos denne mannen? e) Hvordan kan det ha seg at konsentrasjon av C-14 i naturen er omtrent den samme i dag som for mange millioner av år siden når halveringstiden er så kort som 5730 år? a: N-14 + n C-14 CO 2 inneholder C-14. Fotosyntese forbruker C-14. C-14 kommer inn i alt levende b: Absorbert Dose = energi deponert pr. masse Energi deponert pr desintegrasjon: -stråling har kort rekkevidde, og antar derfor at all -energi deponeres inne i kroppen. max = 156 kev Energideponert pr. desintegrasjon = middel =156/3 kev = 52 kev Årlig absorbert dose D= 30 Bq/kg 52 kev 1, J/eV 3, sek pr. år = 7, J/kg Gy = 8 μgy Både organvektfaktor og strålevektfaktor er lik 1 => Effektiv dose = 8 μsv c: Når vi kjenner aktiviteten A og halveringstiden T 1/2 = ln2 / λ kan kan vi finne antall radioaktive kjerner N ut fra uttrykket ; A = λ N N = A/λ = A T 1/2 / ln2 A = 30 Bq/kg T 1/2 = 5730 år = 1, sek N = 7, atomer C-14 pr. kg d: Ettersom mannen har ligget litt under en halveringstid burde en forvente at aktiviteten nesten er halvert i forhold til aktiviteten i levende materiale, dvs noe mer enn 30/2=15 Bq. N = N 0 e -λt A= A 0 e -λt = 30 e -ln2/ T t = 30 e -ln2/ = 16,4 Bq e: C-14 dannes kontinerlig i atmosfæren ved at nøytroner bombarderer atomært nitrogen.

16 FASIT OPPGAVE 17a,b, (Ukeoppgave 8): a, lavoppl.) Protonene 1 og 2 er ekvivalente (to-tallig symmetri). Det samme gjelder proton 3 og 4. Lav-oppløsnings-proton NMR spekteret vil bestå av:3 linjer med relative intensiteter 2:2:3 (for 3,4 protonene (2), 1,2 protonene (2) og methylgruppen (3), respektivt) (kjemisk skift-skala: TMS=0 til høyre, øker mot venstre). a, høyoppl) Høy-oppløselighets-spekteret vil vise spinn-spinnkopling mellom 1,2 protonene og 3,4 protonene, OG mellom 1,2 protonene og methylprotonene. * Methyllinjen splittes i en 1:2:1 triplett, (vekselvirkning med 2 ekv. protoner 1,2) *3,4-proton linjen i en 1:2:1 triplett (vekselvirkning med 2 ekv. protoner1,2) *1, 2 linjen splittes i en 1:3:3:1 kvartett (v.v. med 3 ekv protoner (methyl)) og hver av disse linjene igjen splittes i en 1:2:1 triplett (v.v. med 2 ekv. protoner, 3,4). Total intensitetsfordeling er: 8:16:8 1:2:1 3:6:3 3:6:3 1:2:1 12:24:12 b) Lavoppløst proton-nmr vil bestå av 3 linjer med relative intensiteter 1:1:3 Høyoppløst proton-nmr. Methyl-gruppa v.v. nå bare med ett ekv proton. Da vil triplettene (fra ovenfor) byttes med dubletter. Vi får en intensitetsfordeling (fra lav til høy delta) som 8:8 1:1 3:3 3:3 1:1 24:24 (Ettersom D har kjernespinn 1 vil protonene som v.v. med D i teorien kunne splittes opp i smale tripletter. Dette er nevnt, men det forventes ikke at studentene skal kunne det.)

Fys 1010 Miljøfysikk FASIT Oppgavesett 10

Fys 1010 Miljøfysikk FASIT Oppgavesett 10 Fys 1010 Miljøfysikk FASIT Oppgavesett 10 FASIT oppgave 8 Den 7. april 1989 sank den sovjetiske u-båten Komsomolets i nærheten av Bjørnøya. Da u-båten sank inneholdt den 3,1 10 15 Bq av Cs-137 og 2,8 10

Detaljer

FYS 3710 Biofysikk og Medisinsk Fysikk, Strålingsfysikk /kjemi stråling del 2

FYS 3710 Biofysikk og Medisinsk Fysikk, Strålingsfysikk /kjemi stråling del 2 FYS 3710 Biofysikk og Medisinsk Fysikk, 2017 9 Strålingsfysikk /kjemi stråling del 2 Einar Sagstuen, Fysisk institutt, UiO 25.09.2017 1 IONISERENDE STRÅLING Elektromagnetisk Partikkel Direkte ioniserende

Detaljer

Oppgavesett 6. FYS 1010 Miljøfysikk. Oppgave 1

Oppgavesett 6. FYS 1010 Miljøfysikk. Oppgave 1 FYS 1010 Miljøfysikk Oppgavesett 6 Oppgave 1 a) Massen til 1 mol Po-210 er 210 g. Antall atomer i 1 mol er N A = 6.023 10 23. Antall atomer: N = N A (5 10-6 g) / (210 g/mol) = 1.43 10 16 1.4 10 16 Den

Detaljer

Løsningsforslag til ukeoppgave 16

Løsningsforslag til ukeoppgave 16 Oppgaver FYS00 Vår 08 Løsningsforslag til ukeoppgave 6 Oppgave 9.0 a) Nukleon: Fellesnavnet for kjernepartiklene protoner (p) og nøytroner (n). b) Nukleontall: Tallet på nukleoner i en kjerne (p + n) c)

Detaljer

FYS 3710 Biofysikk og Medisinsk Fysikk, 2015

FYS 3710 Biofysikk og Medisinsk Fysikk, 2015 FYS 3710 Biofysikk og Medisinsk Fysikk, 2015 8 Strålingsfysikk stråling del 1 Einar Sagstuen, Fysisk institutt, UiO 13.09.2016 1 13.09.2016 2 William Conrad Röntgen (1845-1923) RØNTGENSTRÅLING oppdages,

Detaljer

Radioaktivitet. Enheter

Radioaktivitet. Enheter Radioaktivitet De fleste atomkjerner er stabile, men vi har noen som er ustabile. Vi sier at de er radioaktive. Det betyr at de før eller senere vil gå over til en mer stabil tilstand ved å sende ut stråling.

Detaljer

RØNTGENSTRÅLING oppdages, 8. nov RADIOAKTIVITET oppdages 1. mars 1896

RØNTGENSTRÅLING oppdages, 8. nov RADIOAKTIVITET oppdages 1. mars 1896 William Conrad Röntgen (1845 1923) RØNTGENSTRÅLING oppdages, 8. nov 1895 Nobelpris, fysikk, 1901 in recognition of the extraordinary services he has rendered by the discovery of the remarkable rays subsequently

Detaljer

Regneoppgaver for KJM 5900

Regneoppgaver for KJM 5900 Regneoppgaver for KJM 5900 Høsten 2005, sist oppdatert av JPO 24. august 2005. Til mange av oppgave må du hente informasjon fra nuklidekartet ditt. Oppgaver til dag 1 i intensivuken Øvelse i bruk av nuklidekartet

Detaljer

Løsningsforslag FYS1010-eksamen våren 2014

Løsningsforslag FYS1010-eksamen våren 2014 Løsningsforslag FYS1010-eksamen våren 2014 Oppgave 1 a) N er antall radioaktive atomer med desintegrasjonskonstant, λ. dn er endringen i N i et lite tidsintervall dt. A er aktiviteten. dn dt dn N λ N λ

Detaljer

Radioaktivitet, ioniserende stråling og dosebegreper

Radioaktivitet, ioniserende stråling og dosebegreper Radioaktivitet, ioniserende stråling og dosebegreper Astrid Liland Figurer og illustrasjoner: Alexander Mauring CERAD workshop 26/8 2013 Det elektromagnetiske spekteret Atomets oppbygging Atomet består

Detaljer

Radioaktivitet. Enheter

Radioaktivitet. Enheter Radioaktivitet De fleste atomkjerner er stabile, men vi har noen som er ustabile. Vi sier at de er radioaktive. Det betyr at de før eller senere vil gå over til en mer stabil tilstand ved å sende ut stråling.

Detaljer

Elektromagnetisk stråling fotoner. Bq=1/s. Aktivitet A = dn/dt = λn. N=N 0 e λt. T ½ λ=ln2. Spesifikk aktivitet. Desintegrasjonskonstanten

Elektromagnetisk stråling fotoner. Bq=1/s. Aktivitet A = dn/dt = λn. N=N 0 e λt. T ½ λ=ln2. Spesifikk aktivitet. Desintegrasjonskonstanten Aktivitet (A) A = d/dt = λ Elektromagnetisk stråling fotoner = 0 e λt T ½ λ=ln2 Bq=1/s Spesifikk aktivitet Desintegrasjonskonstanten (λ) Fotoelektrisk (Z 4 ) Compton (Z) Pardannelse (Z 2 ) Halveringstid

Detaljer

Ioniserende stråling. 10. November 2006

Ioniserende stråling. 10. November 2006 Ioniserende stråling 10. November 2006 Tema: Hva mener vi med ioniserende stråling? Hvordan produseres den? Hvordan kan ioniserende stråling stoppes? Virkning av ioniserende stråling på levende vesener

Detaljer

Kapittel 21 Kjernekjemi

Kapittel 21 Kjernekjemi Kapittel 21 Kjernekjemi 1. Radioaktivitet 2. Ulike typer radioaktivitet (i) alfa, α (ii) beta, β (iii) gamma, γ (iv) positron (v) elektron innfangning (vi) avgivelse av nøytron 3. Radioaktiv spaltingsserie

Detaljer

FYS1010 eksamen våren Løsningsforslag.

FYS1010 eksamen våren Løsningsforslag. FYS00 eksamen våren 203. Løsningsforslag. Oppgave a) Hensikten er å drepe mikrober, og unngå salmonellainfeksjon. Dessuten vil bestråling øke holdbarheten. Det er gammastråling som benyttes. Mavarene kan

Detaljer

KOSMOS. 10: Energirik stråling naturlig og menneske skapt Figur side 304. Uran er et radioaktivt stoff. Figuren viser nedbryting av isotopen uran-234.

KOSMOS. 10: Energirik stråling naturlig og menneske skapt Figur side 304. Uran er et radioaktivt stoff. Figuren viser nedbryting av isotopen uran-234. 10: Energirik stråling naturlig og menneske skapt Figur side 304 -partikkel (heliumkjerne) Uran-234 Thorium-230 Radium-226 Radon-222 Polonium-218 Bly-214 Nukleontall (antall protoner og nøytroner) Uran

Detaljer

1 Leksjon 8: Kosmisk stråling og radioaktiv datering

1 Leksjon 8: Kosmisk stråling og radioaktiv datering Innhold 1 LEKSJON 8: KOSMISK STRÅLING OG RADIOAKTIV DATERING... 1 1.1 EKSEMPEL PÅ RADIOAKTIV DATERING... 2 1.2 RADIOAKTIVITET OG HALVERINGSTID... 3 1.3 ENERGISKJEMAET FOR CS-137... 4 1.4 RADIOAKTIV DATERING...

Detaljer

Regneoppgaver for KJM5900

Regneoppgaver for KJM5900 Regneoppgaver for KJM5900 Høsten 2004, sist oppdatert av JPO 4. august 2004. Til mange av oppgave må du hente informasjon fra nuklidekartet ditt. Oppgaver til dag 1 i intensivuken Øvelse i bruk av nuklidekartet

Detaljer

FYS1010-eksamen Løsningsforslag

FYS1010-eksamen Løsningsforslag FYS1010-eksamen 2017. Løsningsforslag Oppgave 1 a) En drivhusgass absorberer varmestråling (infrarødt) fra jorda. De viktigste drivhusgassene er: Vanndamp, CO 2 og metan (CH 4 ) Når mengden av en drivhusgass

Detaljer

Magne Guttormsen Fysisk institutt, UiO

Magne Guttormsen Fysisk institutt, UiO Magne Guttormsen Fysisk institutt, UiO Anbefalinger for håndtering og strålegrenser blir gitt av forskjellige internasjonale komiteer og organisasjoner som UNSCEAR, ICRP, IAEA og EU. Landenes nasjonale

Detaljer

Eksamensoppgaver/fasiter FYS

Eksamensoppgaver/fasiter FYS Eksamensoppgaver/fasiter FYS 3710 2005-2009 Eksamensoppgaver/fasiter 2005-2009 2 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet E k samen i: F Y S 3710 - Biofysikk og medisinsk fysikk

Detaljer

A = dn(t) dt. N(t) = N 0 e γt

A = dn(t) dt. N(t) = N 0 e γt 1 Radioaktivitet I generell kjemi er det vanlig å tenke på grunnstoffene som separate former for materie, men det er viktig å huske at et grunnstoff kan bli til et annet grunnstoff gjennom kjernekjemiske

Detaljer

Gamma (radioaktiv) basert tetthetsmåling Av Rolf Skatvedt, Intertek West Lab AS

Gamma (radioaktiv) basert tetthetsmåling Av Rolf Skatvedt, Intertek West Lab AS Fra Styret: Styret hadde sitt første møte i denne perioden den 4. juni i Bergen. Lise Sletta Pettersen og Rolf Skatvedt ønskes velkommen som nye styremedlemmer. Styret vil også takke alle bidragsytere

Detaljer

Kosmos SF. Figurer kapittel 10 Energirik stråling naturlig og menneskeskapt Figur s. 278

Kosmos SF. Figurer kapittel 10 Energirik stråling naturlig og menneskeskapt Figur s. 278 Figurer kapittel 10 Energirik stråling naturlig og menneskeskapt Figur s. 278 -partikkel (heliumkjerne) Uran-234 Thorium-230 Radium-228 Radon-222 Polonium-218 Bly-214 Nukleontall (antall protoner og nøytroner)

Detaljer

Kosmos SF. Figurer kapittel 10: Energirik stråling naturlig og menneskeskapt Figur s. 292

Kosmos SF. Figurer kapittel 10: Energirik stråling naturlig og menneskeskapt Figur s. 292 Figurer kapittel 10: Energirik stråling naturlig og menneskeskapt Figur s. 292 -partikkel (heliumkjerne) Uran-234 Thorium-230 Radium-226 Radon-222 Polonium-218 Bly-214 Nukleontall (antall protoner og nøytroner)

Detaljer

Radiacmåletjenesten. www.nrpa.no. Radiac-øvelse, Midtre Hålogaland sivilforsvarsdistrikt

Radiacmåletjenesten. www.nrpa.no. Radiac-øvelse, Midtre Hålogaland sivilforsvarsdistrikt Radiacmåletjenesten Radiac-øvelse, Midtre Hålogaland sivilforsvarsdistrikt Bredo Møller, Statens strålevern - Svanhovd Harstad, 17.10.2012 Aktuelle oppdrag for Radiactjenesten 1. Gjennomføre målinger på

Detaljer

Beregninger av utslipp til luft og doserater til omgivelsene ved utslipp av radioaktive isotoper fra Senter for Nukleærmedisin/PET, Helse Bergen HF

Beregninger av utslipp til luft og doserater til omgivelsene ved utslipp av radioaktive isotoper fra Senter for Nukleærmedisin/PET, Helse Bergen HF Vedlegg VO-L1: Beregninger av utslipp til luft og doserater til omgivelsene ved utslipp av radioaktive isotoper fra Senter for Nukleærmedisin/PET, Helse Bergen HF Deres ref.: GO05-19-5 Saksnr: 10/00297

Detaljer

Kan vi bruke IFEs atomreaktorer til å lage nye radioaktive medisiner?

Kan vi bruke IFEs atomreaktorer til å lage nye radioaktive medisiner? Kan i bruke IFEs atomreaktorer til å lage nye radioaktie medisiner? Sindre Hassfjell, Seniorforsker Sektor Nukleærteknologi, Fysikk og Sikkerhet (NFS) 2016-3-30 og 2016-3-31 I dette foredraget håper jeg

Detaljer

PET. Medisinsk verktøy med radioaktivitet som grunnlag. Detektorer. Positron. g-kvant 511 kev. Radioaktiv tracer Detektorer

PET. Medisinsk verktøy med radioaktivitet som grunnlag. Detektorer. Positron. g-kvant 511 kev. Radioaktiv tracer Detektorer PET Medisinsk verktøy med radioaktivitet som grunnlag Detektorer g-kvant 511 kev g-kvant 511 kev Positron Radioaktiv tracer Detektorer Illustrasjon hentet fra Internett 1 PET det nye innen medisinsk diagnostikk

Detaljer

Løsningsforslag eksamen i FYS1010, 2016

Løsningsforslag eksamen i FYS1010, 2016 Løsningsforslag eksamen i FYS00, 06 Oppgave a) Ved tiden t = 0 er aktiviteten A 0. Når det har gått en halveringstid, t /, er aktiviteten redusert til det halve, dvs. A = A 0. Da er A 0 = A 0 e λ t / =

Detaljer

5:2 Tre strålingstyper

5:2 Tre strålingstyper 168 5 Radioaktivitet 5:2 Tre strålingstyper alfa, beta, gamma AKTIVITET Rekkevidden til strålingen Undersøk rekkevidden til gammastråling i luft. Bruk en geigerteller og framstill aktiviteten som funksjon

Detaljer

Den biologiske doseekvivalenten. Den effektive doseekvivalenten. Source for ALI values. ALI - eksempel. Biologisk halveringstid

Den biologiske doseekvivalenten. Den effektive doseekvivalenten. Source for ALI values. ALI - eksempel. Biologisk halveringstid Direkte ioniserende stråling Strålingens vekselvirkning med omgivelsene!direkte ioniserende stråling er stråler av ladede partikler.!hovedsakelig vekselvirker disse partiklene med omgivelsene ved hjelp

Detaljer

( ) Masse-energiekvivalens

( ) Masse-energiekvivalens Masse-energiekvivalens NAROM I klassisk mekanikk er det en forutsetning at massen ikke endrer seg i fysiske prosesser. Når vi varmer opp 1 kg vann i en lukket beholder så forutsetter vi at det er fortsatt

Detaljer

Laboratorieøvelse 2 N 63 58 51 46 42 37 35 30 27 25

Laboratorieøvelse 2 N 63 58 51 46 42 37 35 30 27 25 Laboratorieøvelse Fys Ioniserende stråling Innledning I denne oppgaven skal du måle noen egenskaper ved ioniserende stråling ved hjelp av en Geiger Müller(GM) detektor. Du skal studere strålingens statistiske

Detaljer

Kosmisk stråling og radioaktiv datering

Kosmisk stråling og radioaktiv datering Kosmisk stråling og radioaktiv datering Steinmeteoritten funnet i Sahara, bildet til høyre viser et forstørret bilde av overflaten. De lyse flekkene er chondrulene som reflektere lyset Meteoritten på bildet

Detaljer

KJM Radiokjemidelen

KJM Radiokjemidelen Oversikt (5) KJM 060 - Radiokjemidelen Forelesning 5: Deteksjon av radioaktivitet (og lab-gjennomgang)! Hva skjer når stråling treffer materie?! Stråledoser.! Lab-relevant stoff: < Deteksjon av stråling.

Detaljer

Fasit eksamen Fys1000 vår 2009

Fasit eksamen Fys1000 vår 2009 Fasit eksamen Fys1000 vår 2009 Oppgave 1 a) Klossen A er påvirka av tre krefter: 1) Tyngda m A g som peker loddrett nedover. Denne er det lurt å dekomponere i en komponent m A g sinθ langs skråplanet nedover

Detaljer

Velkommen til kurs i. Strålevern. UiT, 22. aug. 2008, 12.30-15.30. ved Jørgen Fandrem

Velkommen til kurs i. Strålevern. UiT, 22. aug. 2008, 12.30-15.30. ved Jørgen Fandrem Velkommen til kurs i Strålevern UiT, 22. aug. 2008, 12.30-15.30 ved Jørgen Fandrem 1 Tema Ioniserende stråling hva er ioniserende stråling? hvordan oppstår ioniserende stråling? karakteristikk av stålekilde

Detaljer

Kjemien stemmer KJEMI 2

Kjemien stemmer KJEMI 2 Figur s. 118 prøve kolonne pc gass ovn detektor Prinsippskisse av en gasskromatograf. Figur s. 119 % 100 90 80 CH(OH) OH OH relativ forekomst 70 60 50 40 OH OH 30 20 10 0:43 1:27 2:10 2:53 3:36 4:20 Tid

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1000 Eksamensdag: 10. juni 2014 Tid for eksamen: 9.00-13.00, 4 timer Oppgavesettet er på 5 sider Vedlegg: Formelark (2 sider).

Detaljer

FYS2140 Kvantefysikk, Løsningsforslag for Oblig 2

FYS2140 Kvantefysikk, Løsningsforslag for Oblig 2 FYS2140 Kvantefysikk, Løsningsforslag for Oblig 2 12. februar 2018 Her finner dere løsningsforslag for Oblig 2 som bestod av Oppgave 2.6, 2.10 og 3.4 fra Kompendiet. Til slutt finner dere også løsningen

Detaljer

FYS2140 Kvantefysikk, Oblig 2. Sindre Rannem Bilden, Gruppe 3

FYS2140 Kvantefysikk, Oblig 2. Sindre Rannem Bilden, Gruppe 3 FYS2140 Kvantefysikk, Oblig 2 Sindre Rannem Bilden, Gruppe 3 6. februar 2015 Obliger i FYS2140 merkes med navn og gruppenummer! Denne obligen har oppgaver som tar for seg fotoelektrisk eekt, Comptonspredning

Detaljer

Forskningsreaktoren pa Kjeller

Forskningsreaktoren pa Kjeller FISJON 7.11.2005 http://science.nasa.gov/headlines/y2002/images/spacepower/fission.gif #1 E = mc2 JEEP II Massen avtar 1 promille, og omdannes til 200 MeV energi. Stra ling: γ: 0-7 MeV; nøytroner 0-10

Detaljer

KJM3000 H-2018 løsningsforslag

KJM3000 H-2018 løsningsforslag KJM3000-2018 løsningsforslag 1a) 1 I første omgang ser vi kun på de kjemiske skiftene. Vi ser da at vi har et alken med to protoner. Disse kommer ved hhv. 6.84 og 6.87 ppm. Vi ser også at disse kobler

Detaljer

KJM3000 H-2017 løsningsforslag

KJM3000 H-2017 løsningsforslag KJM3000 H-2017 løsningsforslag 1a) Problemet løses ved å analysere strukturene m.h.p. koblingsmønstrene og konstantene og kjemiske skift. For å være helt sikker bør man likevel skrive opp alle de seks

Detaljer

4.6 NMR og MS. H. Aschehoug & Co. side 1 av Figuren viser strukturen og 1 H-NMR-spekteret til etanal: 4.74

4.6 NMR og MS. H. Aschehoug & Co.  side 1 av Figuren viser strukturen og 1 H-NMR-spekteret til etanal: 4.74 4.6 NMR og MS 4.72 Figuren viser strukturen og 1 H-NMR-spekteret til etanal: 4.74 a Forklar hvorfor NMR-spekteret til etanal har akkurat to hovedtopper (to grupper). b Hvordan finner vi ut hvilke hydrogenatomer

Detaljer

Ionometri. Dosimetriske prinsipper illustrert ved ionometri. Forelesning i FYSKJM4710. Eirik Malinen

Ionometri. Dosimetriske prinsipper illustrert ved ionometri. Forelesning i FYSKJM4710. Eirik Malinen Dosimetriske prinsipper illustrert ved ionometri Forelesning i FYSKJM4710 Eirik Malinen Ionometri Ionometri: kunsten å måle antall ionisasjoner i f.eks. en gass Antall ionisasjoner brukes som et mål på

Detaljer

FLERVALGSOPPGAVER I NATURFAG - FYSIKK

FLERVALGSOPPGAVER I NATURFAG - FYSIKK FLERVALGSOPPGAVER I NATURFAG - FYSIKK Naturfag fysikk 1 Hvor mye strøm går det i en leder når man belaster lysnettet som har en spenning på 220 V med en effekt på 2 200 W? A) 100 A B) 10 A C) 1,0 A D)

Detaljer

Støkiometri (mengdeforhold)

Støkiometri (mengdeforhold) Støkiometri (mengdeforhold) Det er særs viktig i kjemien å vite om mengdeforhold om stoffer. -En hodepine tablett er bra mot hodesmerter, ti passer dårlig. -En sukkerbit i kaffen fungerer, 100 er slitsomt.

Detaljer

Auditorieoppgave nr. 1 Svar 45 minutter

Auditorieoppgave nr. 1 Svar 45 minutter Auditorieoppgave nr. 1 Svar 45 minutter 1 Hvilken ladning har et proton? +1 2 Hvor mange protoner inneholder element nr. 11 Natrium? 11 3 En isotop inneholder 17 protoner og 18 nøytroner. Hva er massetallet?

Detaljer

5:2 Tre strålingstyper

5:2 Tre strålingstyper 58 5 Radioaktivitet 5:2 Tre strålingstyper alfa, beta, gamma AKTIVITET Rekkevidden til strålingen Undersøk rekkevidden til gammastråling i luft. Bruk en geigerteller og framstill aktiviteten som funksjon

Detaljer

Laboratorieøvelse 2 - Ioniserende stråling

Laboratorieøvelse 2 - Ioniserende stråling Laboratorieøvelse 2 - Ioniserende stråling FYS1000, Fysisk institutt, UiO Våren 2014 (revidert 21. april 2016) Innledning I denne oppgaven skal du måle noen egenskaper ved ioniserende stråling ved hjelp

Detaljer

FYS2140 Kvantefysikk, Oblig 2. Lars Kristian Henriksen Gruppe 3

FYS2140 Kvantefysikk, Oblig 2. Lars Kristian Henriksen Gruppe 3 FYS2140 Kvantefysikk, Oblig 2 Lars Kristian Henriksen Gruppe 3 6. februar 2015 Obliger i FYS2140 merkes med navn og gruppenummer! Denne obligen har oppgaver som tar for seg fotoelektrisk effekt, Comptonspredning

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1001 Eksamensdag: 12. juni 2019 Tid for eksamen: 14.30-18.30, 4 timer Oppgavesettet er på 5 sider Vedlegg: Formelark (3 sider).

Detaljer

Løsningsforslag til midtveiseksamen i FYS1000, 17/3 2016

Løsningsforslag til midtveiseksamen i FYS1000, 17/3 2016 Løsningsforslag til midtveiseksamen i FYS1000, 17/3 2016 Oppgave 1 Vi har v 0 =8,0 m/s, v = 0 og s = 11 m. Da blir a = v2 v 0 2 2s = 2, 9 m/s 2 Oppgave 2 Vi har v 0 = 5,0 m/s, v = 16 m/s, h = 37 m og m

Detaljer

MENA1001 Deleksamen 2017 Forside

MENA1001 Deleksamen 2017 Forside MENA1001 Deleksamen 2017 Forside MENA1001 Tidspunkt: Onsdag 11. oktober 2017, kl. 9.00-10.00 Alle 20 oppgaver skal besvares. Hver oppgave teller likt. Det er 1 poeng for korrekt svar, 0 poeng for feil

Detaljer

Dosimetriske størrelser innen strålevern Strålebiologi akutte vevsreaksjoner Tor Wøhni

Dosimetriske størrelser innen strålevern Strålebiologi akutte vevsreaksjoner Tor Wøhni Dosimetriske størrelser innen strålevern Strålebiologi akutte vevsreaksjoner Tor Wøhni Radiologiske modaliteter 26.aug. 2009 Absorbert dose Ren fysisk størrelse, absorbert stråleenergi per massenhet :

Detaljer

FLERVALGSOPPGAVER ATOMER og PERIODESYSTEMET

FLERVALGSOPPGAVER ATOMER og PERIODESYSTEMET FLERVALGSOPPGAVER ATOMER og PERIODESYSTEMET Hjelpemidler: Periodesystem Atomer 1 Hvilket metall er mest reaktivt? A) sølv B) bly C) jern D) cesium Atomer 2 Hvilket grunnstoff høyest 1. ioniseringsenergi?

Detaljer

Forslag til forarbeid

Forslag til forarbeid Lærer, forslag til for og etterarbeid Radioaktivitet Her finner du forslag til for- og etterarbeid (første side), samt litt bakgrunnsstoff. Forslag til forarbeid Gå igjennom sikkerhetsinformasjonen og

Detaljer

KJELLER? BESTRALINGS- ANLEGGET PA HVILKEN NYTTE HAR VI AV GAMMA- Institutt for energiteknikk

KJELLER? BESTRALINGS- ANLEGGET PA HVILKEN NYTTE HAR VI AV GAMMA- Institutt for energiteknikk Rostra Reklamebyrå RRA 26 Foto: Kjell Brustad og NTB Oktober 1998 HVILKEN NYTTE HAR VI AV GAMMA- BESTRALINGS- ANLEGGET PA KJELLER? Institutt for energiteknikk Seksjon for bestrålingsteknologi KJELLER:

Detaljer

HØGSKOLEN I BERGEN Avdeling for helse og sosialfag

HØGSKOLEN I BERGEN Avdeling for helse og sosialfag HØGSKOLEN I BERGEN Avdeling for helse og sosialfag EKSAMENSOPPGAVE/EKSAMENSOPPGÅVE Utdanning Kull Emnekode/navn Eksamensform : Radiografutdanning : R09 : BRE 103 Del 3 Strålefysikk, strålevern og apparatlære

Detaljer

Nå integrer vi begge sider og får på venstre side. der C 1 er en vilkårlig konstant. Høyre side blir. Dette gir. og dermed

Nå integrer vi begge sider og får på venstre side. der C 1 er en vilkårlig konstant. Høyre side blir. Dette gir. og dermed Kapittel 6 Vekstmodeller For å forstå prosesser i naturen er matematiske modeller et nyttig verktøy. Matematiske modeller tar utgangspunkt i naturlover og modellerer disse i et matematisk språk. Naturlovene

Detaljer

KJM3000 vår 2013 Løsningsforslag

KJM3000 vår 2013 Løsningsforslag KJM3000 vår 2013 Løsningsforslag 1a 1b De tre sp 3 -hybridiserte C-H bindingene i metylester-gruppen har strekk frekvenser i det ordinære området (under 3000 cm -1 ) for alifatisk C-H strekk. De to siste

Detaljer

Radioaktivitet i saltvannsfisk

Radioaktivitet i saltvannsfisk Radioaktivitet i saltvannsfisk Innholdsfortegnelse http://www.miljostatus.no/tema/straling/radioaktiv-forurensning/radioaktivitet-i-havet-og-langs-kysten/radioaktivitet-i-saltvannsfisk/ Side 1 / 5 Radioaktivitet

Detaljer

Lys. Bølger. Partiklar Atom

Lys. Bølger. Partiklar Atom Lys Bølger Partiklar Atom Atom «Atomhistoria» Gamle grekarar og indarar, ca 500 f. Kr. Materien har ei minste eining; den er bygd opp av små bitar som ikkje kan delast vidare 1800-talet: Dalton, Brown,

Detaljer

Løsningsforslag til ukeoppgave 6

Løsningsforslag til ukeoppgave 6 Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 6 Oppgave 11.07 a) pv T = konstant, og siden T er konstant blir da pv også konstant. p/kpa 45 35 25 60 80 130 V/dm 3 1,8 2,2 3,0 1,4 1,0 0,6 pv/kpa*dm

Detaljer

Løsningsforslag til eksamen FY0001 Brukerkurs i fysikk Juni 2011

Løsningsforslag til eksamen FY0001 Brukerkurs i fysikk Juni 2011 NTNU Institutt for Fysikk Løsningsforslag til eksamen FY0001 Brukerkurs i fysikk Juni 011 Oppgave 1 a) Figur A. Tyngdeakselerasjonen er konstant, altså den endrer seg ikke med tiden. b) Vi finner farten

Detaljer

Hvor farlig er det egentlig?

Hvor farlig er det egentlig? Rom Stoff Tid Sunniva Rose, Universitetet i Oslo Hvor farlig er det egentlig? Myter og misforståelser rundt kjernekraft og stråling Ever since I first saw the terrifying and amazing pictures of the atomic

Detaljer

Institutt for energiteknikk

Institutt for energiteknikk Institutt for energiteknikk IFE Halden ~ 220 ansatte IFE Kjeller ~ 340 ansatte Nukleær sikkerhet og pålitelighet (NUSP) Menneske Teknologi Organisasjon (MTO) Energi- og Miljøteknologi (EM) (Vind,sol,hydrogen,...)

Detaljer

Oppgave 1 Svar KORTpå disse oppgavene:

Oppgave 1 Svar KORTpå disse oppgavene: Løsningsforslag eksaen FYS1 V11 Oppgave 1 Svar KORTpå disse oppgavene: a) Tversbølge: Svingebevegelsen til hvert punkt på bølgen går på tvers av forplantningsretningen til bølgen. Langsbølge: Svingebevegelsen

Detaljer

Hvordan ser kjernen ut?

Hvordan ser kjernen ut? Hvordan ser kjernen ut? Størrelsen på et nukleon: ca. 1.6 fm Størrelsen på kjernen: r r o A 1/3 1 fm (femtometer, fermi) = 10-15 m Bindingsenergi Bindingsenergi pr. nukleon som funksjon av massetallet.

Detaljer

Måling av stråledoser fra pasient etter ablasjonsbehandling

Måling av stråledoser fra pasient etter ablasjonsbehandling Måling av stråledoser fra pasient etter ablasjonsbehandling Strålevernkoordinator OUS Tryggve Johansen 02.11.2011 Måle hva?? Skal pasienten måles før utreise? Og hvorfor skal dette gjøres? Hvordan måle?

Detaljer

Løsningsforslag til ukeoppgave 15

Løsningsforslag til ukeoppgave 15 Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 15 Oppgave 18.11 Se. s. 544 Oppgave 18.12 a) Klorofyll a absorberer fiolett og rødt lys: i figuren ser vi at absorpsjonstoppene er ved 425 nm

Detaljer

"Vår strålende verden"

Vår strålende verden TEMAHEFTE OM MILJØFYSIKK laget til utstillingen "Vår strålende verden" på Norsk Teknisk Museum Oppdatert våren 2005 For å ta vare på natur og miljø er det viktig med kunnskap. Mer kunnskap om miljøproblemer

Detaljer

Radioaktivitet i mat og miljø etter Tsjernobylulykken Hvordan er utviklingen, og hvorfor? Anne Liv Rudjord, Runhild Gjelsvik, Mari Komperød

Radioaktivitet i mat og miljø etter Tsjernobylulykken Hvordan er utviklingen, og hvorfor? Anne Liv Rudjord, Runhild Gjelsvik, Mari Komperød Radioaktivitet i mat og miljø etter Tsjernobylulykken Hvordan er utviklingen, og hvorfor? Anne Liv Rudjord, Runhild Gjelsvik, Mari Komperød «Fra Tsjernobyl og Fukushima til morgendagens atomberedskap»

Detaljer

Stråling fra rommet. 10. November 2006

Stråling fra rommet. 10. November 2006 Stråling fra rommet 10. November 2006 Tema Stråling fra Solen og andre himmellegemer. Hvilke deler av strålingen slipper gjennom atmosfæren? Eksempler på informasjon som kan leses fra strålingen, bl.a.

Detaljer

1 Leksjon 8 - Kjerneenergi på Jorda, i Sola og i stjernene

1 Leksjon 8 - Kjerneenergi på Jorda, i Sola og i stjernene Innhold 1 LEKSJON 8 - KJERNEENERGI PÅ JORDA, I SOLA OG I STJERNENE... 1 1.1 KJERNEENERGI PÅ JORDA... 2 1.2 SOLENS UTVIKLING DE NESTE 8 MILLIARDER ÅR... 4 1.3 ENERGIPRODUKSJONEN I GAMLE SUPERKJEMPER...

Detaljer

FYS 3710 Biofysikk og Medisinsk Fysikk, Strålingsfysikk/-kjemi/-biologi stråling del 3 og 4

FYS 3710 Biofysikk og Medisinsk Fysikk, Strålingsfysikk/-kjemi/-biologi stråling del 3 og 4 FYS 3710 Biofysikk og Medisinsk Fysikk, 2016 10+11 Strålingsfysikk/-kjemi/-biologi stråling del 3 og 4 Einar Sagstuen, Fysisk institutt, UiO 21.09.2016 1 Aktivitet N=N 0 e -λt T ½ λ=ln2 Bq=1/s (A) A =

Detaljer

REPETISJON - Stråling og Helse - Bombetester og reaktoruhell (Kap 9)

REPETISJON - Stråling og Helse - Bombetester og reaktoruhell (Kap 9) REPETISJON - Stråling og Helse - Bombetester og reaktoruhell (Kap 9) Noen viktige punkt: Atmosfære sprengninger Underjordiske sprengninger Hva skjer (fisjonsprodukter, transuraner, aktiveringsprodukt,

Detaljer

HØGSKOLEN I SØR-TRØNDELAG

HØGSKOLEN I SØR-TRØNDELAG Prosessteknologi FO173N, 9 studiepoeng, AMMT, HiST,. august 2007 Side 1 (av 6) HØGSKOLEN I SØR-TRØNDELAG AVDELING FOR MAT- OG MEDISINSK TEKNOLOGI Kandidatnr: Eksamensdato:.august 2007 Varighet: Fagnummer:

Detaljer

Radioaktiv stråling, strålekilder og helsefare

Radioaktiv stråling, strålekilder og helsefare Radioaktiv stråling, strålekilder og helsefare Atomberedskapsseminar Bergen 02.06.2015 Helge Opdahl Overlege, Dr. med. Nasjonal behandlingstjeneste for CBRNe-medisin (CBRNe-senteret) Akuttmedisinsk avd,

Detaljer

Lys. Bølger. Partiklar Atom

Lys. Bølger. Partiklar Atom Lys Bølger Partiklar Atom Lys «Lyshistoria» Lys er små partiklar! Christiaan Huygens (1629-1695) Lys er bølger Isaac Newton (1642-1726) «Lyshistoria» Thomas Young (1773-1829) «Lyshistoria» James Clerk

Detaljer

Radioaktiv stråling Av Arve Aksnes og Kai Håkon Sunde

Radioaktiv stråling Av Arve Aksnes og Kai Håkon Sunde Lærerveiledning Radioaktiv stråling Av Arve Aksnes og Kai Håkon Sunde Kort omtale av programmet På VilVite går vi gjennom ulike typer stråling med elevene, starter med bakgrunnsstråling, stålingsdoser

Detaljer

Stråledoser til befolkningen

Stråledoser til befolkningen Stråledoser til befolkningen Norsk radonforening Bransjetreff 2017 Ingvild Engen Finne Thon Hotel Opera, 1. februar 2017 www.nrpa.no Strålebruk i Norge + Stråledoser fra miljøet = Stråledoser til befolkningen

Detaljer

Løsningsforslag til eksamen FY0001 Brukerkurs i fysikk Fredag 29. mai 2009

Løsningsforslag til eksamen FY0001 Brukerkurs i fysikk Fredag 29. mai 2009 Løsningsforslag til eksamen FY000 Brukerkurs i fysikk Fredag 9. mai 009 Oppgave a) Newtons. lov, F = m a sier at kraft og akselerasjon alltid peker i samme retning. Derfor er A umulig. Alle de andre er

Detaljer

EUREKA Digital 12-2008

EUREKA Digital 12-2008 EUREKA Digital 12-2008 STRÅLING OG HELSE Professor Thormod Henriksen Universitetet i Oslo EUREKA DIGITAL 12-2008 ISSN 0809-8360 ISBN: 978-82-7389-140-2 STRÅLING OG HELSE av Thormod Henriksen Medarbeidere:

Detaljer

Fasit til norsk finale

Fasit til norsk finale Kjemi OL Fasit til norsk finale Kvalifisering til den 47. Internasjonale Kjemiolympiaden 2015 i Baku, Aserbajdsjan Oppgave 1 1) D 2) A 3) C 4) B 5) B 6) B 7) C 8) D 9) A 10) C 11) C 12) A 13) C 14) A 15)

Detaljer

KJM3000 vår 2014 Løsningsforslag

KJM3000 vår 2014 Løsningsforslag KJM3000 vår 2014 Løsningsforslag 1a O-H signalet forsvinner ved risting med D 2 O. Koblingskonstanten mellom de to vinylidene protonene er veldig liten og signalene fremstår som singletter. 1b 3523 cm

Detaljer

DATALOGGING AV RADIOAKTIVITET

DATALOGGING AV RADIOAKTIVITET Elevverksted: DATALOGGING AV RADIOAKTIVITET Astrid Johansen, 2009 RADIOAKTIVITET Læreplanmål: Elevene skal kunne gjennomføre forsøk med radioaktivitet, halveringstid og bakgrunnsstråling og forklare fenomenene.

Detaljer

Tall i arbeid Påbygging kapittel 3 Funksjoner Løsninger til innlæringsoppgavene

Tall i arbeid Påbygging kapittel 3 Funksjoner Løsninger til innlæringsoppgavene Tall i arbeid Påbygging kapittel 3 Funksjoner Løsninger til innlæringsoppgavene 3.1 a Origo er skjæringspunktet mellom x-aksen og y-aksen. Koordinatene til origo er altså. (0, 0) b Førstekoordinaten til

Detaljer

aerobe trenger oksygen mer kompleks struktur enn prokaryote har cellekjerne og mitokondrier

aerobe trenger oksygen mer kompleks struktur enn prokaryote har cellekjerne og mitokondrier CELLEBIOLOGI PROKARYOTE anaerobe kan leve uten tilførsel av oksygen mangler celle kjerne bakterier har et relativt enkelt indre med bare ett hulrom, vacuoler EUKARYOTE aerobe trenger oksygen mer kompleks

Detaljer

Oppgave 1 20 poeng Denne oppgaven omhandler røntgengeneratoren, røntgenrøret, linjefokusprinsippet og heeleffekt.

Oppgave 1 20 poeng Denne oppgaven omhandler røntgengeneratoren, røntgenrøret, linjefokusprinsippet og heeleffekt. Sensorveiledning BRE 103 del 3, Strålefysikk, strålevern og apparatlære. 26. august 2010. Til sammen 100 poeng, 27 spørsmål. Oppgave 1 Denne oppgaven omhandler røntgengeneratoren, røntgenrøret, linjefokusprinsippet

Detaljer

d) Antallet gjenvρrende radioaktive kjerner etter en tid t er N(t) =N 0 e t ; der N 0 og er konstanter. Halveringstiden er gitt ved at e t 1= =1=, alt

d) Antallet gjenvρrende radioaktive kjerner etter en tid t er N(t) =N 0 e t ; der N 0 og er konstanter. Halveringstiden er gitt ved at e t 1= =1=, alt Eksamen i fag nummer 74 55 Kjernefysikk, lrdag 10. mai 1997 Lsninger 1. a) Skallmodellen fungerer best for kjerner der protonene og nytronene hver for seg fyller opp nyaktig et helt antall energinivνa

Detaljer

FY2045/TFY4250 Kvantemekanikk I, løsning øving 4 1 LØSNING ØVING 4

FY2045/TFY4250 Kvantemekanikk I, løsning øving 4 1 LØSNING ØVING 4 FY2045/TFY4250 Kvantemekanikk I, løsning øving 4 1 Løsning oppgave 4 1 LØSNING ØVING 4 Elektron i potensial med to δ-funksjoner a En delta-brønn er grensen av en veldig dyp og veldig trang brønn Inne i

Detaljer

OPPGAVESETT MAT111-H16 UKE 45. Oppgaver til seminaret 11/11. Oppgaver til gruppene uke 46

OPPGAVESETT MAT111-H16 UKE 45. Oppgaver til seminaret 11/11. Oppgaver til gruppene uke 46 OPPGAVESETT MAT111-H16 UKE 45 Avsn. 6.1: 19, 31 Avsn. 7.9: 9, 17, 22 På settet: S.1, S.2 Oppgaver til seminaret 11/11 Oppgaver til gruppene uke 46 Løs disse først så disse Mer dybde Avsn. 6.1 4, 5, 29

Detaljer

Radon i vann. Trine Kolstad Statens strålevern

Radon i vann. Trine Kolstad Statens strålevern Radon i vann Trine Kolstad Statens strålevern Lillestrøm, september 2011 Innhold Hva er radon? Kilder Radon og helserisiko Radonmåling i vann Forekomster av radon i norsk vannforsyning Tiltak Oppsummering

Detaljer

Senter for Nukleærmedisin/PET Haukeland Universitetssykehus

Senter for Nukleærmedisin/PET Haukeland Universitetssykehus proton Senter for Nukleærmedisin/PET Haukeland Universitetssykehus nøytron Anriket oksygen (O-18) i vann Fysiker Odd Harald Odland (Dr. Scient. kjernefysikk, UiB, 2000) Radioaktivt fluor PET/CT scanner

Detaljer

Løsningsforslag til ukeoppgave 12

Løsningsforslag til ukeoppgave 12 Oppgaver FYS1001 Vår 018 1 Løsningsforslag til ukeoppgave 1 Oppgave 16.0 Loddet gjør 0 svingninger på 15 s. Frekvensen er da f = 1/T = 1,3 T = 15 s 0 = 0, 75 s Oppgave 16.05 a) Det tar et døgn for jorda

Detaljer

Stråledoser fra miljøet Beregninger av befolkningens eksponering for stråling fra omgivelsene i Norge

Stråledoser fra miljøet Beregninger av befolkningens eksponering for stråling fra omgivelsene i Norge StrålevernRapport 2015:11 Stråledoser fra miljøet Beregninger av befolkningens eksponering for stråling fra omgivelsene i Norge Referanse: Komperød M, Rudjord AL, Skuterud L, Dyve JE. Stråledoser fra miljøet.

Detaljer